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Abstract
Studying the transcriptome is crucial to understanding functional elements of

the genome and elucidating biological pathways associated with disease. High-
throughput sequencing such as RNA-seq has become a powerful tool for transcrip-
tome analysis. Due to limited read lengths, identifying full-length transcripts from
short reads remains challenging. As third-generation sequencing becomes increas-
ingly important, single-molecule long reads have been used to improve transcrip-
tome analyses such as isoform identification. However, not all single-molecule long
reads represent full transcripts due to incomplete cDNA synthesis. This drives a need
for transcript assembly on long reads. We developed a reference-based long-read
transcript assembler, Scallop-LR, aiming to discover more novel isoforms. Analyz-
ing a considerable number of RNA-seq long-read samples, we quantified the bene-
fit of performing transcript assembly on long reads. We demonstrate that Scallop-
LR identifies more known transcripts and potentially novel isoforms for the human
transcriptome than Iso-Seq Analysis and StringTie, indicating that long-read tran-
script assembly by Scallop-LR can reveal a more complete human transcriptome.
Nanopore sequencing has become a leading choice for long-read RNA-seq. How-
ever, Nanopore long reads have high error rates. For many non-model organisms
without a high-quality reference, de novo (reference-free) error correction methods
designed for RNA-seq long reads are needed. We developed a novel, error-profile-
aware correction method, deepCorrRNA, for correcting RNA-seq long reads de novo
using deep learning. deepCorrRNA combines a graph-based method and a deep
neural network that incorporates the error profile related information systematically.
We show that ML-based deepCorrRNA achieves comparable error-rate reductions
to state-of-the-art ONT-specific isONcorrect. Across different organisms, deepCor-
rRNA demonstrates robust de novo error correction capability, which can benefit the
transcriptome studies of non-model organisms. deepCorrRNA’s method in principle
is generalizable and may be applied to different technologies. To accelerate tran-
scriptome analyses, RNA-seq analysis tools require comprehensive evaluation and
parameter optimization. While the number of RNA-seq samples grows enormously
at large sequence databases, most RNA-seq analysis tools are evaluated on limited
RNA-seq samples. This leads to a need to select a representative subset from RNA-
seq samples at large databases, which effectively summarizes the original collection
of RNA-seq samples. We developed a novel hierarchical representative set selection
method, to tackle the memory and runtime challenges in k-mer counting approaches
for RNA-seq samples in a large database. We demonstrate that hierarchical represen-
tative set selection achieves summarization quality close to direct representative set
selection, while largely reducing the runtime and memory usage, and substantially
outperforms random sampling on the entire SRA set of human RNA-seq samples.
The algorithms, methods, and analysis we have developed can be used to improve
transcriptome analyses and further our understanding of complex transcriptomes.
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Chapter 1

Introduction

More than 95% of human genes are alternatively spliced to generate multiple isoforms [73].
Gene regulation through alternative splicing can create different functions for a single gene and
increase protein-coding capacity and proteomic diversity. Thus, studying the full transcriptome
is crucial to understanding the functionality of the genome.

Transcriptome analysis is the study of the transcriptome under certain conditions or in spe-
cific cells using high-throughput methods. Transcriptomic strategies such as transcription pro-
filing play an important role in biomedical research, including biomarker discovery, disease di-
agnosis/prognosis, risk assessment of new drugs or environmental chemicals, etc. Transcription
profiling involves the quantification of gene expression of many genes in cells or tissue samples
at the transcription level. Transcriptomic techniques and analyses are useful in identifying the
functions of genes, finding the changes associated with the mutant phenotype, and identifying
pathways responding to environmental factors [8]. Transcriptomic analyses are used for person-
alized medicine; the analyses deal with the classification of disease/tumor subtypes or stages,
the mechanisms of pathogenesis, and outcome predictions on tumor prognosis and therapy re-
sponse [8]. Along with the technology advancements, computational methods are needed to
facilitate various analyses of transcriptomes.

In the past decade, high-throughput, short-read sequencing (next-generation sequencing,
NGS) technologies such as RNA-seq have become powerful tools for the characterization, quan-
tification, and analysis of the transcriptome. In short-read RNA-seq, mRNAs are extracted, frag-
mented, and reverse transcribed into cDNA fragments; the cDNA fragments are PCR-amplified
and sequenced using high-throughput, short-read sequencing. However, due to limited read
lengths in short-read RNA-seq, identifying full-length transcripts from short reads and assem-
bling all spliced RNAs within a transcriptome remain challenging problems.

1.1 Third-generation sequencing

In recent years, third-generation sequencing technologies offered by Pacific Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT) produce sequences of full cDNA or RNA molecules,
promising to improve isoform identification and reducing ambiguity in mapping reads [18]. Long
reads offer various benefits such as covering the entire molecule in the majority of cases and de-
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termining the allele from which the RNA molecule originated by identifying single nucleotide
variations (SNVs) affecting each single RNA molecule [96]. Long reads are also able to cap-
ture gene structures accurately without annotation and identify novel splice patterns that are not
found by short reads [18]. Long reads have been used for genome assembly and can be used to
identify functional elements in genomes that are missed by short-read sequencing [43, 90, 117].
Hybrid sequencing combining long reads and short reads can improve isoform identification and
transcriptome characterization [4, 109]. Hybrid genome assemblers taking advantages of both
short and long reads have also been developed [2, 44, 110, 118]. Long reads are also useful in
identifying novel long non-coding RNAs and fusion transcripts [105] and in studying specific
disease-determinant genes [100]. RNA-seq long reads can improve transcriptome analyses such
as isoform identification, characterization of complex transcriptional events, study of alternative
splicing, and study of transcription initiation.

PacBio single-molecule real-time (SMRT) sequencing uses a template called SMRTbell that
is a closed, single-stranded circular DNA created by ligating adaptors to both ends of a tar-
get double-stranded cDNA molecule (as shown in the top part of Figure 1.1). The sequencing
is based on a SMRT Cell, a chip with consumable substrates comprising arrays of zero-mode
waveguide (ZMW) nanostructures, and a SMRTbell diffuses into a sequencing unit ZMW on it.
The real-time observation of a SMRT Cell is called a “movie” (a “movie” of light pulses). The
light pulses corresponding to each ZMW can be interpreted as a sequence of bases that is called
a continuous long read (CLR) [78]. The continuous long read (CLR) is the original polymerase
read (obtained by reading a template with the DNA polymerase), and subreads are sequences
generated by splitting the CLR by the adapters (a full-pass subread is flanked on both ends by
adapters). PacBio’s “ROI” (“Read of Insert”, consensus reads) displays a higher quality than
subreads. Circular Consensus Sequence (CCS) reads are a type of ROI and are generated by
collapsing multiple subreads when ≥ 2 full-pass subreads are present (Figure 1.1).

Figure 1.1: Illustration of PacBio SMRT sequencing (from Pacific Biosciences. Available
at [accessed on 10/15/2022]: http://files.pacb.com/software/smrtanalysis/2.2.0/doc/smrtportal/
help/!SSL!/Webhelp/Portal_PacBio_Glossary.htm).
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For the SMRT sequencing, PacBio developed a software system, Iso-Seq Analysis [69], also
called Iso-Seq informatics pipeline. Iso-Seq Analysis takes subreads as input and outputs pol-
ished isoforms (transcripts) through collapsing, clustering, consensus calling, etc.

Nanopore sequencing uses a nanoscale protein pore (nanopore) embedded in an electrically
resistant polymer membrane inside the flow cell [108] (Figure 1.2). An ionic current is applied
across the membrane driving the negatively charged, unwound single-stranded DNA or RNA
molecules to move through the nanopore. Changes in the ionic current during translocation
correspond to the nucleotide sequence and are measured continuously by an electronic chip. A
basecaller converts the variations of the current to the DNA sequence. This enables real-time
sequencing of single molecules.

Figure 1.2: Illustration of nanopore sequencing (from yourgenome, Genome Research Limited,
2021, CC-BY 4.0. Available at [accessed on 10/15/2022]:
https://www.yourgenome.org/facts/what-is-oxford-nanopore-technology-ont-sequencing/).

For RNA-seq, ONT has three categories of protocols: (1) cDNA sequencing by using full-
length cDNA synthesis methods followed by PCR amplification (PCR-cDNA); (2) direct cDNA
sequencing without PCR amplification (direct cDNA); (3) direct RNA sequencing that directly
sequences native RNA molecules (direct RNA). PCR-cDNA has high throughput. Direct cDNA
avoids PCR amplification bias but requires a large amount of input material. Direct RNA has
lower accuracy than cDNA sequencing [108].

PacBio SMRT sequencing produces long reads with average lengths typically 30 kb (up to
40–70 kb) and the maximum length 200 kb. The read length in PacBio SMRT sequencing is
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limited by the longevity of the polymerase [1]. Oxford Nanopore sequencing produces longer
reads with read lengths typically 10–100 kb for long reads sequencing mode and 100–300 kb for
ultra-long reads sequencing (up to 2.3 Mb [1]).

A main challenge associated with long-read technologies is that long reads generally have
higher error rates than short reads. In PacBio sequencing, the error rate for subreads is ∼10–
15%, and the error rate for CCS reads was previously reported to be ∼1–2%. However, the
error rate of CCS reads has dramatically dropped in recent years—the CCS reads error rate is
claimed to be reduced to <1% [1]. For ONT long reads, the error rates vary depending on
the chemistry/kit/basecaller used and are up to ∼14% [56, 81]. The average accuracy of ONT
sequencing is also improving steadily.

1.2 Transcript assembly
Transcript assembly reconstructs transcripts from RNA-seq reads. Transcript assembly is useful
for differential gene expression analysis, novel gene discovery, novel isoform identification, etc.
Transcript assemblers were initially designed for assembling RNA-seq short reads, as short reads
usually do not span the full lengths of long transcripts. There are mainly two categories of
approaches for transcript assembly: de novo transcript assembly and reference-based transcript
assembly.

De novo transcript assembly generates contigs only based on the RNA-seq reads without
using a reference genome. Most de novo transcript assemblers are based on de Bruijn graphs
constructed from k-mer decompositions of the RNA-seq reads. The transcript is reconstructed
by the overlap of the k-mers. The state-of-the-art de novo transcript assemblers for short reads in-
clude rnaSPAdes [12], Trinity [32], Trans-ABySS [79], Bridger [16], SOAPdenovo-Trans [115],
and Oases [85]. A challenge in de novo transcript assembly is that it may produce fragmented
transcripts due to sequencing errors, polymorphism, sequence repeats, etc.

Reference-based transcript assembly is more accurate than de novo transcript assembly but
requires a reference genome. Reference-based transcript assembly first aligns the RNA-seq reads
to the reference genome using splice-aware RNA-seq aligners, such as STAR [24], TopHat2 [38],
HISAT2 [39], and BBMap [14] for short reads. From the alignments, exons and splice junctions
are inferred and identified. Most reference-based transcript assemblers, such as short-read assem-
blers Cufflinks [99], Scripture [33], IsoLasso [55], Traph [98], Bayesembler [62], CIDANE [15],
TransComb [58], StringTie [75], and Scallop [88], use the read alignments to build splice graphs
(vertices are exons; edges are splice junctions), and then a set of paths are inferred from the
splice graph as assembled transcripts. Scallop and StringTie use flow decomposition algorithms
to decompose the splice graph to infer a small number of paths. StringTie generally outperforms
Cufflinks, IsoLasso, Scripture, and Traph [75, 76]. Scallop generally outperforms StringTie and
TransComb, and especially shows advantage in identifying lowly expressed transcripts [88].

In single-molecule long-read RNA-seq, although in the majority of cases long reads cover
the entire cDNA molecule, cDNA synthesis can be incomplete with respect to the original mR-
NAs [89]. Consequently, a long read could correspond to a partial transcript as a result of incom-
plete cDNAs. Thus, not all single-molecule long reads represent full transcripts due to incom-
plete cDNA synthesis, and therefore transcript assembly is still needed for single-molecule long
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reads in order to recover the original full transcripts.
Long-read transcript assembly deals with the special characteristics of long reads, such as

long read lengths and high error rates. Scallop-LR [102] that we developed (Chapter 2) is the
first long-read transcript assembler that is evaluated on real sequencing long reads. Scallop-LR is
reference-based and is evolved from the short-read assembler Scallop. StringTie2 [45] is another
reference-based long-read transcript assembler and is evolved from StringTie. For reference-
based long-read transcript assembly, splice-aware long-read aligners including Minimap2 [52],
Graphmap2 [63], and GMAP [112] can be used for aligning the RNA-seq long reads to the
reference genome.

There are also two hybrid de novo transcript assemblers, IDP-denovo [28] and a new version
of Trinity [32]. IDP-denovo and Trinity do not assemble long reads; they assemble short reads
and use long reads to extend, supplement, or improve the assembly of short reads.

1.3 Long-read error correction
Long-read RNA-seq has become increasingly useful in transcriptome studies, especially for iso-
form identification and quantification, fusion transcript detection, etc. However, long reads’
higher error rates than short reads’ can affect transcriptome analysis, especially in detecting
exon boundaries, quantifying similar isoforms and paralogous genes, etc. This drives a need for
computational methods for error correcting RNA-seq long reads.

Long reads have three types of sequencing errors: substitutions, insertions, and deletions.
While errors in short reads are primarily substitutions, in long reads a large percentage of errors
are indels (insertions and deletions). Short-read error correctors are not applicable to long reads
since they were designed to deal with substitutions and low error rates. Error correction methods
for genomic long reads have been developed in recent years. There are mainly three categories
of approaches for genomic error correction: hybrid correction, self-correction, and signal-based
correction.

Hybrid correction uses short reads to correct long reads. The representative hybrid genomic
error correctors include HALC [6], LoRDEC [82], NaS [60], proovread [34], Nanocorr [31], and
PBcR [42]. Most hybrid correctors use a mapping strategy; the mapping strategy places short
reads on long reads and corrects long read regions using the related short read sequences. Hybrid
correction requires using short reads, while oftentimes short reads are unavailable, which limits
the application of hybrid error correctors.

Self-correction uses only long reads to correct the errors in long reads. The represen-
tative self-correction genomic error correctors include Canu’s error correction module [43],
LoRMA [83], MECAT [114], daccord [97], pbdagcon [17], and CONSENT [65]. Most self-
correctors use graph-based consensus strategy; the graph-based consensus strategy is based on
read overlapping to generate corrected consensus sequences using graphs.

Signal-based correction uses raw electric signals, such as the measurement of current in
nanopore sequencing. The representative signal-based genomic error correctors include Nanop-
olish [59] and NanoReviser [106]. Signal-based correctors re-analyze the raw electrical signals
outputted from the sequencer to find the correct bases. However, raw signal data may not always
be available.
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Using genomic error correctors to correct RNA-seq long reads has undesirable effects, such
as splitting reads in low coverage regions or removing/adding exons [56]. Thus, error correc-
tion methods that are designed for RNA-seq long reads are needed. The earliest error corrector
specifically designed for RNA-seq long reads is LSC [3] that is a hybrid corrector for PacBio and
requires using short reads. Afterwards, two reference-based error correctors that are specifically
designed for RNA-seq long reads, TranscriptClean [113] and FLAIR [94], were developed. Tran-
scriptClean and FLAIR correct base errors and/or splice sites for RNA-seq long reads, but require
using a reference genome. However, for many non-model organisms, a high-quality reference
genome is unavailable. Hence, de novo error correction for RNA-seq long reads is needed.

De novo error correction corrects RNA-seq long reads without using a reference genome,
transcriptome, or annotation. Recently, two de novo error correctors specifically designed for
ONT RNA-seq long reads, isONcorrect [81] and RATTLE [22], have been developed. isON-
correct and RATTLE are graph-based self-correction methods that use partial order alignment
(POA) [49] for multiple sequence alignment (MSA) and consensus generation.

1.4 Representative set selection
For transcriptome analysis, the aforementioned bioinformatics tools including transcript assem-
blers, RNA-seq read aligners, RNA-seq read error correctors, etc. require comprehensive evalu-
ation prior to being used in the study of the transcriptome. However, despite numerous RNA-seq
samples available at large sequence databases such as the Sequence Read Archive (SRA) [51],
most RNA-seq analysis tools are evaluated on a limited number of RNA-seq samples; thus, they
may not be sufficiently evaluated by samples across a variety of cell/tissue types and disease
conditions. This drives a need for computational methods to select a representative subset from
a large collection of RNA-seq samples to facilitate comprehensive, unbiased evaluation of bioin-
formatics tools. Furthermore, using a selection of representative RNA-seq samples can benefit
the parameter optimization of bioinformatics tools.

Representative set selection solves the problem of finding a subset of data points (repre-
sentatives) that efficiently summarizes and describes the original collection of data. Various
representative set selection methods have been developed in the fields of computer vision [26],
signal/image processing [107], information retrieval [27, 72], and machine learning [25, 29].
Most common applications of representative set selection include image, video, and text sum-
marizations. Machine learning tasks such as classification and regression can also improve in
terms of fast training and reduced memory usage by using a representative subset as the training
set [25, 29].

One category of representative set selection methods is clustering-based approaches [21, 27].
Clustering-based approaches first cluster the data points using a clustering method such as k-
means, k-medoids, spectral clustering, or DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise); the representative objects are then selected from the clusters. Usually the
number of clusters is set to be the representative set size, and one representative object is selected
from each cluster, such as the object closest to the mean or just the medoid of the cluster.

Another category of representative set selection methods is sparse modeling-based algo-
rithms [26, 107]. Sparse modeling algorithms formulate the representative set selection as a
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dictionary learning problem, based on the assumption that the entire set can be reconstructed
by linear combinations of dictionary items. Additionally, there are also Rank Revealing QR
algorithms [9] that use matrix factorization to find a subset of columns of the data matrix corre-
sponding to the best conditioned submatrix, and algorithms using mutual information and relative
entropy to search for a representative subset [72].

The representative subset selected by the aforementioned approaches generally follows the
density distribution of the original full set, which is useful for video/photo summarizations. How-
ever, for RNA-seq analyses, the representative set having even coverage of the transcriptional
space spanned by the original set is more important, such that rare cell types or conditions can
be sufficiently represented. Thus, the above methods are generally not suitable for RNA-seq
analyses.

In the field of RNA-seq analysis, a geometric sketching algorithm [35] was developed for
single-cell RNA-seq. To accelerate single-cell analysis, geometric sketching summarizes the
transcriptomic heterogeneity within a data set using a representative subset of cells. Using a
covering algorithm, geometric sketching selects the representative subset that has even coverage
of the transcriptional space spanned by the original set, so that rare cell types are sufficiently
represented.

Recently, a Python package, apricot [84], was developed for selecting representative subsets
using submodular optimization. Apricot maximizes a monotone submodular function’s value to
find a representative subset. Using facility location, apricot maximizes the sum of similarities
between each sample and its closest representative sample. The representative set selected by
apricot approximately evenly spans the space of the original data. Thus, apricot is well suited for
RNA-seq analyses.

1.5 Contributions
This dissertation combines algorithms and computational methods development as well as data
analysis for transcriptome study. Our contributions are summarized as follows:

• Transcript assembly on single-molecule long reads (Chapter 2). Since not all single-
molecule long reads represent full transcripts due to incomplete cDNA synthesis, we de-
veloped the first reference-based long-read transcript assembler called Scallop-LR, evolved
from Scallop [88]. Scallop-LR’s algorithms are tailored to long-read technologies, dealing
with the long read lengths (by representing long reads as long phasing paths and preserving
phasing paths in assembly) and high error rates, and taking advantage of long-read-specific
features such as the read boundary information to construct more accurate splice graphs.
A post-assembly clustering algorithm is added in Scallop-LR to reduce false negatives.
We analyzed 26 PacBio long-read data sets from the Sequence Read Archive (SRA) [51]
with Scallop-LR, Iso-Seq Analysis [69], and StringTie [75], and quantified the benefit of
performing transcript assembly on single-molecule long reads. Using combined multi-
ple evaluation methods, we demonstrate that Scallop-LR is able to identify many more
known transcripts and find more potential novel isoforms than Iso-Seq Analysis. We also
show that Scallop-LR assembles more known transcripts and potential novel isoforms than
StringTie for human samples. Our results indicate that long-read transcript assembly with
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Scallop-LR can help reveal a more complete human transcriptome.
• Representative set selection of RNA-seq samples (Chapter 3). To facilitate comprehen-

sive, unbiased evaluation and robust parameter optimization of bioinformatics tools for
RNA-seq analyses, we developed a novel method to select a representative subset from all
available RNA-seq samples at a large sequence database. We designed a sequence-based,
k-mer counting approach that selects a representative subset based on k-mer similarities be-
tween RNA-seq samples. Because of the large numbers of available RNA-seq samples and
of k-mers in each sample, computing the full similarity matrix using k-mers for the entire
set of RNA-seq samples in a large database has memory and runtime challenges, mak-
ing direct representative set selection infeasible. To tackle this challenge, we developed
a novel computational method called “hierarchical representative set selection.” Hierar-
chical representative set selection is an algorithm that breaks representative set selection
into sub-selections and hierarchically selects representative samples through multiple lev-
els. We developed a novel seeded-chunking method along with a weighting scheme. We
demonstrate that hierarchical representative set selection achieves summarization quality
close to direct representative set selection, while largely reducing runtime and memory
requirements of computing the full similarity matrix. We show that hierarchical represen-
tative set selection substantially outperforms random sampling on the entire SRA set of
human RNA-seq samples, making it a practical solution to representative set selection on
large databases. Our method is the first approach to this problem that can scale to collec-
tions of the size of the full set of human RNA-seq samples in the SRA.

