Analysis of the structural variability of topologically associated domains as revealed by Hi-C

Abstract

Three-dimensional chromosome structure plays an integral role in gene expression and regulation, replication timing, and other cellular processes. Topologically associated domains (TADs), building blocks of chromosome structure, are genomic regions with higher contact frequencies within the region than outside the region. A central question is the degree to which TADs are conserved or vary between conditions. We analyze 137 Hi-C samples from 9 studies under 3 measures to quantify the effects of various sources of biological and experimental variation. We observe significant variation in TAD sets between both non-replicate and replicate samples, and provide initial evidence that this variability does not come from genetic sequence differences. The effects of experimental protocol differences are also measured, demonstrating that samples can have protocol-specific structural changes, but that TADs are generally robust to lab-specific differences. This study represents a systematic quantification of key factors influencing comparisons of chromosome structure, suggesting significant variability and the potential for cell-type-specific structural features, which has previously not been systematically explored. The lack of observed influence of heredity and genetic differences on chromosome structure suggests that factors other than the genetic sequence are driving this structure, which plays an important role in human disease and cellular functioning.

Publication
Nuc. Acids Res. Genomics and Bioinformatics 2(1):lqz008 (2020)