• De novo error correction for RNA-seq long reads (Chapter 4). To reduce sequencing
errors of RNA-seq long reads for many non-model organisms without a high-quality refer-
ence, we developed a novel de novo (reference-free) error correction method for RNA-seq
long reads. While prior findings suggest that the error profile information (i.e. factors asso-
ciated with error occurrences or error types) is useful for error correction, existing de novo
self-correction error correctors for Nanopore RNA-seq reads have not systematically taken
into account the error profile information. Thus, we developed a novel error correction
method called deepCorrRNA for self-correcting RNA-seq long reads de novo using deep
learning. deepCorrRNA is an error-profile-aware, generalizable correction method that
combines a graph-based MSA-POA and a Bi-LSTMs/LSTMs-based deep neural network
that incorporates the error profile related information systematically. deepCorrRNA is the
first ML-based method for de novo RNA-seq long-read error correction and is the first de
novo RNA-seq long-read correction method that incorporates the error profile related in-
formation systematically. We evaluated deepCorrRNA on five ONT RNA-seq data sets of
three organisms. Our results show that ML-based deepCorrRNA achieves similar reduc-
tions in the total error rates to state-of-the-art ONT-specific RNA-seq error corrector isON-
correct [81]. While the model of deepCorrRNA is trained with human data, we show that
its correction performance on different organisms (mouse and Drosophila) demonstrates
its transferability and robust de novo error correction capability, which can benefit the
transcriptome analysis of non-model organisms. Using generalized (technology/organism
independent) error profile related features systematically and with comparable error re-
ductions to the state of the art, deepCorrRNA offers a generalizable method that may be
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applied to different technologies.
Together, these contributions provide new algorithms and computational methods to improve

transcriptome analysis and advance our understanding of complex transcriptomes.
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Chapter 2

Transcript assembly on single-molecule
long reads

A version of this chapter was published in Genome Biology [102] and is joint work with Mingfu
Shao and Carl Kingsford.

2.1 Background

Single-molecule long reads have been widely used for genome assembly [43, 90, 117]. Long
reads have advantages in genome assembly as they span long repeats, polymorphic regions,
transposable elements, etc. and can be used to identify functional elements in genomes that are
missed by short-read sequencing. To take advantages of both short reads and long reads, hybrid
genome assemblers have been developed [2, 44, 110, 118]. For transcriptome studies, single-
molecule long reads can improve isoform identification [1], identify novel splice patterns that
are not found by short reads [18], and capture gene structures without annotation. Long reads
are useful in identifying fusion transcripts [105], investigating disease-determinant genes [100],
studying transcription initiation, and characterizing complex transcriptional events. Hybrid se-
quencing combining long reads and short reads can improve isoform identification and transcrip-
tome characterization [4, 109].

We focus on transcript assembly of long reads, aiming to discover more novel isoforms. Al-
though it is often thought that long reads are full-length transcripts and isoforms with no assem-
bly required [70], in fact the success rate of the sequenced cDNA molecules containing all splice
sites of the original transcripts depends on the completeness of cDNA synthesis [89]. Sharon et
al. [89] found that a CCS read could correspond to an incomplete transcript as a consequence
of incomplete cDNA synthesis, although a CCS read represents the full cDNA molecule. They
found that, in their experiment, for transcripts > 2.5 kb, full-length reads that represent the origi-
nal transcripts are less likely to be observed than those for transcripts < 2.5 kb. Tilgner et al. [96]
also found that, in their experiment, reads representing all splice sites of the original transcripts
are more likely to be observed for transcripts≤ 3 kb. The cDNA synthesis methods impose limi-
tations on long reads [47] even though with increasing performance the sequencing technologies
can be capable of sequencing long full-length transcripts. In addition, long reads may still be
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limited by the sequencing length limit of the platform [78]. Thus, incomplete cDNA synthesis
plus the sequencing length limit could cause PacBio’s consensus long reads to miss a substantial
number of true transcripts [78], especially longer transcripts. This suggests that the transcript
assembly of long reads is still needed, since it is possible that those CCS reads corresponding to
incomplete transcripts could be assembled together to recover the original full transcripts.

Long read lengths and high error rates pose computational challenges to transcript assembly.
No published transcript assembler had been adapted and systematically tested on the challenges
of long-read transcript assembly yet when the work in this chapter was first published. Aiming
to handle these challenges, we developed a reference-based long-read transcript assembler called
Scallop-LR, evolved from Scallop, an accurate short-read transcript assembler [88]. Scallop-LR
is designed for PacBio long reads. Scallop-LR’s algorithms are tailored to long-read technolo-
gies, dealing with the long read lengths and high error rates as well as taking advantage of
long-read-specific features such as the read boundary information to construct more accurate
splice graphs. A post-assembly clustering algorithm is also added in Scallop-LR to reduce false
negatives.

We analyzed 26 long-read datasets from NIH’s Sequence Read Archive (SRA) [51] with
Scallop-LR, Iso-Seq Analysis [69], and StringTie [75, 76]. Iso-Seq Analysis, also known as Iso-
Seq informatics pipeline, is a software system developed by PacBio that takes subreads as input
and outputs polished isoforms (transcripts) through collapsing, clustering, consensus calling,
etc. Iso-Seq Analysis does not perform assembly per se. The clustering algorithm in Iso-Seq
Analysis clusters reads based on their isoform of origin. StringTie was originally designed as a
short-read transcript assembler but can also assemble long reads. StringTie outperforms many
leading short-read transcript assemblers [75].

Through combined evaluation methods, we demonstrate that Scallop-LR is able to find more
known transcripts and novel isoforms that are missed by Iso-Seq Analysis. We show that Scallop-
LR can identify 2100–4000 more known transcripts (in each of 18 human datasets) or 1100–
2200 more known transcripts (in each of eight mouse datasets) than Iso-Seq Analysis. The
sensitivity of Scallop-LR is 1.33–1.71 times higher (for the human datasets) or 1.43–1.72 times
higher (for the mouse datasets) than that of Iso-Seq Analysis. Scallop-LR also finds 2.53–4.23
times more (for the human datasets) or 2.38–4.36 times more (for the mouse datasets) potential
novel isoforms than Iso-Seq Analysis. Further, Scallop-LR assembles 950–3770 more known
transcripts and 1.37–2.47 times more potential novel isoforms than StringTie, and has 1.14–1.42
times higher sensitivity than StringTie for the human datasets.

2.2 Methods

2.2.1 Scallop-LR algorithms for long-read transcript assembly

Scallop-LR is a reference-based transcript assembler that follows the standard paradigm of align-
ment and splice graphs but has a computational formulation dealing with “phasing paths.” “Phas-
ing paths” are a set of paths that carry the phasing information derived from the reads spanning
more than two exons. The reads are first aligned to a reference genome and the alignments are
transformed into splice graphs, in which vertices are inferred (partial) exons, edges are splice
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junctions, the coverage of exon is taken as the vertex weight, and the abundance of splice junc-
tion is used as the edge weight. We decompose the splice graph to infer a small number of paths
(i.e. predicted transcripts) that cover the topology and fit the weights of the splice graph.

Scallop-LR represents long reads as long phasing paths, preserved in assembly

Unlike short reads, most long reads span more than two exons. Thus, if the multi-exon paths of
long reads are broken when decomposing splice graphs (which is more likely to occur since the
majority of long reads span large numbers of exons), many long reads would not be correctly
covered by assembled transcripts. Thus, Scallop-LR represents long reads as long phasing paths
and preserves phasing paths in assembly. This is particularly important since we want every
phasing path (and thus every long read) to be covered by some transcript so that the assembly
can represent the original mRNAs. Scallop-LR adapted the phasing-path preservation algorithm
from Scallop when decomposing splice graphs into transcripts. The Scallop algorithm uses an
iterative strategy to gradually decompose the splice graph while achieving three objectives si-
multaneously:

a) Preserving all phasing paths in assembled transcripts when decomposing the splice graph;

b) Minimizing the read coverage deviation using linear programming;

c) Minimizing the number of predicted transcripts by reducing an upper bound on the number
of required paths.

Figure 2.1 shows a simple example of a splice graph by representing long reads as phasing
paths and its decomposition without and with preservation of long reads’ phasing paths. The ex-
ample illustrates that when decomposing the splice graph without preserving long reads’ phasing
paths, the multi-exon paths of some long reads are broken, and thus not all long reads are cor-
rectly covered by assembled transcripts. When decomposing the splice graph by preserving long
reads’ phasing paths, all long reads are correctly covered by assembled transcripts.

By representing long reads as long phasing paths, Scallop-LR makes full use of the infor-
mation in long reads through phasing-path preservation, so that assembled transcripts can best
represent the input long reads.

Additional Scallop-LR algorithms

To improve long-read assembly accuracy, Scallop-LR extracts the boundary information from
long reads and identifies transcript boundaries to build a more accurate splice graph. In single-
molecule sequencing, there are two types of long reads produced: full-length reads and non-
full-length reads. Full-length reads are the reads that have a 5’ primer, 3’ primer, and polyA
tail, which are the reads that represent full-length transcripts they originated from. Non-full-
length reads do not represent full-length transcripts. We further classify non-full-length reads
into two types: non-full-length boundary reads and non-full-length internal reads. Non-full-
length boundary reads are the reads that either have a 5’ primer but not the 3’ primer, or have a
3’ primer but not the 5’ primer (i.e. reads that come from either the 5’ or 3’ end but do not reach
the other end). Non-full-length internal reads are the reads that have neither of the 5’ primer and
3’ primer (i.e. reads that do not come from either end). Scallop-LR treats non-full-length internal
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Figure 2.1: Example of a splice graph by representing long reads as phasing paths and its decom-
position with and without preservation of long reads’ phasing paths. (a) Alignment of reads to
the reference genome. Inferred (partial) exons are marked with letters. Green and blue colored
reads are long reads spanning more than two exons. Scallop-LR represents these long reads as
a set of phasing paths: {(a, c, e), (b, c, d)}. (b) The corresponding splice graph (with weights
for all edges) and associated phasing paths (in green and blue). (c) Decomposition of the splice
graph without preservation of long reads’ phasing paths. Although all weights are perfectly
matched, both phasing paths are “broken” (none of the three decomposed paths contains (b, c, d)
or (a, c, e)). (d) Decomposition of the splice graph with preservation of long reads’ phasing
paths. All phasing paths are correctly covered by assembled transcripts.
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reads like short reads when constructing the splice graph.
We refer to non-full-length boundary reads (with one side boundary) and full-length reads

(with two side boundaries) as “boundary reads” for the side they have a boundary. We use
the Classify tool in Iso-Seq Analysis to obtain full-length and non-full-length CCS reads. The
Scallop-LR algorithm extracts the boundary information of each read from the Classify results
and uses it to deduce starting/ending boundaries in the splice graph. Specifically, when there
are a certain number of boundary reads whose boundaries align within an exonic region in the
genome with very similar boundary positions (the default minimum number is 3), the algorithm
defines it as a starting or ending boundary:

Suppose there are some 5’ end boundary reads aligned to the genome at positions [a+δ1, x1],
[a + δ2, x2], [a + δ3, x3], etc., where |δ1|, |δ2|, |δ3|, . . . are within a predefined allowance of
difference for matching positions and x1, x2, x3, . . . are the ending positions of the aligned
genomic regions of these reads, then this is a signal that position a corresponds to a starting
position of a transcript. Thus, in the splice graph, we add an edge connecting the source s
to the vertex corresponding to the exonic region [a, c] in the genome (where c is the ending
position of this exonic region).

Similarly,
Suppose there are some 3’ end boundary reads aligned to the genome at positions [x1, b+δ1],
[x2, b + δ2], [x3, b + δ3], etc., where |δ1|, |δ2|, |δ3|, . . . are within a predefined allowance of
difference for matching positions and x1, x2, x3, . . . are the starting positions of the aligned
genomic regions of these reads, then this is a signal that position b corresponds to an ending
position of a transcript. Thus, in the splice graph, we add an edge connecting the vertex
corresponding to the exonic region [d, b] in the genome (where d is the starting position of
this exonic region) to the target t.

This is for the forward strand. For the reverse strand, the situation is opposite. Specifically, the
algorithm first sorts all boundary positions from boundary reads together with splice positions.
The algorithm identifies a new transcript boundary if the number of closely adjacent boundary
positions of the same type (i.e. not separated by any different type of boundary or splice position
in the sorted list) reaches a threshold (by default 3). For these closely adjacent boundary positions
of the same type in the sorted list, if they are 5’ boundary positions, the algorithm reports the
leftmost one as the 5’ transcript boundary coordinate. Similarly, if they are 3’ boundary positions,
the algorithm reports the rightmost one as the 3’ transcript boundary coordinate.

To increase the precision of long-read assembly, Scallop-LR uses a post-assembly clustering
algorithm to reduce the false negatives in the final predicted transcripts. For transcripts with very
similar splice positions, the algorithm clusters them into a single transcript. “Very similar splice
positions” means (a) these transcripts have the same number of splice positions; (b) for each
splice position, their position differences are within a predefined allowance (the default allowance
is 10 bp; the allowance can be set in a parameter). This allowance is for the sum of the difference
(absolute value) of starting position and the difference of ending position for a splice position.
We use a single-linkage clustering method to group the assembled transcripts. Specifically, we
first build an undirected graph in which vertices represent all assembled transcripts. We iterate
through all pairs of assembled transcripts, and if any two transcripts are “very similar” (i.e. all
their splice positions’ differences are less than a predefined allowance), we add an edge between
these two transcripts (i.e. vertices). We then find all connected components in this graph; each
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connected component is a cluster. For each cluster, we identify the transcript with the highest
(predicted) abundance and use this transcript to represent this cluster. The abundance of this
consensus transcript is then set to the sum of the abundances of all transcripts in this cluster.
We modify this consensus transcript so it spans the transcripts in the cluster by extending the
boundary positions of its two end-exons as needed: its left position is set to the leftmost position
among all transcripts in the cluster; its right position is set to the rightmost position among
all transcripts in the cluster. This clustering collapses “nearly redundant” transcripts and thus
increases the precision of assembly.

The Scallop-LR algorithm deals with the high error rates in long reads when building the
splice graph. Errors in long reads are mostly insertions and deletions, which may lead to mis-
alignments around splice positions. When identifying splice positions from long-read alignments
during the construction of the splice graph, the algorithm takes into account that a single insertion
or deletion in the middle of the alignment may be caused by sequencing errors in long reads and
therefore ignore these small indels (by treating them as alignment match and counting towards
to the coverage of the corresponding vertex) when determining the splice positions. Moreover,
long deletions due to sequencing errors may be falsely marked as splice junctions by aligners.
Thus, Scallop-LR introduces a parameter (by default 50) as the minimum size of introns to filter
out such false-negative splice junctions.

2.2.2 Combined evaluation methods
We use multiple transcript evaluation methods to examine the quality of predicted transcripts
from transcript assemblers (i.e. Scallop-LR and StringTie) and Iso-Seq Analysis. The combined
evaluation methods allow us to assess predicted transcripts using various metrics as well as cross-
verify the findings obtained from different methods.

Gffcompare [74] is used to identify correctly predicted transcripts and the resulting sensitivity
and precision by comparing the intron chains of predicted transcripts to the reference annotation
for matching intron-exon structures. A correctly predicted known transcript has an exact intron-
chain matching with a reference transcript. Sensitivity is the ratio of the number of correctly
predicted known transcripts over the total number of known transcripts, and precision is the
ratio of the number of correctly predicted known transcripts over the total number of predicted
transcripts. We generate the precision-recall curve (PR-curve) based on the results of Gffcompare
by varying the set of predicted transcripts sorted with coverage, and compute the metric PR-AUC
(area under the PR-curve) which measures the overall performance. Gffcompare also reports
“potential novel isoforms” that are predicted transcripts sharing at least one splice junction with
reference transcripts, though this criterion for potential novel isoforms is weak when transcripts
contain many splice junctions.

To further examine novel isoforms, we use the evaluation method SQANTI [95] that classi-
fies novel isoforms into Novel in Catalog (NIC) and Novel Not in Catalog (NNC). A transcript
classified as NIC either contains new combinations of known splice junctions or contains novel
splice junctions formed from known donors and acceptors. NNC contains novel splice junctions
formed from novel donors and/or novel acceptors. The criterion for NIC is stronger compared
with that of potential novel isoforms in Gffcompare, and we conjecture that NICs may be more
likely to be true novel isoforms than wrongly assembled transcripts. SQANTI also reports Full
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Splice Match (FSM) that is a predicted transcript matching a reference transcript at all splice
junctions, and Incomplete Splice Match (ISM) that is a predicted transcript matching consecu-
tive, but not all, splice junctions of a reference transcript.

Gffcompare and SQANTI report transcripts that fully match, partially match, or do not match
reference transcripts, but do not report how many transcripts, for example, have 75–95% or 50–
75% of bases matching a reference transcript. These ranges of matched fractions would give us
a more detailed view of the overall quality of assembly. Thus, we use rnaQUAST [13] that mea-
sures the fraction of a predicted transcript matching a reference transcript. rnaQUAST maps pre-
dicted transcripts sequences to the reference genome using GMAP [112] and matches the align-
ments to the reference transcripts’ coordinates from the gene annotation database. rnaQUAST
measures the fraction of a reference transcript that is covered by a single predicted transcript,
and the fraction of a predicted transcript that matches a reference transcript. Based on the
results of rnaQUAST, we compute the distribution of predicted transcripts in different ranges
of fractions matching reference transcripts, and the distribution of reference transcripts in dif-
ferent ranges of fractions covered by predicted transcripts. rnaQUAST also reports unaligned
transcripts (transcripts without any significant alignments), misassembled transcripts (transcripts
that have discordant best-scored alignments, i.e. partial alignments that are mapped to different
strands, different chromosomes, in reverse order, or too far away), and unannotated transcripts
(predicted transcripts that do not cover any reference transcript).

We use Transrate [92] for sequence-based evaluation to obtain statistics of predicted tran-
scripts such as the minimum, maximum, and mean lengths, the number of bases in the assembly,
numbers of transcripts in different size ranges, etc.

The reference annotations we use in Gffcompare, rnaQUAST, and SQANTI are Ensembl
Homo sapiens GRCh38.90 and Mus musculus GRCm38.92. The reference genomes we use are
Ensembl GRCh38 for human and GRCm38 for mouse when running rnaQUAST and SQANTI
or aligning long reads to the genome (Section 2.2.4).

2.2.3 Data acquisition and preprocessing
We obtained PacBio datasets for Homo sapiens and Mus musculus from SRA [36, 41, 51, 66,
86, 90]. In most of the PacBio datasets in SRA, one BioSample has multiple SRA Runs because
the experimenters used multiple “movies” to increase the coverage so that low-abundance, long
isoforms can be captured in analysis. The experimenters also used a size selection sequencing
strategy, and thus different SRA Runs are designated for different size ranges. Therefore, we
use one BioSample instead of one SRA Run to represent one dataset in our analysis, and we
merge multiple SRA Runs that belong to the same BioSample into that dataset. (See Appendix
Section 2.5.1 about “movies” and size selection strategy.)

We collected the SRA PacBio datasets that meet the following conditions: (a) The datasets
should be transcriptomic and use the cDNA library preparation. (b) The datasets should have
the hdf5 raw data uploaded. This is because if using fastq-dump in SRA Toolkit to extract the
sequences from SRA, the output sequences lose the original PacBio sequence names even using
the sequence-name preserving option. The original PacBio sequence name is critical since it
contains information such as the movie, the identification of subreads or CCS reads, etc. (c)
The datasets should not be “targeted sequencing” focusing on a specific gene or a small genomic
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region. (d) The datasets should use the Iso-Seq2-supported sequencing-chemistry combinations.
(e) For a BioSample, the number of SRA Runs should be ≤ 50. This is because a huge dataset is
very computationally expensive for Iso-Seq Analysis. With the above conditions, we identified
and extracted 18 human datasets and eight mouse datasets—a total of 26 PacBio datasets from
SRA. These 26 datasets are sequenced using RS II or RS platform, and their SRA information is
in Appendix Table 2.33.

We convert the PacBio raw data to subreads and merge the subreads from multiple movies
belonging to the same BioSample into a large dataset for analysis.

2.2.4 Analysis workflow for analyzing the SRA PacBio datasets

Combining our long-read transcript assembly pipeline with the Iso-Seq Analysis pipeline (Iso-
Seq2), we build an analysis workflow to analyze the SRA datasets, as shown in Figure 2.2.

After obtaining subreads and creating the merged dataset, we generate CCS reads from sub-
reads. After classifying the CCS reads into full-length and non-full-length reads, the full-length
CCS reads are clustered—they are run through the ICE (Iterative Clustering and Error correc-
tion) algorithm to generate clusters of isoforms. Afterwards, the non-full-length CCS reads are
attributed to the clusters, and the clusters are polished using Quiver or Arrow. Quiver is an al-
gorithm for calling accurate consensus from multiple reads, using a pair-HMM exploiting the
basecalls and QV (quality values) metrics to infer the true underlying sequence [68]. Quiver is
used for RS and RS II data (for data from the Sequel platform, an improved consensus model Ar-
row is used). Finally, the polished consensus isoforms are mapped to the genome using GMAP
to remove the redundancy, and the final polished isoforms sequences and annotated isoforms are
generated.

The right side of the analysis workflow in Figure 2.2 is our long-read transcript assembly
pipeline. We chose Minimap2 [52] and GMAP as the long-read aligners. GMAP has been
shown to outperform RNA-seq aligners STAR [24], TopHat2 [38], HISAT2 [39], and BBMap
[14] in aligning long reads [46]. The RNA-seq aligner Minimap2 is specifically designed for
long reads. Minimap2 outperforms GMAP, STAR, and SpAln in junction accuracy, and is 40X
faster than GMAP [52]. We did a pre-assessment on the accuracy of Minimap2 vs. GMAP on
a set of datasets which are either error-corrected or not error-corrected (results are not shown).
Comparing the assembly results, we found that Minimap2 is more accurate than GMAP for long
reads without error corrections, and Minimap2 and GMAP have nearly the same accuracy for
long reads with error corrections. Thus, we use Minimap2 to align CCS reads (which are not
error-corrected), while in the Iso-Seq Analysis pipeline, GMAP is used to align polished iso-
forms (which are error-corrected). For assembly performance comparison, we choose StringTie
as a counterpart, as StringTie outperforms leading transcript assemblers Cufflinks, IsoLasso,
Scripture and Traph in short-read assembly [75, 76].

We use the full-length CCS and non-full-length CCS reads as the input of our long-read
transcript assembly pipeline for Scallop-LR (v0.9.1) and StringTie (v1.3.2d) to assemble those
CCS reads. We first align those CCS reads to the reference genome using Minimap2, and then
the alignments are assembled by the transcript assemblers. In addition to taking the alignments
as input, Scallop-LR also extracts the boundary information (see Section 2.2.1) from CCS reads.
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Figure 2.2: Workflow for analyzing the SRA PacBio datasets, combining the long-read transcript
assembly pipeline (right) with the Iso-Seq Analysis pipeline (left).
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The software versions and options used in this analysis workflow are summarized in Ap-
pendix Section 2.5.2. The code to reproduce the analysis is available at:
Scallop-LR: https://github.com/Kingsford-Group/scallop/tree/isoseq; long-read transcript assem-
bly analysis: https://github.com/Kingsford-Group/lrassemblyanalysis.

2.3 Results

2.3.1 Scallop-LR and StringTie predict more known transcripts than Iso-
Seq Analysis

From the Gffcompare results for the human data, Scallop-LR and StringTie consistently predict
more known transcripts than Iso-Seq Analysis and thus consistently have higher sensitivity than
Iso-Seq Analysis. Scallop-LR finds 2100–4000 more known transcripts than Iso-Seq Analysis,
and the sensitivity of Scallop-LR is 1.33–1.71 times higher than that of Iso-Seq Analysis (Fig-
ures 2.3 and 2.4, Appendix Tables 2.1 and 2.2). StringTie finds 350–1960 more known transcripts
than Iso-Seq Analysis, and the sensitivity of StringTie is 1.05–1.4 times higher than that of Iso-
Seq Analysis. Scallop-LR and StringTie have higher sensitivity than Iso-Seq Analysis because
Scallop-LR and StringTie do assembly but Iso-Seq Analysis does not. This supports the idea that
the transcript assembly of long reads is needed. Assembly is likely useful because the success
level of transcriptomic long-read sequencing depends on the completeness of cDNA synthesis,
and also long reads may not cover those transcripts longer than a certain length limit [78].

In the human data, Scallop-LR also consistently assembles more known transcripts correctly
than StringTie and thus consistently has higher sensitivity than StringTie. Scallop-LR finds 950–
3770 more known transcripts than StringTie, and the sensitivity of Scallop-LR is 1.14–1.42 times
higher than that of StringTie (Figures 2.3 and 2.4, Appendix Tables 2.1 and 2.2). Scallop-LR’s
higher sensitivity is likely due to its phasing path preservation and its transcript boundary identi-
fication in the splice graph based on the boundary information extracted from long reads.

Scallop-LR has higher precision than StringTie for the majority of the datasets. For the
first 12 datasets in Figure 2.3 and Appendix Table 2.1, Scallop-LR has both higher sensitivity
and higher precision than StringTie. Scallop-LR’s higher precision is partially contributed by its
post-assembly clustering. However, for the last six datasets in Figure 2.3 and Appendix Table 2.1,
Scallop-LR has lower precision than StringTie. The last six datasets in Figure 2.3 (each has 11,
12, 24, or 27 movies) are significantly larger than the first 12 datasets (each has 7 or 8 movies).
Scallop-LR’s precision decreases in the six larger datasets as it assembles significantly more
transcripts in total in these larger datasets (Appendix Table 2.2), while StringTie’s precision does
not seem to change much with the size of the sample. As the sequencing depth goes up in larger
datasets, more lowly-expressed transcripts can be captured by RNA-seq reads. Thus, Scallop-
LR is able to identify more lowly-expressed transcripts (Appendix Tables 2.2 and 2.5 show that
Scallop-LR finds many more potential novel isoforms in these six much larger datasets), as its
core algorithm can preserve all phasing paths (the Scallop paper illustrated the significant im-
provement of Scallop over other methods in assembling lowly-expressed transcripts). However,
overall lowly-expressed transcripts are harder to assemble (as transcripts may not be fully cov-
ered by reads), which may lead to the relatively lower precision on these six larger datasets. As-
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Figure 2.3: Human Data: (a) Sensitivity, (b)
Precision, and (c) PR-AUC of Scallop-LR,
StringTie, and Iso-Seq Analysis. Evaluations
were on 18 human PacBio datasets from SRA,
each corresponding to one BioSample and
named by the BioSample ID (except that the
last four datasets are four replicates for one
BioSample). The first nine datasets were se-
quenced using the RS and the last nine datasets
were sequenced using the RS II. Sensitivity,
Precision, and PR-AUC are as described in
Section 2.2.2
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Figure 2.4: Human Data: (a) Correctly Predicted Known Transcripts, and (b) Potential Novel
Isoforms of Scallop-LR, StringTie, and Iso-Seq Analysis. The same 18 human PacBio datasets
as described in Figure 2.3 were evaluated. A Correctly Predicted Known Transcript has the exact
intron-chain matching with a transcript in the reference annotation. A Potential Novel Isoform is
a predicted transcript that shares at least one splice junction with a reference transcript.
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sembling more potential novel isoforms would also lower the precision on these larger datasets
as the precision is computed based on the predicted known transcripts.

When two assemblers have opposite trends on sensitivity and precision on a dataset (e.g.
the last six datasets in Figure 2.3 and Appendix Table 2.1), we compare their sensitivity and
precision on the same footing. That is, for the assembler with a higher sensitivity, we find the
precision on its PR curve by matching the sensitivity of the other assembler, and this precision
is called adjusted precision. Similarly, we find the sensitivity on its PR curve by matching the
precision of the other assembler, and this sensitivity is called adjusted sensitivity. The adjusted
sensitivity and precision are needed only when the datasets have opposite trends on sensitivity
and precision between assemblers. These adjusted values are shown inside the parentheses on
Appendix Table 2.1. Scallop-LR’s adjusted sensitivity and adjusted precision are consistently
higher than StringTie’s sensitivity and precision, indicating that Scallop-LR has consistently
better performance than StringTie.

On the other hand, Iso-Seq Analysis consistently has higher precision than Scallop-LR and
StringTie (Figure 2.3, Appendix Table 2.1). Iso-Seq Analysis has higher precision partially
because the full-length CCS reads are run through the ICE (Iterative Clustering and Error cor-
rection) algorithm and the isoforms are also polished with Quiver to achieve higher accuracy.

Scallop-LR consistently has higher PR-AUC than Iso-Seq Analysis and StringTie, indicat-
ing better overall performance of Scallop-LR. The PR-AUC of Scallop-LR is 1.62–2.07 times
higher than that of Iso-Seq Analysis, and 1.1–1.4 times higher than that of StringTie (Figure 2.3,
Appendix Table 2.1).

2.3.2 Scallop-LR and StringTie find more potential novel isoforms than
Iso-Seq Analysis

Scallop-LR and StringTie find more potential novel isoforms (i.e. novel transcripts containing at
least one annotated splice junction) than Iso-Seq Analysis in the human data. Scallop-LR also
consistently finds more potential novel isoforms than StringTie in the human data. Scallop-LR
finds 2.53–4.23 times more potential novel isoforms than Iso-Seq Analysis, and 1.37–2.47 times
more potential novel isoforms than StringTie (Figure 2.4, Appendix Table 2.2). This is likely
due to the same reasons that led to the higher sensitivity of Scallop-LR. This shows the potential
benefit that long-read transcript assembly could offer in discovering novel isoforms.

2.3.3 Scallop-LR finds more novel isoforms in catalog than Iso-Seq Analy-
sis

We use SQANTI to evaluate Scallop-LR and Iso-Seq Analysis (SQANTI does not work for
the transcripts assembled by StringTie). Figure 2.5 and Appendix Table 2.5 show the SQANTI
evaluation results for Scallop-LR and Iso-Seq Analysis on the 18 human datasets.

The NIC (transcripts containing either new combinations of known splice junctions or novel
splice junctions with annotated donors and acceptors) results show that Scallop-LR finds more
novel isoforms in catalog than Iso-Seq Analysis consistently. Scallop-LR finds 2.2–4.02 times
more NIC than Iso-Seq Analysis (Figure 2.5, Appendix Table 2.5). This is an important indica-
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Figure 2.5: Human Data: Numbers of (a) NIC, (b) NNC, (c) FSM, and (d) ISM transcripts of
Scallop-LR and Iso-Seq Analysis based on SQANTI evaluations. The same 18 human PacBio
datasets as described in Figure 2.3 were evaluated. NIC, NNC, FSM, and ISM are as described
in Section 2.2.2
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tion of Scallop-LR’s ability to find more new transcripts that are not yet annotated, as we con-
jecture that the novel isoforms in catalog may be more likely to be new transcripts than wrongly
assembled transcripts since the novel splice junctions are formed from annotated donors and
acceptors. This finding further supports the advantage of assembly of long reads.

The NNC (transcripts containing novel splice junctions with novel donors and/or acceptors)
results indicate that Scallop-LR also finds more novel isoforms not in catalog than Iso-Seq Anal-
ysis consistently (Figure 2.5, Appendix Table 2.5). The novel isoforms not in catalog could be
either new transcripts or wrongly assembled transcripts.

SQANTI’s results on novel isoforms are roughly consistent with Gffcompare’s results on
novel isoforms. Comparing Appendix Table 2.5 with Appendix Table 2.2, we can see that the
sums of NIC and NNC from SQANTI are similar to the numbers of potential novel isoforms
reported by Gffcompare, except that for the last four datasets in Appendix Table 2.5, for Iso-
Seq Analysis, the sums of NIC and NNC are notably larger than the corresponding numbers of
potential novel isoforms in Appendix Table 2.2 (this may be because some NIC or NNC may not
contain an annotated splice junction although they contain an annotated donor and/or acceptor).

The FSM (Full Splice Match) results from SQANTI support the trend we found from Gf-
fcompare that Scallop-LR consistently predicts more known transcripts correctly than Iso-Seq
Analysis. Comparing Appendix Table 2.5 with Appendix Table 2.2, we can see that the numbers
of FSM from SQANTI are very close to the numbers of correctly predicted known transcripts
from Gffcompare for these datasets.

The ISM (Incomplete Splice Match) results show that Scallop-LR also yields more partially
matched transcripts than Iso-Seq Analysis (Figure 2.5, Appendix Table 2.5). The NNC and ISM
results support the trend we found from Gffcompare that Iso-Seq Analysis has higher precision
than Scallop-LR.

The mouse data exhibit the same trends as the human data as summarized above, which can
be seen from Figure 2.6 and Appendix Table 2.6 and by comparing Appendix Table 2.6 with Ap-
pendix Table 2.4. In the mouse data, Scallop-LR finds significantly more novel isoforms in cata-
log (2.43–3.5 times more) than Iso-Seq Analysis consistently (Figure 2.6, Appendix Table 2.6).
This further supports our finding on Scallop-LR’s ability to discover more new transcripts that
are not yet annotated.

2.3.4 Assessment of predicted transcripts that partially match known tran-
scripts

In rnaQUAST, “isoforms” refer to reference transcripts from the gene annotation database, and
“transcripts” refer to transcripts predicted by the tools being evaluated. Here, we inherit these ter-
minologies. Figures 2.7, 2.8, and 2.9 show box-whisker plots of matched transcripts in matched
fraction bins, assembled isoforms in assembled fraction bins, “mean isoform assembly” and
“mean fraction of transcript matched” for Scallop-LR, StringTie, and Iso-Seq Analysis on the 18
human datasets based on rnaQUAST evaluations. Full results are shown in Appendix Tables 2.7–
2.24.

Scallop-LR predicts more transcripts that have a high fraction of their bases matching ref-
erence transcripts than both Iso-Seq Analysis and StringTie. The metric “x-y% matched tran-
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Figure 2.6: Mouse Data: Numbers of (a) NIC, (b) NNC, (c) FSM, and (d) ISM transcripts of
Scallop-LR and Iso-Seq Analysis based on SQANTI evaluations. Evaluations were on eight
mouse PacBio datasets from SRA, each corresponding to one BioSample and named by the
BioSample ID. All eight datasets were sequenced using the RS. Metrics descriptions are the
same as in Figure 2.5.
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Figure 2.7: Human data: box-whisker plots of matched transcripts in four matched fraction
bins for Scallop-LR, StringTie, and Iso-Seq Analysis, based on rnaQUAST evaluations. This
is to compare numbers of x-y% matched transcripts. The same 18 human PacBio datasets as
described in Figure 2.3 were evaluated. “Number of x-y% matched transcripts” is as described
in Section 2.3.4. The four bins of matched fraction (x-y%) of transcript are 0–50%, 50–75%,
75–95%, and 95–100%.
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Figure 2.8: Human data: box-whisker plots of assembled isoforms in four assembled fraction
bins for Scallop-LR, StringTie, and Iso-Seq Analysis, based on rnaQUAST evaluations. This
is to compare numbers of x-y% assembled isoforms. The same 18 human PacBio datasets as
described in Figure 2.3 were evaluated. “Number of x-y% assembled isoforms” is as described
in Section 2.3.4. The four bins of assembled fraction (x-y%) of isoform are 0–50%, 50–75%,
75–95%, and 95–100%.
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Figure 2.9: Human data: box-whisker plots of mean isoform assembly and mean fraction of
transcript matched for Scallop-LR, StringTie, and Iso-Seq Analysis, based on rnaQUAST eval-
uations. The same 18 human PacBio datasets as described in Figure 2.3 were evaluated. “Mean
isoform assembly” and “Mean fraction of transcript matched” are as described in Section 2.3.4.
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scripts” is the number of transcripts that have at least x% and at most y% of their bases matching
an isoform from the annotation database. We report this measure in four different bins to exam-
ine how well predicted transcripts match reference transcripts. From Appendix Tables 2.7–2.24,
in the high % bins of the “x-y% matched transcripts” (75–95% and 95–100% matched), Scallop-
LR predicts more x-y% matched transcripts than both Iso-Seq Analysis and StringTie (with one
exception compared with StringTie). This trend is visualized in Figure 2.7 (75–95% and 95–
100% matched bins). In the high % bins, StringTie mostly has more x-y% matched transcripts
than Iso-Seq Analysis. These further support the advantage of transcript assembly on long reads.

On average, Scallop-LR transcripts match reference transcripts much better than StringTie
transcripts. The metric “Mean fraction of transcript matched” is the average value of matched
fractions, where the matched fraction of a transcript is computed as the number of its bases
covering an isoform divided by the transcript length. This measure indicates on average how
well predicted transcripts match reference transcripts. In Appendix Tables 2.7–2.24, Scallop-LR
consistently has much higher values of “Mean fraction of transcript matched” than StringTie,
indicating its better assembly quality than StringTie. Scallop-LR performs slightly better than
Iso-Seq Analysis on this measure. These trends are visualized in Figure 2.9 (right: “Mean frac-
tion of transcript matched”).

There are more reference transcripts that have a high fraction of their bases being cap-
tured/covered by Scallop-LR transcripts than by Iso-Seq Analysis predicted transcripts. The
metric “x-y% assembled isoforms” is the number of isoforms from the annotation database that
have at least x% and at most y% of their bases captured by a single predicted transcript. We
report this measure in four different bins to examine how well reference transcripts are cap-
tured/covered by predicted transcripts. From Appendix Tables 2.7–2.24, in the high % bins of
the “x-y% assembled isoforms” (75–95% and 95–100% assembled), Scallop-LR consistently
has more x-y% assembled isoforms than Iso-Seq Analysis. However, Scallop-LR mostly (with
six exceptions in the 75–95% bin and two exceptions in the 95–100% bin) has fewer x-y% as-
sembled isoforms than StringTie in the high % bins. These trends are visualized in Figure 2.8
(75–95% and 95–100% assembled bins).

However, on average, reference transcripts are better captured/covered by Scallop-LR tran-
scripts than by StringTie transcripts and Iso-Seq Analysis transcripts. The metric “Mean isoform
assembly” is the average value of assembled fractions, where the assembled fraction of an iso-
form is computed as the largest number of its bases captured by a single predicted transcript
divided by its length. This measure shows on average how well reference transcripts are cap-
tured by predicted transcripts. In Appendix Tables 2.7–2.24, Scallop-LR consistently has higher
values of “Mean isoform assembly” than both StringTie and Iso-Seq Analysis. This trend is vi-
sualized in Figure 2.9 (left: “Mean isoform assembly”). This trend is consistent with the higher
sensitivity of Scallop-LR in the Gffcompare results.

Scallop-LR consistently has fewer unannotated, misassembled, and unaligned transcripts
than StringTie (Appendix Tables 2.7–2.24). This further indicates Scallop-LR’s better assembly
quality than StringTie. Scallop-LR mostly (with three exceptions) produces fewer unannotated
transcripts than Iso-Seq Analysis as well. An unannotated transcript reported by rnaQUAST de-
notes an assembled transcript mapped to intergenic space, and thus does not relate to the novel
isoforms identified by Gffcompare or SQANTI.

There are a few notable findings regarding StringTie transcripts. First, StringTie consistently
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has significantly more unannotated transcripts than both Scallop-LR and Iso-Seq Analysis (Ap-
pendix Tables 2.7–2.24). Second, in Figure 2.7, in the 0–50% matched bin, StringTie has signif-
icantly higher numbers of transcripts than Scallop-LR and Iso-Seq Analysis. This indicates that
StringTie assembled many more lower-quality transcripts than Scallop-LR and Iso-Seq Analysis,
consistent with StringTie predicting many more unannotated transcripts. Lastly, in Figure 2.8, in
the 0–50% assembled bin, StringTie has significantly higher numbers of isoforms than Scallop-
LR and Iso-Seq Analysis. This indicates that, compared with Scallop-LR and Iso-Seq Analysis,
there are many more isoforms from the annotation which are just marginally covered by StringTie
transcripts.

The mouse data exhibit trends partially similar to those of the human data for the rnaQUAST
results, and the quality of StringTie transcripts in the mouse data is somewhat improved com-
pared to that in the human data. The detailed discussions on the rnaQUAST results for the mouse
data are in Appendix Section 2.5.3.

We also evaluated Scallop-LR and StringTie on a simulated human dataset from Liu et
al. [57]. The results and discussions for the simulated dataset are in Appendix Section 2.5.4.

2.3.5 Scallop-LR and StringTie predict more known transcripts and po-
tential novel isoforms than Iso-Seq Analysis in mouse data

From the Gffcompare evaluation for the mouse data (Figure 2.10, Appendix Tables 2.3 and 2.4),
Scallop-LR and StringTie consistently predict more known transcripts (Scallop-LR predicts 1100–
2200 more) correctly than Iso-Seq Analysis and thus consistently have higher sensitivity (Scallop-
LR’s is 1.43–1.72 times higher) than Iso-Seq Analysis. Scallop-LR and StringTie also find more
potential novel isoforms (Scallop-LR finds 2.38–4.36 times more) than Iso-Seq Analysis (Ap-
pendix Table 2.4). Scallop-LR and StringTie consistently have higher PR-AUC than Iso-Seq
Analysis (Figure 2.10, Appendix Table 2.3).

We also found some trends different from those in the human data. In the mouse data,
Scallop-LR consistently has higher precision than StringTie, but consistently has lower sensi-
tivity than StringTie (Figure 2.10, Appendix Table 2.3). Thus, for StringTie we computed the
adjusted sensitivity by matching Scallop-LR’s precision and the adjusted precision by matching
Scallop-LR’s sensitivity. These adjusted values are shown inside the parentheses on Appendix
Table 2.3. Scallop-LR’s sensitivity and precision are consistently higher than StringTie’s ad-
justed sensitivity and adjusted precision, indicating that when comparing on the same footing,
Scallop-LR does better on these measures than StringTie.

In the mouse data, the trend of PR-AUC between Scallop-LR and StringTie is mixed (Fig-
ure 2.10, Appendix Table 2.3). Scallop-LR also finds fewer potential novel isoforms than StringTie
(Appendix Table 2.4).

Before this work, Scallop was never systematically evaluated on organisms besides human,
for either short reads or long reads. In fact, Scallop’s parameters were optimized by targeting the
human transcriptome. The current annotated mouse transcriptome is relatively less complex than
the annotated human transcriptome although they share many similarities. It may be possible that
some of Scallop-LR’s advantages (such as preserving phasing paths) become less significant in
a relatively less complex transcriptome.
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Figure 2.10: Mouse Data: (a) Sensitivity, (b)
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StringTie, and Iso-Seq Analysis. The same
eight mouse PacBio datasets as described in
Figure 2.6 were evaluated. Metrics descrip-
tions are the same as in Figure 2.3.
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2.4 Discussion
The combined evaluations using Gffcompare, SQANTI, and rnaQUAST yield consistent obser-
vations that Scallop-LR not only correctly assembles more known transcripts but also finds more
possible novel isoforms than Iso-Seq Analysis, which does not do assembly. Scallop-LR finding
more NIC especially shows its ability to discover new transcripts. These observations further
support the idea that transcript assembly of long reads is needed and demonstrate that long-read
assembly by Scallop-LR can help reveal a more complete human transcriptome using long reads.

Two factors may limit the CCS read length: the read length of the platform and the cDNA
template sizes. In many cases, the primary limiting factor for CCS read lengths is the cDNA
template sizes [89]. When a cDNA is very long so that the continuous polymerase read is un-
able to get through at least two full passes of the template, the CCS read is not generated for
that cDNA. Thus, the maximum possible CCS read length is limited by the read length of the
platform. The read lengths of sequencing platforms have been increasing, however, there are
limitations imposed by the cDNA synthesis methods.

cDNA synthesis can be incomplete with respect to the original mRNAs [89]. A CCS read
represents the entire cDNA molecule, however, the CCS read could correspond to a partial tran-
script as a result of incomplete cDNAs [89]. The longer the transcripts are, the lower the fraction
of CCS reads that can represent the entire splice structures of mRNAs is [89]. This is likely a
reason that Scallop-LR is able to find more true transcripts through assembly: a fraction of CCS
reads can be partial sequences of those long transcripts, and Scallop-LR is able to assemble them
together to reconstruct the original transcripts.

Iso-Seq Analysis may also sacrifice some true transcripts in order to achieve a higher quality
(i.e. less affected by the sequencing errors) in final isoforms. The “polish” step in Iso-Seq Analy-
sis keeps only the isoforms with at least two full-length reads to support them. This increases the
isoform quality and gives Iso-Seq Analysis a higher precision than Scallop-LR, but may cause
Iso-Seq Analysis to miss those low-abundance, long transcripts with only one full-length read.

Although StringTie was designed for assembling short reads, it also exhibits the advantage
of assembly of long reads compared to Iso-Seq Analysis. StringTie finds more known tran-
scripts and potential novel isoforms than Iso-Seq Analysis. In the rnaQUAST results, StringTie
produces large numbers of unannotated transcripts (in a range of 7600–113000 for the human
datasets), significantly more than those of Scallop-LR and Iso-Seq Analysis (differing by orders
of magnitude). Unannotated transcripts are the transcripts that do not have a fraction matching
a reference transcript in the annotation database. StringTie also outputs large numbers of single-
exon transcripts, significantly more than those of Scallop-LR and Iso-Seq Analysis (differing by
orders of magnitude). We found that about 70% of the unannotated transcripts from StringTie
are those single-exon transcripts. StringTie produces large numbers of single-exon transcripts
most likely because StringTie discards the spliced read alignments that do not have the transcript
strand information. There is a fraction of read alignments by Minimap2 which have no transcript
strand information, since Minimap2 looks for the canonical splicing signal to infer the transcript
strand and for some reads the transcript strands are undetermined by Minimap2. When those
spliced alignments that do not have the transcript strand information are ignored by StringTie,
the single-exon alignments that overlap those spliced alignments turn into single-exon transcripts
by themselves, although they could have been represented by the spliced multi-exon transcripts
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during the assembly if those spliced alignments they overlap were not ignored. Unlike StringTie,
Scallop-LR attempts both strands if a read alignment has no transcript strand information.

Scallop-LR eliminates nearly redundant transcripts through post-assembly clustering. For
reference-based assembly, clustering the transcripts with very similar splice positions into a sin-
gle transcript could have a side effect that some true transcripts may also be eliminated by the
clustering since some real transcripts may have very similar splice positions. Therefore, we
investigated this effect by comparing the results of Scallop-LR without post-assembly cluster-
ing with the results of Scallop-LR with post-assembly clustering, and computing the percent-
ages of correctly assembled known transcripts that are missing because of the clustering and
the percentages of nearly redundant transcripts that are removed by the clustering (Appendix
Table 2.35). For the 18 human datasets, we found that the percentages of correctly assembled
known transcripts missing due to clustering are between 1.43% – 2.38% (this percentage < 2%
for all datasets except for two), and the percentages of nearly redundant transcripts removed
by clustering are between 9.22% – 15.52% (this percentage > 10% for all datasets except for
four). These results indicate that the effect of missing correctly assembled known transcripts
by the post-assembly clustering is relatively minor, while the post-assembly clustering substan-
tially removes nearly redundant transcripts and significantly improves the precision. Decreasing
the allowance for splice positions’ differences (the parameter “--max_cluster_intron_distance”;
the default is 10 bp) could further reduce the side effect of missing correctly assembled known
transcripts due to the clustering.

We also compared the performance of Scallop-LR (v0.9.1) with the performance of the short-
read assembler Scallop (v0.10.3) for the 18 human datasets using the Gffcompare evaluation
(Appendix Table 2.34). We adjusted the parameters of Scallop so that it can also assemble long
reads (by setting “--max_num_cigar 1000” and “--min_num_hits_in_bundle 1”). The precision
of Scallop-LR increases compared with that of Scallop: on all 18 datasets Scallop-LR gives
higher precision, and the average precision are 39.63% and 34.18% respectively for Scallop-
LR and Scallop. The sensitivity of Scallop-LR also increases compared with that of Scallop
(except for two datasets Scallop has slightly higher sensitivity than Scallop-LR, and for another
two datasets there is a tie): the average numbers of correctly predicted known transcripts are
9543 and 9421 respectively for Scallop-LR and Scallop. These results show the benefits of the
long-read-specific optimizations added in Scallop-LR.

A direction for future work is developing a hybrid transcript assembler that combines short
and long reads. Recently, two de novo transcript assembly methods using hybrid sequencing
were developed: IDP-denovo [28] and a new version of Trinity [32]. However, both Trinity
and IDP-denovo do not assemble long reads; they assemble short reads and use long reads to
extend, supplement, or improve the assembly of short reads. A reference-based hybrid transcript
assembler that can assemble both short reads and long reads simultaneously, thus combining the
advantages of short reads (low error rates, high throughput) and long reads (long read lengths),
is an interesting direction for future work.
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2.5 Appendix

2.5.1 Merging multiple SRA Runs from the same BioSample into one
dataset

In most of the PacBio datasets in SRA, one BioSample has multiple SRA Runs. We merge
multiple SRA Runs that belong to the same BioSample into one dataset. PacBio sequencing uses
the template called SMRTbell that is a closed, single-stranded circular DNA created by ligating
adaptors to both ends of a target double-stranded cDNA molecule. The sequencing is based on
a SMRT Cell, a chip with consumable substrates comprising arrays of zero-mode waveguide
(ZMW) nanostructures, and a SMRTbell diffuses into a sequencing unit ZMW on it. The real-
time observation of a SMRT Cell is called a movie, and an SRA Run usually contains one movie
and sometimes contains multiple movies. One BioSample has multiple SRA Runs because the
experimenters used multiple movies (i.e. multiple SMRT Cells) to increase the coverage so that
those low-abundance, long isoforms can be captured in Iso-Seq Analysis, since the “polish” step
in Iso-Seq Analysis keeps only the isoforms with at least two full-length reads to support them. In
most cases, the experimenters also used a size selection sequencing strategy, that is, isoforms that
are in different size ranges are split into separate independent SMRTbell libraries for sequencing,
so that larger isoforms are not detrimentally dominated by smaller isoform molecules during the
sequencing. Thus, different SRA Runs are designated for different size ranges. Therefore, we
use one BioSample instead of one SRA Run to represent one dataset in our analysis, and we
merge multiple SRA Runs into that dataset.

2.5.2 Software versions and options used in the analysis workflow
The software versions and options used in the analysis workflow are summarized in the follow-
ing:

Iso-Seq Analysis: Iso-Seq2 from SMRT Link v5.1.0.
Minimap2: v2.2. Options: -ax splice.
StringTie: v1.3.2d. Options: -c 1.0.
Scallop-LR: v0.9.1. Options: -c <ccs_read_info > –min_num_hits_in_bundle 1.
Gffcompare: v0.9.9c. Options: -M -N -r <reference_annotation>.
SQANTI: v1.2. Options: -g.
rnaQUAST: v.1.5.1. Options: –transcripts <multiple_assemblies> –reference

<reference_genome> –gene_db <gene_database> –gmap_index <gmap_index> –labels
<labels> –no_plots –disable_infer_genes –disable_infer_transcripts –lower_threshold
<lower_threshold> –upper_threshold <upper_threshold>.

Transrate: v1.0.3. Options: –assembly <assembly> –reference <reference_transcriptome>.

2.5.3 Assessment of predicted transcripts that partially match known tran-
scripts in mouse data

Figures 2.11, 2.12, and 2.13 show box-whisker plots of matched transcripts in matched fraction
bins, assembled isoforms in assembled fraction bins, “mean isoform assembly” and “mean frac-
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tion of transcript matched” for Scallop-LR, StringTie, and Iso-Seq Analysis on the eight mouse
datasets based on rnaQUAST evaluations. Full results are shown in Tables 2.25–2.32.
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Figure 2.11: Mouse data: box-whisker plots of matched transcripts in four matched fraction bins
for Scallop-LR, StringTie, and Iso-Seq Analysis, based on rnaQUAST evaluations. This figure
is to compare numbers of x-y% matched transcripts. The same eight mouse PacBio datasets as
described before were evaluated via rnaQUAST.

In the mouse data, Scallop-LR predicts more transcripts that have a high fraction of their
bases matching reference transcripts than Iso-Seq Analysis. From Tables 2.25–2.32, in the high
% bins of the “x-y% matched transcripts” (75-95% and 95-100% matched), Scallop-LR consis-
tently has more x-y% matched transcripts than Iso-Seq Analysis. However, unlike in the human
data, Scallop-LR consistently has fewer x-y% matched transcripts than StringTie in the high %
bins. These trends are visualized in Figure 2.11 (75-95% and 95-100% matched bins).

However, on average, Scallop-LR transcripts match reference transcripts better than StringTie
transcripts. In Tables 2.25–2.32, Scallop-LR consistently has much higher values of “Mean
fraction of transcript matched” than StringTie. Scallop-LR has slightly lower values than Iso-Seq
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Figure 2.12: Mouse data: box-whisker plots of assembled isoforms in four assembled fraction
bins for Scallop-LR, StringTie, and Iso-Seq Analysis, based on rnaQUAST evaluations. This fig-
ure is to compare numbers of x-y% assembled isoforms. The same eight mouse PacBio datasets
as described before were evaluated via rnaQUAST.
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Figure 2.13: Mouse data: box-whisker plots of mean isoform assembly and mean fraction of
transcript matched for Scallop-LR, StringTie, and Iso-Seq Analysis, based on rnaQUAST evalu-
ations. The same eight mouse PacBio datasets as described before were evaluated via rnaQUAST.
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Analysis though. These trends are visualized in Figure 2.13 (right: “Mean fraction of transcript
matched”).

In the mouse data, there are more reference transcripts that have a high fraction of their bases
being captured/covered by Scallop-LR transcripts than by Iso-Seq Analysis predicted transcripts.
From Tables 2.25–2.32, in the high % bins of the “x-y% assembled isoforms” (75-95% and 95-
100% assembled), Scallop-LR consistently has more x-y% assembled isoforms than Iso-Seq
Analysis. However, Scallop-LR consistently has fewer x-y% assembled isoforms than StringTie
in the high % bins. These trends are visualized in Figure 2.12 (75-95% and 95-100% assembled
bins).

However, on average, reference transcripts are better captured/covered by Scallop-LR tran-
scripts than by StringTie transcripts and Iso-Seq Analysis transcripts. In Tables 2.25–2.32,
Scallop-LR consistently has higher values of “Mean isoform assembly” than both StringTie and
Iso-Seq Analysis. Iso-Seq Analysis consistently has higher values than StringTie. This trend is
visualized in Figure 2.13 (left: “Mean isoform assembly”).

The quality of StringTie transcripts in the mouse data is somewhat improved compared to that
in the human data. As in the human data, StringTie consistently has significantly more unanno-
tated transcripts than both Scallop-LR and Iso-Seq Analysis (Tables 2.25–2.32). However, in
Figure 2.11, unlike Figure 2.7, in the 0-50% matched bin StringTie no longer has a very high
number of transcripts. This indicates that StringTie performs better in the mouse data than in the
human data. In Figure 2.12, though, in the 0-50% assembled bin StringTie still has significantly
higher numbers of isoforms than both Scallop-LR and Iso-Seq Analysis, similar to Figure 2.8.

2.5.4 Evaluation of Scallop-LR and StringTie on simulated human data
We evaluated Scallop-LR and StringTie on a simulated human dataset [57]. The transcriptome
that was used to generate the simulated long reads originated from the Ensembl annotation Homo
sapiens GRCh38.94 and was a subset of the transcripts in this Ensembl annotation, by removing
unfinished scaffolds, transcripts shorter than 200 bp, and annotations with an unknown reference,
and randomly selecting alternative-splicing genes, single-splicing genes, and genes with small
exons (< 31bp). The PacBio PBSIM tool was used to generate the simulated CCS reads from this
transcriptome. The simulation was model-based using the CCS model, and three runs of simula-
tions were performed by using three different sequencing depths 4X, 10X and 30X respectively.
We merged the CCS reads generated with the three sequencing depths together to obtain this
simulated human dataset. We used the transcripts in the transcriptome sequences that were used
to generate the simulated CCS reads to extract the transcripts’ records and their corresponding
genes’ records from the Ensembl annotation Homo sapiens GRCh38.94 to obtain an annotation
GTF file. This extracted annotation GTF file serves as the “ground truth” and contains 7810
multi-exon transcripts.

In the Gffcompare evaluation, the extracted annotation GTF file corresponding to the tran-
scriptome that was used to generate the simulated CCS reads serves as the reference annotation.
Scallop-LR demonstrates both higher sensitivity and higher precision than StringTie (Table 2.36),
consistent with the trends on the real human datasets. Note that since the simulated CCS reads
do not contain the primer information, Scallop-LR’s transcript boundary identification algorithm
through extracting the boundary information from long reads is not used on the simulated data.
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In the rnaQUAST evaluation, the extracted annotation GTF file corresponding to the tran-
scriptome that was used to generate the simulated CCS reads is used to make the gene annotation
database. Therefore, the metric “x-y% assembled isoforms” is computed relative to the initial
set of expressed isoforms that was used to generate the simulated reads, rather than all known
isoforms. StringTie has more “x-y% assembled isoforms” in the 95-100% bin than Scallop-LR
(Table 2.37), consistent with the trend on the majority of the real human datasets. However,
Scallop-LR has more “x-y% assembled isoforms” in the 75-95% bin than StringTie, which is
different from the majority of the real human datasets. The results of the simulated data confirm
that StringTie assembles more “95-100% assembled isoforms” than Scallop-LR, but Scallop-LR
assembles more correctly predicted transcripts than StringTie (Table 2.36). This implies that
while Scallop-LR outperforms StringTie in terms of the exact reference-matching transcripts
(100% assembled, correct predictions), StringTie transcripts cover more reference transcripts on
95-99% of their bases than Scallop-LR transcripts.

We further performed the rnaQUAST evaluation on the simulated dataset by using the en-
tire Ensembl annotation (Homo sapiens GRCh38.94) as the reference annotation. The resulting
“95-100% assembled isoforms” are 3094 and 4613 for Scallop-LR and StringTie respectively.
Compared with the corresponding results in Table 2.37 (which uses the “ground truth” as the
reference annotation), StringTie assembles 365 more “95-100% assembled isoforms” when the
entire Ensembl annotation is used as the reference. This implies that StringTie assembles 365
transcripts that are not in the ground truth but appear to be misassembled to match the refer-
ence transcriptome. For Scallop-LR, the number of “95-100% assembled isoforms” by using
the entire Ensembl annotation as the reference is very close to the number of “95-100% assem-
bled isoforms” by using the “ground truth” as the reference (the difference between the numbers
of “95-100% assembled isoforms” by using these two references is -9). This result may suggest
that, for the real datasets, the “95-100% assembled isoforms” of StringTie could be somewhat in-
flated (i.e. some assembled transcripts are not in the ground truth but are misassembled to match
certain transcripts in the reference), as we do not know the ground truth for the real datasets
and use all known isoforms as the reference when evaluating the real data. On the other hand,
based on this evidence, it seems that Scallop-LR stays consistent on this measure when the entire
Ensembl annotation or the “ground truth” is used as the reference.
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2.5.5 Additional tables

Datasets
Sensitivity (%) Precision (%) PR-AUC

Scallop-
LR

StringTie Iso-Seq Scallop-
LR

StringTie Iso-Seq Scallop-
LR

StringTie Iso-Seq

SAMN00001694 5.50 4.32 3.30 38.47 33.63 62.64 0.03389 0.02664 0.01868
SAMN00001695 5.36 4.39 3.33 42.96 36.05 60.76 0.03363 0.02821 0.01808
SAMN00001696 4.48 3.93 2.80 47.29 40.24 65.59 0.02916 0.02573 0.01636
SAMN00006465 5.32 4.57 3.70 46.28 40.10 63.54 0.03563 0.03048 0.02085
SAMN00006466 5.05 4.25 3.49 48.42 35.70 65.82 0.03489 0.02796 0.02051
SAMN00006467 4.62 3.96 3.09 50.57 36.71 68.43 0.03200 0.02640 0.01875
SAMN00006579 5.19 4.29 3.51 43.52 34.68 61.63 0.03359 0.02777 0.01916
SAMN00006580 4.87 4.09 3.26 45.89 32.98 63.91 0.03239 0.02648 0.01839
SAMN00006581 5.09 4.16 3.42 43.31 33.87 62.47 0.03287 0.02733 0.01906
SAMN08182059 5.29 4.12 3.09 36.34 34.34 54.52 0.03138 0.02452 0.01515
SAMN08182060 5.52 4.42 3.34 43.59 37.82 61.30 0.03617 0.02837 0.01832
SAMN04563763 4.87 4.01 3.65 46.90 41.37 62.94 0.03320 0.02600 0.02047
SAMN07611993 7.60

(7.26)
5.43 0.87 28.97

(46.47)
32.65 55.42 0.04057 0.02910 0.00427

SAMN04169050 6.86
(6.61)

4.83 4.62 30.90
(51.74)

34.61 55.52 0.03807 0.02815 0.02296

SAMN04251426.1 5.70
(5.46)

4.44 3.40 29.32
(40.72)

32.40 49.64 0.02738 0.02457 0.01479

SAMN04251426.2 5.76
(5.56)

4.44 3.49 29.92
(41.18)

32.39 49.19 0.02749 0.02478 0.01507

SAMN04251426.3 5.81
(5.52)

4.58 3.51 30.09
(40.37)

33.44 48.93 0.02806 0.02537 0.01509

SAMN04251426.4 5.78
(5.47)

4.55 3.52 30.59
(40.91)

33.82 49.05 0.02828 0.02606 0.01492

Table 2.1: Human Data: Sensitivity, Precision, and PR-AUC of Scallop-LR, StringTie,
and Iso-Seq Analysis. This table compares the Gffcompare evaluation results for Scallop-LR,
StringTie, and Iso-Seq Analysis on human data. 18 human PacBio datasets were extracted from
SRA, each corresponding to one BioSample and named by the BioSample ID (except that the
last four datasets are four replicates for one BioSample). Multiple SRA Runs that belong to each
BioSample were merged into a large dataset to perform the analyses. The first nine datasets were
sequenced using the RS instrument and the last nine datasets were sequenced using the RS II
instrument. Sensitivity is the ratio of the number of correctly predicted known transcripts over
the total number of known transcripts, and precision is the ratio of the number of correctly pre-
dicted known transcripts over the total number of predicted transcripts. PR-AUC was calculated
from the precision-recall curves we generated. The values within the parentheses are the ad-
justed sensitivity and adjusted precision. The adjusted sensitivity for Scallop-LR was calculated
by matching the precision of StringTie, and the adjusted precision for Scallop-LR was calculated
by matching the sensitivity of StringTie. The adjusted sensitivity and precision were only calcu-
lated for the last six datasets, since the last six datasets have opposite trends on sensitivity and
precision comparing Scallop-LR and StringTie.
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Datasets
# Potential Novel

Isoforms
# Total Multi-Exon

Transcripts
# Correctly Predicted

Known Transcripts
Scallop-

LR
StringTie Iso-Seq Scallop-

LR
StringTie Iso-Seq Scallop-

LR
StringTie Iso-Seq

SAMN00001694 12050 6827 2847 24903 22370 9166 9580 7522 5742
SAMN00001695 9905 6149 2856 21731 21201 9554 9336 7642 5805
SAMN00001696 7425 5129 2122 16476 16983 7423 7791 6834 4869
SAMN00006465 9112 6111 2941 20019 19847 10136 9264 7958 6440
SAMN00006466 8054 5387 2561 18171 20715 9236 8798 7396 6079
SAMN00006467 6838 4710 2054 15900 18783 7865 8040 6896 5382
SAMN00006579 10250 6020 3175 20742 21508 9906 9027 7460 6105
SAMN00006580 8623 5295 2640 18467 21607 8870 8474 7125 5669
SAMN00006581 10064 5736 2974 20458 21376 9531 8861 7241 5954
SAMN08182059 13318 7610 3609 25332 20893 9876 9206 7175 5384
SAMN08182060 10207 6732 2951 22038 20348 9478 9606 7696 5810
SAMN04563763 7496 5464 2965 18078 16857 10087 8478 6973 6349
SAMN07611993 22834 10532 852 45657 28953 2741 13226 9453 1519
SAMN04169050 22403 9059 5696 38657 24280 14493 11946 8403 8047
SAMN04251426.1 17074 8572 4887 33824 23863 11913 9916 7731 5914
SAMN04251426.2 16871 8403 5090 33534 23849 12363 10034 7724 6081
SAMN04251426.3 16916 8580 5191 33637 23850 12472 10122 7976 6103
SAMN04251426.4 16347 8314 5194 32908 23423 12476 10065 7922 6119

Table 2.2: Human Data: Correctly Predicted Known Transcripts, Total Multi-Exon Tran-
scripts, and Potential Novel Isoforms of Scallop-LR, StringTie, and Iso-Seq Analysis. This
table compares additional Gffcompare evaluation results for Scallop-LR, StringTie, and Iso-Seq
Analysis on human data. The same 18 human PacBio datasets as described in Table 2.1 were
evaluated. A Correctly Predicted Known Transcript is a transcript that has the exact intron-chain
matching with a transcript in the reference annotation. A Potential Novel Isoform is a predicted
transcript that shares at least one splice junction with a reference transcript. The # Total Multi-
Exon Transcripts is the total number of predicted multi-exon transcripts.
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Datasets
Sensitivity (%) Precision (%) PR-AUC

Scallop-
LR

StringTie Iso-Seq Scallop-
LR

StringTie Iso-Seq Scallop-
LR

StringTie Iso-Seq

SAMEA3374575 3.82 4.18
(3.70)

2.52 60.50 51.08
(57.55)

72.74 0.02538 0.02716 0.01571

SAMEA3374576 4.00 4.49
(3.87)

2.79 64.86 55.06
(62.48)

77.74 0.02880 0.03069 0.01937

SAMEA3374577 3.68 4.25
(3.61)

2.52 67.14 56.71
(65.44)

78.23 0.02668 0.02913 0.01744

SAMEA3374578 3.49 3.96
(3.38)

2.42 65.74 55.86
(64.21)

80.37 0.02553 0.02714 0.01695

SAMEA3374579 4.72 5.24
(4.48)

2.98 63.83 50.86
(58.13)

77.44 0.03338 0.03431 0.02040

SAMEA3374580 4.70 5.26
(4.52)

2.85 62.42 48.50
(58.28)

77.87 0.03385 0.03475 0.01933

SAMEA3374581 5.43 5.73
(4.93)

3.33 60.04 46.09
(50.63)

73.58 0.03838 0.03568 0.02155

SAMEA3374582 4.27 4.71
(4.05)

2.49 57.57 45.62
(53.16)

75.21 0.02932 0.02870 0.01637

Table 2.3: Mouse Data: Sensitivity, Precision, and PR-AUC of Scallop-LR, StringTie,
and Iso-Seq Analysis. This table compares the Gffcompare evaluation results for Scallop-LR,
StringTie, and Iso-Seq Analysis on mouse data. Eight mouse PacBio datasets were extracted
from SRA, each corresponding to one BioSample and named by the BioSample ID. Multiple
SRA Runs that belong to each BioSample were merged into a large dataset to perform the anal-
yses. All eight datasets were sequenced using the RS instrument. Sensitivity, precision, and
PR-AUC are as described in Table 2.1. The values within the parentheses are the adjusted sensi-
tivity and adjusted precision. The adjusted sensitivity for StringTie was calculated by matching
the precision of Scallop-LR, and the adjusted precision for StringTie was calculated by matching
the sensitivity of Scallop-LR. The adjusted sensitivity and precision were calculated for all eight
datasets, since all eight datasets have opposite trends on sensitivity and precision comparing
Scallop-LR and StringTie.
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Datasets
# Potential Novel

Isoforms
# Total Multi-Exon

Transcripts
# Correctly Predicted

Known Transcripts
Scallop-

LR
StringTie Iso-Seq Scallop-

LR
StringTie Iso-Seq Scallop-

LR
StringTie Iso-Seq

SAMEA3374575 1973 2476 829 6879 8913 3768 4162 4553 2741
SAMEA3374576 1671 2206 699 6707 8870 3903 4350 4884 3034
SAMEA3374577 1468 1973 596 5962 8155 3505 4003 4625 2742
SAMEA3374578 1434 1958 520 5774 7723 3280 3796 4314 2636
SAMEA3374579 2003 2973 663 8048 11221 4193 5137 5707 3247
SAMEA3374580 2020 3237 543 8204 11801 3981 5121 5724 3100
SAMEA3374581 2714 3806 832 9842 13531 4920 5909 6237 3620
SAMEA3374582 1803 2934 414 8069 11233 3606 4645 5125 2712

Table 2.4: Mouse Data: Correctly Predicted Known Transcripts, Total Multi-Exon Tran-
scripts, and Potential Novel Isoforms of Scallop-LR, StringTie, and Iso-Seq Analysis. This
table compares additional Gffcompare evaluation results for Scallop-LR, StringTie, and Iso-Seq
Analysis on mouse data. The same eight mouse PacBio datasets as described in Table 2.3 were
evaluated. The Correctly Predicted Known Transcript, Potential Novel Isoform, and # Total
Multi-Exon Transcripts are as described in Table 2.2.
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Datasets
# of FSM # of NIC # of NNC # of ISM

Scallop-
LR

Iso-Seq Scallop-
LR

Iso-Seq Scallop-
LR

Iso-Seq Scallop-
LR

Iso-Seq

SAMN00001694 9594 5736 6375 1586 5579 1232 2411 487
SAMN00001695 9329 5800 5765 1624 4045 1263 1934 776
SAMN00001696 7787 4861 4054 1198 3294 930 934 369
SAMN00006465 9266 6434 5080 1638 3962 1281 1141 630
SAMN00006466 8796 6071 4548 1488 3479 1057 837 493
SAMN00006467 8039 5375 3890 1173 2890 854 633 340
SAMN00006579 9026 6096 5979 1759 4115 1297 903 505
SAMN00006580 8472 5665 4903 1478 3628 1060 772 415
SAMN00006581 8859 5947 5889 1765 4104 1176 919 470
SAMN08182059 9220 5545 7874 2206 5488 1611 1898 1612
SAMN08182060 9616 5941 4882 1433 5375 1674 1244 888
SAMN04563763 8480 6535 4174 1899 3368 1297 1556 1066
SAMN07611993 13275 1564 13406 533 9518 438 7186 531
SAMN04169050 11984 8193 12490 3364 9737 2616 2616 1141

SAMN04251426.1 9934 6114 9831 3497 7174 2175 5070 1729
SAMN04251426.2 10058 6317 9771 3630 6972 2248 4813 1886
SAMN04251426.3 10150 6327 9830 3814 6970 2249 4969 1840
SAMN04251426.4 10081 6340 9545 3719 6695 2282 4818 1851

Table 2.5: Human Data: Numbers of FSM, NIC, NNC, and ISM transcripts of Scallop-LR
and Iso-Seq Analysis based on SQANTI evaluations. This table compares the SQANTI eval-
uation results for Scallop-LR and Iso-Seq Analysis on human data. The same 18 human PacBio
datasets as described in Table 2.1 were evaluated. FSM (Full Splice Match): the predicted tran-
script that matches a reference transcript at all splice junctions. ISM (Incomplete Splice Match):
the predicted transcript that matches consecutive, but not all, splice junctions of a reference tran-
script. NIC (Novel in Catalog): the predicted transcript that contains new combinations of al-
ready annotated splice junctions or novel splice junctions formed from already annotated donors
and acceptors. NNC (Novel Not in Catalog): the predicted transcript that contains novel splice
junctions formed from novel donors or/and novel acceptors.

Datasets
# of FSM # of NIC # of NNC # of ISM

Scallop-
LR

Iso-Seq Scallop-
LR

Iso-Seq Scallop-
LR

Iso-Seq Scallop-
LR

Iso-Seq

SAMEA3374575 4170 2865 503 153 1366 610 513 258
SAMEA3374576 4358 3145 503 207 1125 470 489 240
SAMEA3374577 4009 2840 446 169 983 378 355 194
SAMEA3374578 3799 2718 545 202 906 326 362 188
SAMEA3374579 5137 3410 591 190 1400 463 689 437
SAMEA3374580 5121 3284 736 210 1323 359 843 714
SAMEA3374581 5912 3834 931 283 1784 522 936 905
SAMEA3374582 4644 2874 685 199 1198 254 1398 1261

Table 2.6: Mouse Data: Numbers of FSM, NIC, NNC, and ISM transcripts of Scallop-
LR and Iso-Seq Analysis based on SQANTI evaluations. This table compares the SQANTI
evaluation results for Scallop-LR and Iso-Seq Analysis on mouse data. The same eight mouse
PacBio datasets as described in Table 2.3 were evaluated. Metrics descriptions are the same as
in Table 2.5.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 25364 32230 11467

Aligned 25363 32224 11467
Uniquely aligned 25361 32028 11444

Unaligned 1 6 0
Misassemblies 2 4 4

0-50% assembled isoforms 1412 4156 1681
50-75% assembled isoforms 1827 2332 1358
75-95% assembled isoforms 2994 3012 1994

95-100% assembled isoforms 6052 6691 2507
Mean isoform assembly 0.834 0.729 0.74

0-50% matched transcripts 1917 4466 267
50-75% matched transcripts 2057 2394 231
75-95% matched transcripts 4612 3659 734

95-100% matched transcripts 16595 12570 9971
Unannotated 180 9118 260

Mean fraction of transcript
matched

0.883 0.558 0.939

Table 2.7: rnaQUAST evaluation results for human dataset SAMN08182059, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. “Isoforms” refer
to reference transcripts from the gene annotation database, and “transcripts” refer to predicted
transcripts. “# Transcripts” is the total number of predicted transcripts (including single-exon
transcripts). “Aligned” is the number of transcripts which have at least one significant align-
ment to the reference genome. “Uniquely aligned” is the number of transcripts which have a
single significant alignment. “Unaligned” is the number of transcripts without any significant
alignments. “Misassemblies” are the transcripts that have discordant best-scored alignments (i.e.
partial alignments that are mapped to different strands, different chromosomes, in reverse order,
or too far away). “Unannotated” is the number of transcripts that do not cover any isoform from
the annotation database. “x-y% assembled isoforms” is the number of isoforms from the anno-
tation database that have at least x% and at most y% captured by a single predicted transcript.
“x-y% matched transcripts” is the number of transcripts that have at least x% and at most y%
matching an isoform from the annotation database. “Mean isoform assembly” is the average
value of assembled fractions, where the assembled fraction of an isoform is computed as the
largest number of its bases captured by a single predicted transcript divided by its length. “Mean
fraction of transcript matched” is the average value of matched fractions, where the matched
fraction of a transcript is computed as the number of its bases covering an isoform divided by the
transcript length.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 22065 29664 10233

Aligned 22065 29660 10233
Uniquely aligned 22057 29480 10219

Unaligned 0 4 0
Misassemblies 3 4 2

0-50% assembled isoforms 1205 3659 1154
50-75% assembled isoforms 1547 1994 1236
75-95% assembled isoforms 2759 2810 2035

95-100% assembled isoforms 6760 7420 3064
Mean isoform assembly 0.855 0.757 0.794

0-50% matched transcripts 1677 4263 266
50-75% matched transcripts 1806 2147 186
75-95% matched transcripts 4035 3588 652

95-100% matched transcripts 14376 11914 9004
Unannotated 165 7726 123

Mean fraction of transcript
matched

0.881 0.577 0.948

Table 2.8: rnaQUAST evaluation results for human dataset SAMN08182060, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 18097 29003 11103

Aligned 18096 29002 11103
Uniquely aligned 18093 28788 11088

Unaligned 1 1 0
Misassemblies 2 3 0

0-50% assembled isoforms 2212 5762 1926
50-75% assembled isoforms 1792 2496 1411
75-95% assembled isoforms 2034 2227 1954

95-100% assembled isoforms 4523 5567 2669
Mean isoform assembly 0.765 0.657 0.731

0-50% matched transcripts 927 3126 362
50-75% matched transcripts 1657 2337 327
75-95% matched transcripts 4318 3769 1166

95-100% matched transcripts 11053 11733 9105
Unannotated 138 8017 143

Mean fraction of transcript
matched

0.89 0.59 0.934

Table 2.9: rnaQUAST evaluation results for human dataset SAMN04563763, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 45773 42040 3382

Aligned 45769 42028 3382
Uniquely aligned 45763 41813 3378

Unaligned 4 12 0
Misassemblies 5 9 3

0-50% assembled isoforms 1572 3951 371
50-75% assembled isoforms 2380 2458 471
75-95% assembled isoforms 4597 4269 617

95-100% assembled isoforms 9173 9143 1030
Mean isoform assembly 0.855 0.775 0.795

0-50% matched transcripts 5156 6578 204
50-75% matched transcripts 5739 3356 126
75-95% matched transcripts 9454 4814 203

95-100% matched transcripts 24821 15300 2709
Unannotated 594 11959 137

Mean fraction of transcript
matched

0.832 0.544 0.883

Table 2.10: rnaQUAST evaluation results for human dataset SAMN07611993, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 38737 33225 15752

Aligned 38734 33217 15752
Uniquely aligned 38727 33099 15750

Unaligned 3 8 0
Misassemblies 6 7 0

0-50% assembled isoforms 1203 3458 1387
50-75% assembled isoforms 1691 1917 1596
75-95% assembled isoforms 3377 3015 2686

95-100% assembled isoforms 9238 8800 4378
Mean isoform assembly 0.877 0.784 0.809

0-50% matched transcripts 6034 6593 580
50-75% matched transcripts 5428 3086 506
75-95% matched transcripts 8205 4216 1232

95-100% matched transcripts 18839 11650 13320
Unannotated 221 7662 114

Mean fraction of transcript
matched

0.802 0.558 0.939

Table 2.11: rnaQUAST evaluation results for human dataset SAMN04169050, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 33883 41154 15342

Aligned 33882 41147 15342
Uniquely aligned 33881 40883 15322

Unaligned 1 7 0
Misassemblies 1 19 10

0-50% assembled isoforms 1972 5067 1999
50-75% assembled isoforms 2334 2666 1812
75-95% assembled isoforms 3649 3429 2323

95-100% assembled isoforms 6903 7347 3350
Mean isoform assembly 0.815 0.714 0.747

0-50% matched transcripts 4722 7576 1554
50-75% matched transcripts 4542 3059 865
75-95% matched transcripts 6157 3734 1385

95-100% matched transcripts 17879 11661 10297
Unannotated 581 15084 1228

Mean fraction of transcript
matched

0.807 0.442 0.806

Table 2.12: rnaQUAST evaluation results for human dataset SAMN04251426.1, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 33588 41008 16119

Aligned 33587 41004 16119
Uniquely aligned 33578 40814 16104

Unaligned 1 4 0
Misassemblies 6 11 7

0-50% assembled isoforms 1903 5087 2051
50-75% assembled isoforms 2201 2609 1827
75-95% assembled isoforms 3602 3276 2418

95-100% assembled isoforms 7051 7377 3477
Mean isoform assembly 0.821 0.713 0.748

0-50% matched transcripts 4834 7801 1615
50-75% matched transcripts 4525 3048 925
75-95% matched transcripts 6174 3653 1393

95-100% matched transcripts 17429 11337 10787
Unannotated 616 15143 1389

Mean fraction of transcript
matched

0.802 0.435 0.8

Table 2.13: rnaQUAST evaluation results for human dataset SAMN04251426.2, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table‘2.7.

49



Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 33699 41038 16328

Aligned 33698 41036 16328
Uniquely aligned 33691 40815 16306

Unaligned 1 2 0
Misassemblies 6 16 4

0-50% assembled isoforms 1894 5007 2146
50-75% assembled isoforms 2236 2616 1834
75-95% assembled isoforms 3486 3416 2417

95-100% assembled isoforms 7089 7384 3471
Mean isoform assembly 0.821 0.717 0.744

0-50% matched transcripts 4595 7693 1707
50-75% matched transcripts 4538 3008 955
75-95% matched transcripts 6329 3757 1469

95-100% matched transcripts 17653 11587 10747
Unannotated 576 14965 1441

Mean fraction of transcript
matched

0.808 0.441 0.794

Table 2.14: rnaQUAST evaluation results for human dataset SAMN04251426.3, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 32952 40754 16179

Aligned 32951 40749 16179
Uniquely aligned 32943 40528 16157

Unaligned 1 5 0
Misassemblies 7 11 7

0-50% assembled isoforms 1940 5087 2109
50-75% assembled isoforms 2246 2729 1852
75-95% assembled isoforms 3563 3361 2430

95-100% assembled isoforms 6970 7220 3414
Mean isoform assembly 0.818 0.711 0.743

0-50% matched transcripts 4634 7569 1647
50-75% matched transcripts 4322 3079 910
75-95% matched transcripts 6116 3565 1440

95-100% matched transcripts 17260 11484 10837
Unannotated 611 15037 1334

Mean fraction of transcript
matched

0.806 0.438 0.803

Table 2.15: rnaQUAST evaluation results for human dataset SAMN04251426.4, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 24956 81557 10813

Aligned 24956 81554 10813
Uniquely aligned 24948 81117 10802

Unaligned 0 3 0
Misassemblies 7 9 0

0-50% assembled isoforms 1547 8224 1070
50-75% assembled isoforms 2016 3162 1263
75-95% assembled isoforms 2967 3329 2025

95-100% assembled isoforms 6470 7697 3107
Mean isoform assembly 0.83 0.64 0.802

0-50% matched transcripts 2015 11463 466
50-75% matched transcripts 2582 2822 398
75-95% matched transcripts 5034 3726 762

95-100% matched transcripts 15137 11144 8916
Unannotated 180 52379 270

Mean fraction of transcript
matched

0.868 0.219 0.915

Table 2.16: rnaQUAST evaluation results for human dataset SAMN00001694, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 21741 107273 12057

Aligned 21741 107269 12057
Uniquely aligned 21736 106575 12039

Unaligned 0 4 0
Misassemblies 3 15 1

0-50% assembled isoforms 1469 10422 1269
50-75% assembled isoforms 1808 3535 1356
75-95% assembled isoforms 2723 3400 2179

95-100% assembled isoforms 6144 8079 3138
Mean isoform assembly 0.832 0.607 0.786

0-50% matched transcripts 1498 15153 606
50-75% matched transcripts 2146 2924 367
75-95% matched transcripts 4350 3529 829

95-100% matched transcripts 13582 10679 9484
Unannotated 161 74942 770

Mean fraction of transcript
matched

0.879 0.165 0.872

Table 2.17: rnaQUAST evaluation results for human dataset SAMN00001695, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 16487 65425 8855

Aligned 16487 65418 8855
Uniquely aligned 16482 65094 8847

Unaligned 0 7 0
Misassemblies 3 4 1

0-50% assembled isoforms 1183 7195 859
50-75% assembled isoforms 1482 2726 1004
75-95% assembled isoforms 2364 2904 1749

95-100% assembled isoforms 5115 6335 2604
Mean isoform assembly 0.834 0.633 0.807

0-50% matched transcripts 1066 9110 350
50-75% matched transcripts 1454 2074 240
75-95% matched transcripts 3011 2636 573

95-100% matched transcripts 10875 9927 7369
Unannotated 77 41656 321

Mean fraction of transcript
matched

0.891 0.227 0.911

Table 2.18: rnaQUAST evaluation results for human dataset SAMN00001696, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 20038 82621 12557

Aligned 20038 82617 12557
Uniquely aligned 20033 82068 12546

Unaligned 0 4 0
Misassemblies 4 11 1

0-50% assembled isoforms 1333 8262 1180
50-75% assembled isoforms 1630 2921 1348
75-95% assembled isoforms 2517 3083 2176

95-100% assembled isoforms 6315 7746 3520
Mean isoform assembly 0.842 0.636 0.804

0-50% matched transcripts 1375 11130 426
50-75% matched transcripts 1856 2375 397
75-95% matched transcripts 3993 3258 854

95-100% matched transcripts 12688 11297 10512
Unannotated 122 54521 367

Mean fraction of transcript
matched

0.882 0.207 0.921

Table 2.19: rnaQUAST evaluation results for human dataset SAMN00006465, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.

52



Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 18192 140280 12335

Aligned 18190 140274 12335
Uniquely aligned 18187 139647 12307

Unaligned 2 6 0
Misassemblies 1 18 1

0-50% assembled isoforms 1315 13372 1414
50-75% assembled isoforms 1502 3942 1229
75-95% assembled isoforms 2481 3485 2072

95-100% assembled isoforms 5899 8561 3280
Mean isoform assembly 0.84 0.574 0.782

0-50% matched transcripts 1300 20842 701
50-75% matched transcripts 1649 3109 391
75-95% matched transcripts 3547 3061 749

95-100% matched transcripts 11541 9780 9300
Unannotated 151 103450 1193

Mean fraction of transcript
matched

0.879 0.122 0.833

Table 2.20: rnaQUAST evaluation results for human dataset SAMN00006466, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 15914 134501 10487

Aligned 15914 134492 10487
Uniquely aligned 15912 133856 10458

Unaligned 0 9 0
Misassemblies 2 17 0

0-50% assembled isoforms 1199 13214 1160
50-75% assembled isoforms 1396 3910 1081
75-95% assembled isoforms 2322 3441 1846

95-100% assembled isoforms 5296 8069 2925
Mean isoform assembly 0.839 0.567 0.79

0-50% matched transcripts 1202 20694 674
50-75% matched transcripts 1463 2767 281
75-95% matched transcripts 2848 2744 574

95-100% matched transcripts 10264 8927 7765
Unannotated 135 99314 1192

Mean fraction of transcript
matched

0.878 0.117 0.813

Table 2.21: rnaQUAST evaluation results for human dataset SAMN00006467, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 20769 124624 13147

Aligned 20769 124621 13147
Uniquely aligned 20768 123959 13128

Unaligned 0 3 0
Misassemblies 1 25 4

0-50% assembled isoforms 1214 12066 1231
50-75% assembled isoforms 1516 3755 1299
75-95% assembled isoforms 2494 3507 2106

95-100% assembled isoforms 6387 8960 3508
Mean isoform assembly 0.85 0.597 0.798

0-50% matched transcripts 1882 20058 848
50-75% matched transcripts 2384 2921 545
75-95% matched transcripts 4223 3167 895

95-100% matched transcripts 12105 9394 9655
Unannotated 174 89030 1199

Mean fraction of transcript
matched

0.855 0.133 0.829

Table 2.22: rnaQUAST evaluation results for human dataset SAMN00006579, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 18480 152741 12817

Aligned 18480 152739 12817
Uniquely aligned 18477 152257 12795

Unaligned 0 2 0
Misassemblies 1 17 5

0-50% assembled isoforms 1246 14212 1290
50-75% assembled isoforms 1497 4284 1192
75-95% assembled isoforms 2438 3834 2001

95-100% assembled isoforms 5809 9259 3276
Mean isoform assembly 0.842 0.578 0.788

0-50% matched transcripts 1688 24592 1023
50-75% matched transcripts 1898 3141 427
75-95% matched transcripts 3507 2930 739

95-100% matched transcripts 11154 8948 8562
Unannotated 230 113096 2059

Mean fraction of transcript
matched

0.856 0.108 0.75

Table 2.23: rnaQUAST evaluation results for human dataset SAMN00006580, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 20476 125563 12512

Aligned 20476 125556 12512
Uniquely aligned 20475 125049 12495

Unaligned 0 7 0
Misassemblies 1 17 2

0-50% assembled isoforms 1279 11940 1195
50-75% assembled isoforms 1582 3652 1243
75-95% assembled isoforms 2452 3340 2128

95-100% assembled isoforms 6273 8602 3409
Mean isoform assembly 0.844 0.592 0.799

0-50% matched transcripts 2036 19464 878
50-75% matched transcripts 2213 2901 417
75-95% matched transcripts 4104 2967 812

95-100% matched transcripts 11946 9341 9311
Unannotated 176 90846 1091

Mean fraction of transcript
matched

0.852 0.13 0.832

Table 2.24: rnaQUAST evaluation results for human dataset SAMN00006581, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a human dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 6890 12610 4017

Aligned 6890 12610 4017
Uniquely aligned 6886 12528 4013

Unaligned 0 0 0
Misassemblies 4 1 0

0-50% assembled isoforms 703 2605 606
50-75% assembled isoforms 761 1258 520
75-95% assembled isoforms 1194 1597 1003

95-100% assembled isoforms 2451 4101 1248
Mean isoform assembly 0.818 0.729 0.779

0-50% matched transcripts 243 765 41
50-75% matched transcripts 369 899 155
75-95% matched transcripts 920 1738 294

95-100% matched transcripts 5323 8108 3510
Unannotated 31 1098 16

Mean fraction of transcript
matched

0.931 0.819 0.96

Table 2.25: rnaQUAST evaluation results for mouse dataset SAMEA3374575, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a mouse dataset. Metrics descriptions
are the same as in Table 2.7.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 6720 12207 4164

Aligned 6720 12206 4164
Uniquely aligned 6715 12104 4163

Unaligned 0 1 0
Misassemblies 5 0 1

0-50% assembled isoforms 699 2406 616
50-75% assembled isoforms 706 1245 585
75-95% assembled isoforms 1155 1632 975

95-100% assembled isoforms 2563 4194 1385
Mean isoform assembly 0.825 0.743 0.783

0-50% matched transcripts 176 700 48
50-75% matched transcripts 275 815 71
75-95% matched transcripts 899 1657 279

95-100% matched transcripts 5334 7967 3749
Unannotated 31 1067 16

Mean fraction of transcript
matched

0.94 0.817 0.969

Table 2.26: rnaQUAST evaluation results for mouse dataset SAMEA3374576, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a mouse dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 5972 11247 3699

Aligned 5972 11247 3699
Uniquely aligned 5967 11193 3695

Unaligned 0 0 0
Misassemblies 4 1 1

0-50% assembled isoforms 653 2250 554
50-75% assembled isoforms 662 1169 505
75-95% assembled isoforms 1078 1531 908

95-100% assembled isoforms 2343 3931 1222
Mean isoform assembly 0.823 0.744 0.784

0-50% matched transcripts 180 667 60
50-75% matched transcripts 236 765 83
75-95% matched transcripts 732 1454 230

95-100% matched transcripts 4796 7442 3305
Unannotated 23 918 20

Mean fraction of transcript
matched

0.942 0.826 0.963

Table 2.27: rnaQUAST evaluation results for mouse dataset SAMEA3374577, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a mouse dataset. Metrics descriptions
are the same as in Table 2.7.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 5783 10979 3492

Aligned 5783 10979 3492
Uniquely aligned 5778 10925 3491

Unaligned 0 0 0
Misassemblies 5 0 0

0-50% assembled isoforms 625 2378 543
50-75% assembled isoforms 604 1166 466
75-95% assembled isoforms 989 1458 860

95-100% assembled isoforms 2169 3674 1154
Mean isoform assembly 0.82 0.726 0.782

0-50% matched transcripts 160 696 23
50-75% matched transcripts 239 727 57
75-95% matched transcripts 842 1550 210

95-100% matched transcripts 4503 7184 3184
Unannotated 34 822 18

Mean fraction of transcript
matched

0.936 0.83 0.973

Table 2.28: rnaQUAST evaluation results for mouse dataset SAMEA3374578, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a mouse dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 8052 16520 4609

Aligned 8052 16520 4609
Uniquely aligned 8052 16414 4600

Unaligned 0 0 0
Misassemblies 0 0 0

0-50% assembled isoforms 949 3648 835
50-75% assembled isoforms 1006 1687 650
75-95% assembled isoforms 1433 1994 1111

95-100% assembled isoforms 3104 5197 1502
Mean isoform assembly 0.812 0.714 0.763

0-50% matched transcripts 155 1046 26
50-75% matched transcripts 288 1119 82
75-95% matched transcripts 989 2223 268

95-100% matched transcripts 6598 10605 4213
Unannotated 22 1526 19

Mean fraction of transcript
matched

0.952 0.813 0.972

Table 2.29: rnaQUAST evaluation results for mouse dataset SAMEA3374579, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a mouse dataset. Metrics descriptions
are the same as in Table 2.7.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 8206 18482 4679

Aligned 8206 18480 4679
Uniquely aligned 8206 18301 4670

Unaligned 0 2 0
Misassemblies 0 0 1

0-50% assembled isoforms 1057 4217 1028
50-75% assembled isoforms 1016 1811 627
75-95% assembled isoforms 1491 1961 1047

95-100% assembled isoforms 3058 5173 1408
Mean isoform assembly 0.802 0.692 0.729

0-50% matched transcripts 149 1199 42
50-75% matched transcripts 281 1196 57
75-95% matched transcripts 960 2229 257

95-100% matched transcripts 6794 11398 4297
Unannotated 22 2457 22

Mean fraction of transcript
matched

0.955 0.771 0.972

Table 2.30: rnaQUAST evaluation results for mouse dataset SAMEA3374580, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a mouse dataset. Metrics descriptions
are the same as in Table 2.7.

Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 9851 20349 5765

Aligned 9851 20348 5765
Uniquely aligned 9848 20157 5759

Unaligned 0 1 0
Misassemblies 2 2 0

0-50% assembled isoforms 1199 4489 1252
50-75% assembled isoforms 1137 1932 743
75-95% assembled isoforms 1579 2038 1204

95-100% assembled isoforms 3680 5704 1695
Mean isoform assembly 0.808 0.696 0.728

0-50% matched transcripts 221 1312 57
50-75% matched transcripts 418 1347 108
75-95% matched transcripts 1373 2690 384

95-100% matched transcripts 7792 12367 5166
Unannotated 44 2629 50

Mean fraction of transcript
matched

0.944 0.772 0.964

Table 2.31: rnaQUAST evaluation results for mouse dataset SAMEA3374581, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a mouse dataset. Metrics descriptions
are the same as in Table 2.7.
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Metrics Scallop-LR StringTie Iso-Seq
# Transcripts 8071 18712 4748

Aligned 8071 18712 4748
Uniquely aligned 8069 18543 4740

Unaligned 0 0 0
Misassemblies 1 1 0

0-50% assembled isoforms 1115 4837 1344
50-75% assembled isoforms 1081 1980 619
75-95% assembled isoforms 1335 1892 919

95-100% assembled isoforms 2718 4581 1187
Mean isoform assembly 0.784 0.657 0.674

0-50% matched transcripts 98 1091 36
50-75% matched transcripts 243 1166 43
75-95% matched transcripts 905 2275 170

95-100% matched transcripts 6806 11737 4444
Unannotated 17 2439 55

Mean fraction of transcript
matched

0.962 0.779 0.97

Table 2.32: rnaQUAST evaluation results for mouse dataset SAMEA3374582, comparing
Scallop-LR, StringTie, and Iso-Seq Analysis. This table compares the rnaQUAST evaluation
results for Scallop-LR, StringTie, and Iso-Seq Analysis on a mouse dataset. Metrics descriptions
are the same as in Table 2.7.
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Dataset BioSample SRA Study Organism Year Instrument
1 SAMN00001694 ERP015321 Homo sapiens 2016 RS
2 SAMN00001695 ERP015321 Homo sapiens 2016 RS
3 SAMN00001696 ERP015321 Homo sapiens 2016 RS
4 SAMN00006465 ERP015321 Homo sapiens 2016 RS
5 SAMN00006466 ERP015321 Homo sapiens 2016 RS
6 SAMN00006467 ERP015321 Homo sapiens 2016 RS
7 SAMN00006579 ERP015321 Homo sapiens 2016 RS
8 SAMN00006580 ERP015321 Homo sapiens 2016 RS
9 SAMN00006581 ERP015321 Homo sapiens 2016 RS
10 SAMN08182059 SRP126849 Homo sapiens 2017 RS II
11 SAMN08182060 SRP126849 Homo sapiens 2017 RS II
12 SAMN04563763 SRP071928 Homo sapiens 2016 RS II
13 SAMN07611993 SRP098984 Homo sapiens 2018 RS II
14 SAMN04169050 SRP068953 Homo sapiens 2016 RS II
15 SAMN04251426.1 SRP065930 Homo sapiens 2016 RS II
16 SAMN04251426.2 SRP065930 Homo sapiens 2016 RS II
17 SAMN04251426.3 SRP065930 Homo sapiens 2016 RS II
18 SAMN04251426.4 SRP065930 Homo sapiens 2016 RS II
19 SAMEA3374575 ERP010189 Mus musculus 2015 RS
20 SAMEA3374576 ERP010189 Mus musculus 2015 RS
21 SAMEA3374577 ERP010189 Mus musculus 2015 RS
22 SAMEA3374578 ERP010189 Mus musculus 2015 RS
23 SAMEA3374579 ERP010189 Mus musculus 2015 RS
24 SAMEA3374580 ERP010189 Mus musculus 2015 RS
25 SAMEA3374581 ERP010189 Mus musculus 2015 RS
26 SAMEA3374582 ERP010189 Mus musculus 2015 RS

Table 2.33: SRA information for the 26 datasets used in this study. This table summarizes the
26 datasets used in this study. 18 datasets are human and eight datasets are mouse. The data were
downloaded from the corresponding SRA Study. The multiple SRA Runs for each BioSample
under the corresponding SRA Study were extracted, processed, and then merged into a large
dataset.
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Datasets
Sensitivity (%) Precision (%) # Total Multi-Exon

Transcripts
# Correctly Predicted

Known Transcripts
Scallop-LR Scallop Scallop-LR Scallop Scallop-LR Scallop Scallop-LR Scallop

SAMN00001694 5.50 5.38 38.47 34.57 24903 27070 9580 9357
SAMN00001695 5.36 5.29 42.96 36.82 21731 25013 9336 9211
SAMN00001696 4.48 4.48 47.29 41.01 16476 19030 7791 7805
SAMN00006465 5.32 5.36 46.28 40.69 20019 22950 9264 9339
SAMN00006466 5.05 5.05 48.42 38.91 18171 22608 8798 8797
SAMN00006467 4.62 4.58 50.57 39.95 15900 19953 8040 7972
SAMN00006579 5.19 5.13 43.52 35.87 20742 24908 9027 8934
SAMN00006580 4.87 4.81 45.89 35.43 18467 23638 8474 8376
SAMN00006581 5.09 5.07 43.31 35.03 20458 25194 8861 8826
SAMN08182059 5.29 5.13 36.34 31.37 25332 28454 9206 8927
SAMN08182060 5.52 5.41 43.59 36.01 22038 26129 9606 9410
SAMN04563763 4.87 4.92 46.90 41.09 18078 20850 8478 8567
SAMN07611993 7.60 7.53 28.97 27.02 45657 48531 13226 13113
SAMN04169050 6.86 6.63 30.90 25.72 38657 44848 11946 11536
SAMN04251426.1 5.70 5.57 29.32 28.25 33824 34343 9916 9701
SAMN04251426.2 5.76 5.66 29.92 28.83 33534 34155 10034 9846
SAMN04251426.3 5.81 5.75 30.09 29.42 33637 33995 10122 10001
SAMN04251426.4 5.78 5.67 30.59 29.32 32908 33647 10065 9864

Table 2.34: Performance comparison of Scallop-LR vs. Scallop on human data. This table
compares the performance of Scallop-LR (v0.9.1) with the performance of Scallop (v0.10.3)
using the Gffcompare evaluation. The same 18 human PacBio datasets as described in Ta-
ble 2.1 were evaluated. The parameter settings (options) used for Scallop (v0.10.3) are “–
max_num_cigar 1000” and “–min_num_hits_in_bundle 1”.
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Datasets
# Total Multi-Exon

Transcripts
# Correctly Predicted

Known Transcripts
% of Correctly

Assembled Known
Transcripts

Missing Due to
Clustering

% of Nearly
Redundant
Transcripts

Removed by
Clustering

Scallop-LR
with

Clustering

Scallop-LR
without

Clustering

Scallop-LR
with

Clustering

Scallop-LR
without

Clustering
SAMN00001694 24903 26853 9580 9770 1.94 10.3
SAMN00001695 21731 23508 9336 9479 1.51 11.65
SAMN00001696 16476 17695 7791 7937 1.84 11.0
SAMN00006465 20019 21504 9264 9452 1.99 10.76
SAMN00006466 18171 19513 8798 8955 1.75 11.22
SAMN00006467 15900 17007 8040 8157 1.43 11.19
SAMN00006579 20742 22229 9027 9201 1.89 10.08
SAMN00006580 18467 19745 8474 8622 1.72 10.16
SAMN00006581 20458 21994 8861 9033 1.9 10.52
SAMN08182059 25332 27415 9206 9340 1.43 10.78
SAMN08182060 22038 24449 9606 9793 1.91 15.17
SAMN04563763 18078 19493 8478 8634 1.81 11.59
SAMN07611993 45657 50082 13226 13549 2.38 11.23
SAMN04169050 38657 43806 11946 12188 1.99 15.52
SAMN04251426.1 33824 36534 9916 10083 1.66 9.61
SAMN04251426.2 33534 36225 10034 10234 1.95 9.58
SAMN04251426.3 33637 36190 10122 10283 1.57 9.23
SAMN04251426.4 32908 35450 10065 10287 2.16 9.22

Table 2.35: Comparison of Scallop-LR with clustering vs. Scallop-LR without clustering on
human data. This table compares the results of Scallop-LR without post-assembly clustering
with the results of Scallop-LR with post-assembly clustering (using the default value for
parameter “–max_cluster_intron_distance”) by using the Gffcompare evaluation. The same 18
human PacBio datasets as described in Table 2.1 were evaluated. The percentages are computed
as the following:

“% of Correctly Assembled Known Transcripts Missing Due to Clustering” = 100 × ((“# match-
ing transcripts without clustering” – “# matching transcripts with clustering”) / “# matching transcripts
without clustering”).

“% of Nearly Redundant Transcripts Removed by Clustering” = 100 × ((“# non-matching tran-
scripts without clustering” – “# non-matching transcripts with clustering”) / “# non-matching transcripts
without clustering”).

Where “# non-matching transcripts” = “# Total Multi-Exon Transcripts” – “# matching transcripts”;
“# matching transcripts” = “# Correctly Predicted Known Transcripts”.
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Dataset
Sensitivity (%) Precision (%) # Total Multi-Exon

Transcripts
# Correctly Predicted

Known Transcripts
Scallop-LR StringTie Scallop-LR StringTie Scallop-LR StringTie Scallop-LR StringTie

Simulated
Human CCS

Reads

53.05 45.03 66.54 63.51 6226 5538 4143 3517

Table 2.36: Simulated Human Data: Sensitivity, Precision, Correctly Predicted Known
Transcripts, and Total Multi-Exon Transcripts of Scallop-LR and StringTie. This table
compares the Gffcompare evaluation results for Scallop-LR and StringTie on a simulated human
dataset [57]. The transcriptome that was used to generate the simulated long reads originated
from the Ensembl annotation Homo sapiens GRCh38.94 and was a subset of the transcripts
in this Ensembl annotation, by removing unfinished scaffolds, transcripts shorter than 200 bp,
and annotations with an unknown reference, and randomly selecting alternative-splicing genes,
single-splicing genes, and genes with small exons (< 31bp). The PacBio PBSIM tool was used
to generate the simulated CCS reads from this transcriptome. The simulation was model-based
using the CCS model, and three runs of simulations were performed by using three different
sequencing depths 4X, 10X and 30X respectively. We merged the CCS reads generated with the
three sequencing depths together to obtain this simulated human dataset. We used the transcripts
in the transcriptome sequences that were used to generate the simulated CCS reads to extract the
transcripts’ records and their corresponding genes’ records from the Ensembl annotation Homo
sapiens GRCh38.94 to obtain an annotation GTF file. This extracted annotation GTF file serves
as the reference in Gffcompare and the “ground truth”, and it contains 7810 multi-exon tran-
scripts.
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Metrics Scallop-LR StringTie
# Transcripts 6228 7246

Aligned 6228 7246
Uniquely aligned 6225 7120

Unaligned 0 0
Misassemblies 0 0

0-50% assembled isoforms 90 41
50-75% assembled isoforms 171 48
75-95% assembled isoforms 253 170

95-100% assembled isoforms 3103 4248
Mean isoform assembly 0.956 0.984

0-50% matched transcripts 107 41
50-75% matched transcripts 418 217
75-95% matched transcripts 1668 1039

95-100% matched transcripts 4027 4979
Unannotated 5 967

Mean fraction of transcript
matched

0.924 0.81

Table 2.37: rnaQUAST evaluation results for a simulated human dataset, comparing
Scallop-LR and StringTie. This table compares the rnaQUAST evaluation results for Scallop-
LR and StringTie on a simulated human dataset. The same simulated human dataset as described
in Table 2.36 was evaluated. The same extracted annotation GTF file as described in Table 2.36
was used to generate the gene annotation database, which was used by rnaQUAST. Metrics de-
scriptions are the same as in Table 2.7.

64



Chapter 3

Representative set selection of RNA-seq
samples using a hierarchical approach

A version of this chapter was published in ISMB/Bioinformatics [101] and is joint work with
Carl Kingsford.

3.1 Background

A vast number of RNA-seq short-read samples are publicly available at large sequence databases
(e.g. NIH’s Sequence Read Archive [51], known as SRA). However, most bioinformatics tools
for RNA-seq analyses are evaluated on a limited number of samples; this evaluation may be in-
sufficient, as the tools may not be adequately evaluated by samples with a variety of cell/tissue
types and disease conditions. To ensure general applicability, an RNA-seq analysis tool should
be validated on varying cell/tissue types and experiments. On the other hand, using all avail-
able RNA-seq samples to evaluate RNA-seq analysis tools is infeasible, and many samples in
databases are similar to each other. This leads to a need to select a representative subset from
available RNA-seq samples that effectively summarizes a large collection of RNA-seq samples
to capture various essential transcriptional phenomena. Moreover, bioinformatics tools have al-
gorithm parameters to be optimized, and automatic learning of optimal parameters can be made
more robust using representative samples. Thus, our objective is to develop a computational
method of selecting a representative subset from a large collection of RNA-seq short-read sam-
ples for a given organism (e.g. human), such that RNA-seq analysis tools can be effectively
evaluated on this subset. Bioinformatics tools such as transcript assemblers, read mappers, and
expression abundance estimators would benefit from a good selection of RNA-seq samples in
their evaluation and parameter optimization.

Various representative set selection methods that solve the problem of finding a subset of data
points (representatives) to efficiently describe the original collection of data have been developed
in the fields of computer vision, signal/image processing, information retrieval, and machine
learning [9, 21, 25, 26, 27, 29, 72, 107]. These methods include clustering-based approaches [21,
27], sparse modeling-based algorithms [26, 107], Rank Revealing QR algorithms [9], etc. The
representative subset selected by these approaches usually follows the density distribution of
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the original set. However, for RNA-seq analyses, it is important to have the representative set
approximately evenly span the space of the original data in order to represent rare cell types and
conditions.

In the field of RNA-seq analysis, Hie et al. developed a geometric sketching algorithm [35]
for single-cell RNA-seq, which summarizes the transcriptomic heterogeneity within a data set
using a representative subset of cells to accelerate single-cell analysis. Using a covering al-
gorithm that approximates the original data space as a union of equal-sized boxes, geometric
sketching focuses on even coverage of the transcriptional space spanned by the original set, such
that rare cell types can be sufficiently sampled and represented. While maintaining a similar den-
sity distribution to that of the original set is useful for video/photo summarizations, for RNA-seq
analyses, even coverage of the transcriptional space is more important in order to represent rare
cell types.

A Python package, apricot [84], has been developed for selecting representative subsets using
submodular optimization. Based on the “diminishing returns” property, apricot maximizes a
monotone submodular function’s value to find a representative subset. Apricot uses a greedy
algorithm that can find a subset whose objective value is guaranteed to be within a constant
factor of the optimal subset. Using facility location, apricot maximizes the sum of similarities
between each sample and its closest representative sample; as a result, the representative set that
is selected by apricot approximately evenly spans the space of the original data, like geometric
sketching. While geometric sketching requires knowing the samples’ gene expression vectors,
apricot can work with the similarity matrix between the samples directly.

A main challenge in representative set selection for RNA-seq samples is that the number of
RNA-seq samples in large databases is huge and each RNA-seq sample takes up substantial disk
space; therefore, it is impractical to download all RNA-seq sequences of all the samples available
at a large database like the SRA due to limited disk space. To perform representative set selection
directly, we need to obtain gene expression vectors of, or distances between, all available SRA
samples; however, SRA streaming is also not feasible due to issues with paired-end reads.

Given this challenge, one might attempt to select a representative set without looking at the
sequences of each RNA-seq sample and relying instead on each sample’s metadata, for exam-
ple, using NCBI’s BioSample attributes [7] that affect gene expression levels to predict gene
expression distances between RNA-seq samples. However, for most large RNA-seq collections,
including the SRA, the metadata is highly incomplete and most samples do not have the needed
metadata values for predicting their gene expression distances.

Thus, we use a sequence-based approach for representative set selection of RNA-seq sam-
ples. We randomly sample a small subset of reads from each RNA-seq sample to download,
such that the subsets of reads from all available RNA-seq samples at the SRA take a reasonable
disk space. We count k-mers in the subset of reads of each sample and compute the similarity
between k-mer distributions of samples. This approach selects a representative set based on k-
mer similarities and thus sequence similarities among RNA-seq samples. Since the number of
publicly available RNA-seq samples in the SRA is large (N=196523 for human) and the number
of k-mers in each sample is large (∼2000000 k-mers), computing the 196523×196523 similar-
ity matrix with k-mers has memory and runtime challenges even using a chunking method for
matrix computation [54].

To tackle this challenge, we developed a novel method called “hierarchical representative set
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selection.” The hierarchical representative set selection is a divide-and-conquer-like algorithm
that hierarchically selects representative samples through multiple levels. At each level, samples
are divided into smaller chunks, and representative set selection is performed on each chunk with
a weighting scheme. The representative samples selected from every chunk are merged into the
next level, and the process repeats until the size of the similarity matrix of the merged samples is
feasible for the computing resources.

Our results show that hierarchical representative set selection achieves summarization quality
close to that of direct representative set selection using apricot (5.37% average difference in
the measure of how well a selected subset represents the full set), while substantially reducing
runtime and memory requirements of computing the full similarity matrix (up to 8.4X runtime
reduction and 5.35X memory reduction for 10000 and 12000 samples respectively that could be
practically run with direct subset selection), thus making selecting representative samples from
the entire SRA RNA-seq samples feasible (the estimated runtime reduction is 90X and memory
reduction is 41.4X for the SRA full set of 196523 human samples). We demonstrate that the
representative subset selected by our hierarchical representative set selection method from all
human RNA-seq samples in the SRA better represents the transcriptomic heterogeneity among
those samples than that by random sampling, and thus can be used for more comprehensive and
complete evaluation of bioinformatics tools.

3.2 Methods

3.2.1 Problem formulation

Let set R be a large set of RNA-seq samples (such as all the RNA-seq samples in the NIH SRA
database for a given organism), let d(i, j) be a distance or dissimilarity measure between samples
i and j in R, and let d(x, S) be the distance between a data point x and its closest data point in a
set S. A reasonable formulation is to find a representative subset R̃ ⊆ R, such that

max
r∈R

d(r, R̃)

is as small as possible.
This is equivalent to minimizing the classical Hausdorff distance which is defined as:

dH(X,S) = max
x∈X
{min

s∈S
d(x, s)} where X is the full set and S is its representative subset [35].

The Hausdorff distance can be used to evaluate how well a selected subset represents the original
full set (a smaller value is better) [35]. However, the classical Hausdorff distance is highly
sensitive to extreme outliers [37, 91]. Thus, in practice, a more robust measure, the partial
Hausdorff distance, is used to evaluate the representative subset [35, 37]. The partial Hausdorff
distance is defined as: dHK(X,S) = Kth

x∈X{mins∈S d(x, s)} where Kth
x∈X is the Kth largest

value (counting from the minimum), and a parameter q = 1 − K/|X| is used to determine K
(when q = 0, dHK = dH ; when q is small enough, dHK is very close to dH but is robust to
extreme outliers) [35, 37]. dHK is at the ((1− q)×100)-th percentile of the distances from every
sample x in the full set to its closest representative sample.
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3.2.2 K-mer similarity-based approach

The similarity between k-mer distributions of RNA-seq samples reflects the similarity between
their sequences and is a reasonable approach for computing d(i, j). Thus, by counting the k-mers
of RNA-seq reads, we can select a representative set based on the k-mer similarities and therefore
sequence similarities among samples. Downloading all reads of all SRA samples is infeasible, so
we download a small subset of reads from each RNA-seq sample. To represent a full RNA-seq
sample, the sampled small subset of reads are random with respect to the genome coordinates.
For approximately 88% of SRA RNA-seq samples, the reads are stored from the sequencer with-
out alignment. Reads coming from Illumina sequencers without alignment are random with
respect to the genome coordinates. Thus, a range of reads downloaded from unaligned samples
by fastq-dump are random. We download 10,000 reads to represent each unaligned RNA-seq
sample (we skip the first 5000 reads in the sample when downloading, since the beginning of se-
quencing may contain some technical variation of signal introduced in the sequencing process).

Choosing a proper k-mer size is important, as smaller k-mers give less information about
sequence similarities, while larger k-mers may result in fewer matches due to sequencing errors.
To select an optimal k-mer size, we plot the number of distinct k-mers with the varying k-mer
size for a range of typical read lengths of Illumina (Figs. 3.6–3.10). In the linearly increasing
part of the curve, short k-mers match randomly; from the beginning of the horizontal part of the
curve, k-mers start to reveal the genome structure. Thus, we want the smallest k-mer size in
the horizontal part of the curve, so that the k-mer matching moves from being random to being
representative of the read content and is still resilient to sequencing errors. Among the optimal
k-mer sizes we obtained for long, medium, and short read-lengths, we choose a compromise 17
as the optimal k-mer size.

Jellyfish [61] was used to count k-mers in the subset of reads. We use canonical k-mers
(i.e. the lexicographically smaller of a k-mer and its reverse complement), so all samples are
compared based on the common k-mer sequences regardless of the sequenced strand. We use
the cosine similarity as the similarity of k-mer distributions between samples. Cosine similarity
is the cosine of the angle between two vectors and is commonly used in document clustering
and information retrieval; our k-mer vectors have some similar aspects to TFIDF (Term Fre-
quency–Inverse Document Frequency) vectors (e.g. large vocabulary, word counts, high dimen-
sion, and high sparsity). Cosine similarity is also a good measure for k-mer-based metagenome
comparisons [19].

3.2.3 Hierarchical representative set selection algorithm

To handle the memory and runtime challenges, hierarchical representative set selection (as shown
in Algorithm 1) breaks the whole representative set selection into multiple levels of progressive
sub-selections, like divide-and-conquer. At each level, the “full set” of samples are divided into
smaller equal-size chunks using a seeded-chunking method (see Algorithm 2), such that chunks
are well separated with closer samples going into the same chunk if possible. The similarity
matrix for each chunk is computed, and weights that determine the size of the representative
set for every chunk are computed based on the density/sparseness of each chunk (samples in a
denser chunk are more similar to each other). Representative set selection is then performed on
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each chunk (for example, using apricot’s facility location approach). The representative samples
selected from every chunk are merged into a new set, which becomes the “full set” of the next
level. This process iterates until the size of the similarity matrix of the merged set is feasible for
the computing resources. Lastly, the similarity matrix of the final merged set is computed, and
representative set selection is performed on it to get the final representative set of a desired size.

Algorithm 1: Hierarchical Representative Set Selection
Input: Full set R of N samples (k-mer counts). m: chunk size. Q: average

representative-set size for each chunk. L: max size of similarity matrix (L×L)
feasible for computing resources. n: user-desired size of final representative set.

Output: n representative samples.
1. Divide: divide R into l = ⌈N/m⌉ chunks using a seeded-chunking method (see

Algorithm 2), each has m samples.

2. Compute similarity matrix (m×m) for each chunk i.

3. Compute weight wi for each chunk i (see “Weighting scheme”).
Set the representative-set size RSSi = wiQ

4. For each chunk i, perform representative set selection on its m×m similarity matrix to
get RSSi representative samples.

5. Merge: sequentially merge RSSi representative samples from every chunk into a set R′

of N ′ =
∑

i RSSi samples.

6. R← R′, repeat steps 1–5 until N ′ ≤ L

7. Compute similarity matrix (N ′ ×N ′); store it for any user-desired smaller-size
representative set selection.

8. Perform representative set selection on the N ′ ×N ′ similarity matrix to get n
representative samples.

* Once step 7 is completed, step 8 can be independently performed repeatedly for
different n.

Computing the similarity matrix with k-mers is the runtime and memory bottleneck, while
apricot’s runtime is relatively negligible in comparison. For direct representative set selection
using apricot, the computational cost for the similarity matrix of the full set is O(N2). Using the
hierarchical selection (considering one iteration of divide-and-merge with l chunks, chunk size
m, and the final merged set size N ′), the computational cost is reduced to O(lm2) + O(N ′2) =
O(N2/l) +O(N ′2). The seeded-chunking has an added computational cost O(Nl). So the total
computational cost of the hierarchical selection is O(N2/l) + O(N ′2) + O(Nl), where l ≪ N
and N ′ ≪ N . With multiple iterations, the computational cost is further reduced. Since m≪ N ,
the memory requirement for computing the similarity matrix is greatly reduced.

Fig. 3.1 illustrates applying the hierarchical representative set selection to 196523 human
RNA-seq samples in the SRA, using two levels (two iterations) of divide-and-merge. The first
level has l1 = 197 chunks; the second level has l2 = 40 chunks. ∼200 representative samples
are selected from each chunk of 1000 samples.
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196523 samples

1000 samples 1000 samples 1000 samples

∼200 samples ∼200 samples ∼200 samples
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...

...

1000 samples 1000 samples 1000 samples

∼200 samples ∼200 samples ∼200 samples

∼7860 samples

...

...

Divide l1 = 197

l2 = 40Divide

Merge

Merge

Compute Similarity Matrix
+ Compute Weights
+ Rep. Set Selection

Compute Similarity Matrix
+ Compute Weights
+ Rep. Set Selection

Compute 7860×7860 similarity matrix

Used for user-desired smaller-size rep. set selection

Figure 3.1: Illustration of the hierarchical representative set selection for 196523 human RNA-
seq samples in the SRA.
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Seeded-chunking method

The ideal situation for the hierarchical representative set selection is that chunks have no over-
laps. Here, the “overlap” of chunks means data points and their close neighbors are in different
chunks (e.g. different chunks occupy the same dense cluster). When chunks have no overlaps,
the union of the representative sets selected from every chunk would be similar to the represen-
tative set selected directly from the original set. When chunks have overlapping regions with
similar densities, unnecessarily more representative data points may be selected in the overlap-
ping regions from different chunks. The subsequent representative set selection on the merged
set can alleviate this effect, but the over-use of the quota (i.e. a region’s proportion of the desired
number of representative data points) in the overlapping regions may cause other regions to have
less quota. Thus, more separated chunks lead to more accurate hierarchical selection.

A sequential-chunking method that divides chunks sequentially along the SRA accession list
can cause many overlaps, even complete overlaps between chunks. To overcome the introduction
of overlaps with sequential chunking, we developed a novel seeded-chunking method (as shown
in Algorithm 2). The seeded-chunking first uses the “farthest point sampling” algorithm [10, 71]
to find l seeds for l chunks, such that the seeds are farthest away from each other. That is, starting
from a randomly selected seed, the seeds are chosen one at a time, such that each new seed has
the largest distance to the set of already selected seeds (i.e. the largest minimum distance to the
already selected seeds). The entire set of RNA-seq samples available at a large database cannot
fit into memory at once, but if loading each sample one at a time when computing its distance
to a seed, each sample would be repeatedly loaded for l − 1 times. Thus, we randomly select a
subset X from the full set and perform the “farthest point sampling” on X to find l seeds. Each
sample in the full set is assigned to its closest seed. Since chunks have equal sizes, the sample is
assigned to its closest seed among all currently non-full chunks (i.e. their current size < m).

The seeded-chunking can generate well-separated chunks, with an added computational cost:
O(Nl) of computing similarities. Since l ≪ N , this cost is fairly small compared to computing
the full similarity matrix (O(N2)). We benchmarked the seeded-chunking vs. sequential chunk-
ing on various sizes of full sets (Table 3.8). In all cases, the seeded-chunking outperforms the
sequential chunking; as the full-set size increases, the seeded-chunking shows more advantages
over the sequential chunking in the partial Hausdorff distance.

Weighting scheme

Denser chunks (in which samples are more similar to each other) should have fewer represen-
tative samples than sparser chunks, since we want representative data points to approximately
evenly span the space of the original data, so that rare cell/tissue types can be sufficiently rep-
resented. Since chunks have equal sizes, denser chunks occupy smaller spaces than sparser
chunks. Thus, we propose a novel weighting scheme (“mean2-weighting scheme”) to assign the
representative-set size to each chunk based on their average density/sparseness.

The mean2-weighting scheme is as follows. Let µi be the mean of distances between samples
in chunk i; zi is the size of chunk i (note that when N/m is not an integer, not all chunks are full);
Q, l, and m are as defined in Algorithm 1. Suppose the lth chunk is non-full: let αl = zl/m. The
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Algorithm 2: Seeded-Chunking Method
Input: Full set R of N samples. m: chunk size. l: number of chunks. J : size of a

randomly selected subset used for selecting seeds.
Output: l chunks.

1. Randomly select a subset X of J samples from R.

2. Perform the “farthest point sampling” on X to find a set S of l seeds:

Initialization: Seed s1 = a randomly selected sample from X .
S = {s1}. Distance from x ∈ X to S:
dS(x) = distance(x, s1)

For i = 2, . . . , l, repeat steps (a)–(c):

(a) Find the farthest sample away from the already selected seeds’ set S:
si = argmax dS(x), x ∈ X

(b) Add si as a new seed into S.

(c) Update the distance from x ∈ X to S:
dS(x)← min{dS(x), distance(x, si)}

3. Compute distances between each sample in R and l seeds.

4. Assign each sample in R to its closest seed:

(i) Find all currently non-full chunks (i.e. size < m).

(ii) Assign the sample to its closest seed among all non-full chunks.

weight wi and the representative-set size RSSi for chunk i are defined to be:

wi = µ2
i /weighted_mean{all µ2

j} where i, j = 1, . . . , l (3.1)

RSSi = wiQ for i = 1, . . . , l − 1 (3.2)
RSSl = wlαlQ (3.3)

where the weighted_mean{all µ2
j} uses weight = 1 for j = 1, . . . , l − 1 and weight = αl for

j = l. The following relationship holds:∑
i

RSSi = (l − 1)Q+ αlQ.

With the seeded-chunking, there could be multiple non-full chunks, but the same weighting
method applies. The mean2-weighting scheme is a heuristic to adjust the representative-set size
for each chunk according to their average density/sparseness.

The code for the hierarchical representative set selection is available at https://github.com/
Kingsford-Group/hierrepsetselection; the code for computing k-mer similarities is available at
https://github.com/Kingsford-Group/jellyfishsim. We have two GitHub repositories since the
2nd repository contains the code that can also be used for other k-mer similarity applications;
other applications that need to compute k-mer similarities between samples can use the 2nd
repository only.
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Figure 3.2: Using the most recent 1000, 2000, 5000, 8000, 10000, 12000 samples in the SRA as
the full sets. rep_set_size/N=0.1. (a) Partial Hausdorff distances dHK of direct apricot, hierar-
chical selection, and random selection. (b) Partial Hausdorff distances’ difference: hierarchical
selection dHK − direct apricot dHK .
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Figure 3.3: Using the early-time 1000, 2000, 5000, 8000, 10000, 12000 samples in the SRA as
the full sets. rep_set_size/N=0.1. (a) Partial Hausdorff distances dHK of direct apricot, hierar-
chical selection, and random selection. (b) Partial Hausdorff distances’ difference: hierarchical
selection dHK − direct apricot dHK .
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3.3 Results

3.3.1 Hierarchical selection achieves summarization quality close to that
of direct representative set selection

Excluding SRA samples with no public access permission, aligned samples, and samples with no
valid 17-mers (read-lengths < the k-mer size 17, or reads that contain many N ’s in the middle),
we obtained 196523 human bulk RNA-seq (Illumina) samples as the SRA entire set. Each sample
corresponds to an SRA Experiment.

In this particular implementation of the hierarchical representative set selection, we use apri-
cot’s facility location approach as the base level to perform representative set selection on each
chunk and on the merged set. We use cosine distance as the distance measure. In this context, we
define the term “summarization quality” as a measure of how well a selected subset represents
the full set (i.e. “representativeness”), evaluated by dHK .

We refer to the direct representative set selection using apricot as “direct apricot”, which
includes two parts: (a) computing the similarity matrix of the full set; (b) applying apricot’s
facility location approach to the full similarity matrix. The main computational cost of direct
apricot comes from part (a).

The motivation of the hierarchical representative set selection is to reduce the runtime and
memory requirement of direct representative set selection, while not sacrificing too much sum-
marization quality. Thus, we compared the performance between direct apricot, the hierarchical
selection, and random sampling, using the most recent 1000, 2000, 5000, 8000, 10000, 12000
samples in the SRA as the full sets (Fig. 3.2, Table 3.4). We also compared the three methods us-
ing the early-time 1000, 2000, 5000, 8000, 10000, 12000 samples in the SRA as the full sets (in
the earliest quarter of the SRA time span, i.e. the 4th quarter of the SRA accession list) (Fig. 3.3,
Table 3.5), and using the mid-time 1000, 2000, 5000, 8000, 10000, 12000 samples in the SRA as
the full sets (around the middle of the SRA time span) (Fig. 3.4, Table 3.6). For all these cases:
we use 1 iteration, rep_set_size/N = 0.1, m = N/l, Q = m/5. We set l = 10, except for
N = 1000, l = 5.

The hierarchical selection achieves summarization quality close to that of direct apricot. For
the recent 1000 and 2000 samples, the hierarchical selection performs better than direct apricot;
for the recent 5000, 8000, 10000, and 12000 samples, the hierarchical selection is modestly less
accurate than direct apricot but has representativeness close to that of direct apricot (Fig. 3.2).
As N increases while keeping the same rep_set_size/N , the dHK difference of the hierarchical
selection minus direct apricot initially increases from negative values, then levels out, and then
slightly decreases when N becomes very large, indicating that the dHK difference between the
hierarchical selection and direct apricot does not get larger when N further increases (Fig. 3.2).
For the early and middle sets of samples, the trend of dHK of the hierarchical selection is more
similar to that of direct apricot, so their dHK difference curves are flatter (Figs. 3.3 and 3.4). For
the early sets, the dHK difference increases initially, and then slightly decreases and levels out
when N becomes very large (Fig. 3.3). For the middle sets, the dHK difference also eventually
decreases when N becomes very large (Fig. 3.4). Overall, the average sacrifice in representa-
tiveness (% increase in dHK) of the hierarchical selection vs. direct apricot is 5.37%. These
demonstrate that the hierarchical selection achieves summarization quality close to that of direct
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Figure 3.4: Using the mid-time 1000, 2000, 5000, 8000, 10000, 12000 samples in the SRA as
the full sets. rep_set_size/N=0.1. (a) Partial Hausdorff distances dHK of direct apricot, hierar-
chical selection, and random selection. (b) Partial Hausdorff distances’ difference: hierarchical
selection dHK − direct apricot dHK .

apricot, which is partially contributed by the seeded-chunking and mean2-weighting.
The hierarchical selection substantially outperforms random sampling. Random sampling

has substantially larger dHK values than the hierarchical selection for all the recent, early, and
middle sets of samples, and this trend is consistent (Figs. 3.2, 3.3, and 3.4). When the full set be-
comes very large, random sampling’s dHK approaches 1.0 that is the maximum cosine distance.
Random sampling follows the density distribution of the original set, so the rare cell/tissue types
are not sufficiently represented, which yields large dHK .

3.3.2 Hierarchical selection substantially reduces runtime and memory of
direct representative set selection

The hierarchical selection substantially reduces the runtime and memory usage of direct apricot.
For the recent, early, and middle sets of samples, the hierarchical selection and direct apricot were
all run using 85 cores for parallelism; their runtime and memory are reported in Tables 3.4, 3.5,
and 3.6. As the full-set size increases, the real time and user+system time reductions generally
increase (Tables 3.1, 3.2, and 3.3). The user+system time reduction can reach 8.4X and the
real time reduction can reach 7.47X when N = 10000. Real time reductions are less than
user+system time reductions, since in direct apricot the full similarity matrix computation is
fully parallel, while in the hierarchical selection although the similarity matrix computation for
each chunk is fully parallel, chunks are processed sequentially to reduce the memory usage.
Runtime reductions for most recent samples are generally greater than those for early- and mid-
time samples, as longer reads generate more k-mers. The memory reduction also generally
increases as the full-set size increases (Tables 3.1, 3.2, and 3.3). The memory reduction can
reach 5.35X when N = 12000.

For the entire set of SRA RNA-seq samples (N = 196523), we use two levels of divide-and-
merge (Fig. 3.1), with m = 1000, Q = m/5 = 200. At the 1st-level, l1 = 197, the subset-size
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Table 3.1: Runtime and memory reduction with the hierarchical selection over direct apricot
using the most recent 1000, 2000, 5000, 8000, 10000, 12000 samples in the SRA as the full sets.

Recent 1000 Recent 2000 Recent 5000 Recent 8000 Recent 10000 Recent 12000
Reduction (select 100, (select 200, (select 500, (select 800, (select 1000, (select 1200,

l = 5) l = 10) l = 10) l = 10) l = 10) l = 10)

Real time Reduction 1.47 X 2.72 X 6.04 X 6.53 X 7.02 X 7.17 X
User+Sys time Reduction 2.99 X 5.76 X 8.33 X 8.17 X 8.4 X 8.19 X

Memory Reduction 2.13 X 2.9 X 4.47 X 4.59 X 4.54 X 5.22 X

Table 3.2: Runtime and memory reduction with the hierarchical selection over direct apricot
using the early-time 1000, 2000, 5000, 8000, 10000, 12000 samples in the SRA as the full sets.

Early 1000 Early 2000 Early 5000 Early 8000 Early 10000 Early 12000
Reduction (select 100, (select 200, (select 500, (select 800, (select 1000, (select 1200,

l = 5) l = 10) l = 10) l = 10) l = 10) l = 10)

Real time Reduction 1.53 X 2.14 X 4.62 X 4.99 X 7.47 X 6.35 X
User+Sys time Reduction 3.05 X 4.89 X 5.88 X 6.2 X 8.31 X 7.06 X

Memory Reduction 2.2 X 2.83 X 4.33 X 4.37 X 4.68 X 5.0 X

J1 = 2000 (used for the seeded-chunking). At the 2nd-level, l2 = 40, J2 = 1000.
The hierarchical representative set selection makes selecting representative samples from the

entire set of SRA RNA-seq samples feasible. When N = 10000, direct apricot by computing
the full N × N similarity matrix takes 4.1 hours (using 85 cores) and 118.906 GB memory
(Table 3.4). With the O(N2) time complexity and O(N) space complexity, for the entire SRA
set (N = 196523), the estimated runtime of direct apricot is 66 days (using 85 cores) and the
estimated memory usage is 2336.776 GB, which is infeasible. The hierarchical selection on the
entire SRA set (N = 196523) takes 17.6 hours (using 85 cores) and 56.430 GB memory, which
makes this task fully feasible.

3.3.3 Hierarchical selection outperforms random sampling for the entire
set of SRA RNA-seq samples

The hierarchical representative set selection outperforms random sampling for the entire set of
SRA RNA-seq samples. We compare the hierarchical selection with random sampling by se-
lecting different sizes of representative sets from the entire SRA set (Fig. 3.5, Table 3.7). The
hierarchical selection outperforms random selection in all these cases (Fig. 3.5); when select-
ing 7000 representative samples, the hierarchical selection outperforms random selection sub-
stantially, with a similar level of difference to those of smaller full sets. The dHK values of
the hierarchical selection are larger than that of selecting 1000 from the recent 10000 sam-
ples, mainly because the ratios rep_set_size/full_set_size are much smaller here, one mag-
nitude smaller than the ratio 0.1 in selecting 1000 from 10000. As the size of the represen-
tative set increases, the representativeness of the hierarchical selection initially barely changes
but increases when going from selecting 5000 to selecting 7000 representative samples. Ran-
dom sampling’s dHK are almost 1.0 (the maximum cosine distance) and do not change as the
size of the representative set increases, indicating its poor performance on the entire SRA set.

76



Table 3.3: Runtime and memory reduction with the hierarchical selection over direct apricot
using the mid-time 1000, 2000, 5000, 8000, 10000, 12000 samples in the SRA as the full sets.

Mid 1000 Mid 2000 Mid 5000 Mid 8000 Mid 10000 Mid 12000
Reduction (select 100, (select 200, (select 500, (select 800, (select 1000, (select 1200,

l = 5) l = 10) l = 10) l = 10) l = 10) l = 10)

Real time Reduction 0.94 X 2.24 X 4.92 X 5.66 X 6.92 X 6.45 X
User+Sys time Reduction 3.13 X 5.5 X 7.12 X 7.1 X 7.79 X 7.19 X

Memory Reduction 2.33 X 2.78 X 4.58 X 4.5 X 4.55 X 5.35 X

The final representative sets of different sizes are available at the GitHub repository: https:
//github.com/Kingsford-Group/hierrepsetselection.

3.4 Discussion
Our results show that the hierarchical representative set selection is a close estimate to the direct
representative set selection, while substantially reducing the runtime and memory usage of the
direct selection, which makes subset selections feasible on big data such as the entire available
RNA-seq samples in the SRA.

The chunk-size m needs to be large enough to avoid chunk overlaps in the seeded-chunking
(Table 3.10). If the chunk-size is too small, a large dense blob containing many more samples
than the chunk-size could have multiple chunks overlapping there. Chunks need to have equal
sizes (except for 1 or 2 chunks when N/m is not an integer) to fit to the resource capacity, so
when the chunk of the closest seed is full, the data point has to be assigned to its closest non-full
seed. So although the seeds are spread out, if the chunk-size is not large enough, there could still
be chunk overlaps in the seeded-chunking.

The choices of the parameters m (which yields l), Q, and the number of iterations (levels)
depend on the full-set size N and the memory of available computing resources. These param-
eters can affect the selection accuracy, runtime, and memory usage of the hierarchical selection.
In all the results here, we use Q = m/5, which means rep_set_size/chunk_size = ∼0.2 for
each chunk. Increasing this ratio could increase the selection accuracy at each chunk, however,
the subsequent merged set would be larger, causing more chunks at the next level and thus in-
creasing the runtime. Decreasing m (and thus increasing l) could reduce the runtime, however,
smaller chunks have more overlaps which decrease the overall selection accuracy (Table 3.10).
Thus, the overall design of the hierarchy with parameters’ choices involves trade-offs between
selection accuracy, runtime, and the resource capacity.

The mean2-weighting uses the average distance between samples of a chunk to indicate the
chunk overall density. This is a heuristic. In a case that a chunk has several dense clusters that
are far apart, causing a bigger average distance than the distances within clusters, the chunk
may be assigned an unnecessarily larger weight. This may be partially addressed by performing
clustering on each chunk and using the weighted-mean of average distances of all clusters as
the chunk density. However, an accurate clustering incurs more computational cost. In our
observation, most chunks do not have a distinctly clustered structure, and rather have a mixture
of a few clusters and many roughly uniformly distributed data points. Thus, the mean2-weighting
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Figure 3.5: Selecting different sizes of representative sets from the SRA entire set (N=196523
human RNA-seq samples): partial Hausdorff distances dHK of hierarchical selection and random
selection. For dHK , q = 0.0001, so dHK is the 21st-largest distance.

is a viable trade-off between runtime and selection accuracy.
In addition to the partial Hausdorff distance, a useful evaluation for a representative set could

be using the representative set as the training set to train classifiers to compare the classification
accuracy. The classifiers could take the gene expression vectors or transcript abundance vectors
as input features. We could compare the classification accuracy of the models trained by using
different representative sets. This is a direction for future work.

Additional discussion can be found in Appendix Section 3.5.2.

3.5 Appendix

3.5.1 Additional tables and figures

In Tables 3.4, 3.5, and 3.6, for N=1000, 2000, 5000, dHK is the 3rd largest distance; for N=8000,
10000, dHK is the 4th largest distance; for N=12000, dHK is the 5th largest distance. The results
are from single runs.

The SRA accession list of the full set obtained using the Entrez API is in the reverse order of
accession numbers.
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Table 3.4: Partial Hausdorff distance, classical Hausdorff distance, runtime, and memory usage
of direct apricot, hierarchical selection, and random selection, using the most recent 1000, 2000,
5000, 8000, 10000, 12000 samples in the SRA as the full sets.

Set of Method Hausdorff Partial Runtime (seconds) Memory
samples dH Hausdorff dHK Real User Sys (GB)

Recent 1000 direct apricot 0.688321022 0.685257115 174.58 11070.16 111.42 17.131

(select 100, hierarchical (seeded) 0.578381536 0.569809642 118.91 3449.28 292.08 up to 8.061

l = 5) random selection 0.837951394 0.826812255 0.424 2.282 5.205 negligible

Recent 2000 direct apricot 0.664517495 0.662815581 655.18 42882.64 286.79 29.223

(select 200, hierarchical (seeded) 0.650712434 0.637185175 240.77 6906.76 586.80 up to 10.077

l = 10) random selection 0.894947772 0.848467165 0.421 2.157 5.323 negligible

Recent 5000 direct apricot 0.624796548 0.62353618 4334.92 306588.88 1323.23 67.515

(select 500, hierarchical (seeded) 0.696114667 0.675768259 717.42 35803.41 1164.84 up to 15.115

l = 10) random selection 0.973292492 0.896965855 0.423 2.241 5.242 negligible

Recent 8000 direct apricot 0.610919893 0.610735987 10095.85 701276.54 1513.85 101.776

(select 800, hierarchical (seeded) 0.760030601 0.679049314 1545.26 84481.00 1588.09 up to 22.169

l = 10) random selection 0.991018754 0.904692245 0.536 2.347 5.129 negligible

Recent 10000 direct apricot 0.607682609 0.607369442 14768.33 1047257.38 2273.86 118.906

(select 1000, hierarchical (seeded) 0.70951932 0.665272021 2103.18 123182.85 1749.27 up to 26.200

l = 10) random selection 0.994547626 0.986377775 0.439 2.420 5.079 negligible

Recent 12000 direct apricot 0.598587653 0.598052637 20902.48 1449102.48 2202.62 142.083

(select 1200, hierarchical (seeded) 0.770540655 0.652204188 2914.35 175006.16 2103.21 up to 27.207

l = 10) random selection 0.994469360 0.985777326 0.49 2.57 4.97 negligible
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Table 3.5: Partial Hausdorff distance, classical Hausdorff distance, runtime, and memory usage
of direct apricot, hierarchical selection, and random selection, using the early-time 1000, 2000,
5000, 8000, 10000, 12000 samples in the SRA as the full sets.

Set of Method Hausdorff Partial Runtime (seconds) Memory
samples dH Hausdorff dHK Real User Sys (GB)

Early 1000 direct apricot 0.725003411 0.723976221 153.22 7701.56 125.76 11.084

(select 100, hierarchical (seeded) 0.745518016 0.725044029 100.12 2351.73 215.52 up to 5.038

l = 5) random selection 0.950139546 0.938242439 0.43 2.27 5.21 negligible

Early 2000 direct apricot 0.67307199 0.672427473 401.49 22979.13 218.19 17.131

(select 200, hierarchical (seeded) 0.760020571 0.706453874 187.64 4360.50 383.16 up to 6.046

l = 10) random selection 0.872261407 0.838447692 0.65 2.43 5.07 negligible

Early 5000 direct apricot 0.61634404 0.615099659 2298.45 133723.63 565.12 39.300

(select 500, hierarchical (seeded) 0.666160711 0.659981919 497.60 21561.05 1262.98 up to 9.069

l = 10) random selection 0.938632619 0.935902009 0.45 2.37 5.14 negligible

Early 8000 direct apricot 0.630098995 0.628989605 5719.26 382221.70 874.59 70.538

(select 800, hierarchical (seeded) 0.834517734 0.71208656 1145.94 60263.98 1509.99 up to 16.123

l = 10) random selection 0.9916713 0.908157434 0.78 1.55 3.35 negligible

Early 10000 direct apricot 0.639209628 0.6383828 12315.44 800933.84 1446.46 89.684

(select 1000, hierarchical (seeded) 0.837916798 0.713645489 1648.26 95117.21 1381.86 up to 19.146

l = 10) random selection 0.99772421 0.990244824 1.38 2.18 2.97 negligible

Early 12000 direct apricot 0.635004017 0.634814991 14554.59 984029.09 1247.92 110.845

(select 1200, hierarchical (seeded) 0.908677303 0.709577599 2290.33 137885.59 1681.81 up to 22.169

l = 10) random selection 0.999260054 0.989801358 0.53 2.34 5.25 negligible
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Table 3.6: Partial Hausdorff distance, classical Hausdorff distance, runtime, and memory usage
of direct apricot, hierarchical selection, and random selection, using the mid-time 1000, 2000,
5000, 8000, 10000, 12000 samples in the SRA as the full sets.

Set of Method Hausdorff Partial Runtime (seconds) Memory
samples dH Hausdorff dHK Real User Sys (GB)

Mid 1000 direct apricot 0.666185918 0.664052819 150.21 9130.84 126.60 14.108

(select 100, hierarchical (seeded) 0.685598613 0.648069325 160.45 2705.68 252.78 up to 6.046

l = 5) random selection 0.968587397 0.753610206 0.43 2.45 5.03 negligible

Mid 2000 direct apricot 0.651423605 0.648054888 545.46 34587.00 248.80 25.192

(select 200, hierarchical (seeded) 0.732927883 0.676261249 243.70 5827.03 508.06 up to 9.069

l = 10) random selection 0.967519071 0.923284417 0.43 2.15 5.24 negligible

Mid 5000 direct apricot 0.646540816 0.646398158 3084.32 209037.81 892.53 55.422

(select 500, hierarchical (seeded) 0.719052575 0.676710291 626.75 28509.77 983.47 up to 12.092

l = 10) random selection 0.961274547 0.867699133 0.45 2.34 5.17 negligible

Mid 8000 direct apricot 0.636313583 0.635731787 7142.40 464515.34 865.10 81.622

(select 800, hierarchical (seeded) 0.943464491 0.686230795 1262.73 64248.73 1301.38 up to 18.138

l = 10) random selection 0.998728362 0.989508253 2.43 3.14 2.91 negligible

Mid 10000 direct apricot 0.654537313 0.653742747 12582.81 780770.97 1574.01 100.768

(select 1000, hierarchical (seeded) 0.807148615 0.734005 1818.98 98855.02 1548.71 up to 22.169

l = 10) random selection 0.999886845 0.997812734 0.45 2.42 4.99 negligible

Mid 12000 direct apricot 0.642698074 0.642257142 16318.41 1063199.56 1357.40 123.945

(select 1200, hierarchical (seeded) 0.758132270 0.662355963 2529.71 146293.35 1731.62 up to 23.177

l = 10) random selection 0.999041296 0.995426952 0.49 2.35 5.20 negligible

Table 3.7: Selecting different sizes of representative sets from the SRA entire set (N=196523
human RNA-seq samples): partial Hausdorff distance and classical Hausdorff distance of hierar-
chical selection and random selection.

Select 3000 Select 4000 Select 5000 Select 7000

Metric hierarchical random hierarchical random hierarchical random hierarchical random
(seeded) selection (seeded) selection (seeded) selection (seeded) selection

Hausdorff 0.945978504 0.998763361 0.945978504 0.998763361 0.945978504 0.998763361 0.875009817 0.998763361
dH

Partial 0.844519904 0.997721045 0.844274154 0.997718649 0.844274154 0.997718649 0.753391502 0.997718289
Hausdorff dHK

Representative
-set-size/ 0.0153 0.0204 0.0254 0.0356

Full-set-size
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Table 3.8: Performance comparison of hierarchical selection using seeded-chunking method vs.
using sequential chunking method: partial Hausdorff distance and classical Hausdorff distance,
using the most recent 1000, 2000, 5000, 8000, 10000 samples in the SRA as the full sets.

Set of samples Method Hausdorff dH Partial Hausdorff dHK

Recent 1000 hierarchical (seeded) 0.578381536 0.569809642

(select 100, l = 5) hierarchical (sequential) 0.612622717 0.578381536

Recent 2000 hierarchical (seeded) 0.650712434 0.637185175

(select 200, l = 10) hierarchical (sequential) 0.656343899 0.643755957

Recent 5000 hierarchical (seeded) 0.696114667 0.675768259

(select 500, l = 10) hierarchical (sequential) 0.72711968 0.708127649

Recent 8000 hierarchical (seeded) 0.760030601 0.679049314

(select 800, l = 10) hierarchical (sequential) 0.770009257 0.754661415

Recent 10000 hierarchical (seeded) 0.70951932 0.665272021

(select 1000, l = 10) hierarchical (sequential) 0.790246213 0.752879052
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Figure 3.6: The number of
distinct k-mers vs. k-mer size:
read-length=150, paired-end
reads, from SRR9009063
(10000 random reads).

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
k-mer size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f D
ist

in
ct

 k
-m

er
s

1e7

read length=1884, SINGLE, SRR1803613

Figure 3.7: The number of dis-
tinct k-mers vs. k-mer size: read-
length=1884, single-end reads,
from SRR1803613 (10000 ran-
dom reads).
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Figure 3.8: The number of dis-
tinct k-mers vs. k-mer size: read-
length=125, paired-end reads,
from SRR2966944 (10000 ran-
dom reads).
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Figure 3.9: The number of dis-
tinct k-mers vs. k-mer size: read-
length=100, paired-end reads,
from ERR1473214 (10000 ran-
dom reads).
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Table 3.9: Hardware specifications of the system on which the experiments were run.

Attribute Value

Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit
Byte Order Little Endian
CPU(s) 88
On-line CPU(s) list 0-87
Thread(s) per core 2
Core(s) per socket 22
Socket(s) 2
NUMA node(s) 2
Vendor ID GenuineIntel
CPU family 6
Model 79
Model name Intel(R) Xeon(R) CPU E5-2699A v4 @ 2.40GHz
Stepping 1
CPU MHz 2871.660
CPU max MHz 3600.0000
CPU min MHz 1200.0000
BogoMIPS 4793.95
Virtualization VT-x
Mem Total 1056631884 kB
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Figure 3.10: The number of
distinct k-mers vs. k-mer size:
read-length=51, paired-end
reads, from SRR8392786
(10000 random reads).

In Figs. 3.8, 3.9, and 3.10, the horizontal part of the curve bends down as k-mer size further
increases, especially for shorter read-lengths, since when read-lengths are short, using larger
k-mers would reduce the number of distinct k-mers.

Table 3.10 shows the impact of the chunk size m on the selection accuracy of hierarchical
selection, illustrating that chunk size m needs to be large enough to avoid chunk overlaps in the
seeded-chunking. When m = 100, hierarchical selection performs worse than direct apricot.
When m = 150, hierarchical selection performs almost as equally as (slightly better than) direct
apricot. When m = 200, hierarchical selection performs better than direct apricot. Smaller
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Table 3.10: Performance comparison of using different chunk size m in hierarchical selection,
using the most recent 1000 samples in the SRA as the full set. Partial Hausdorff distance and
classical Hausdorff distance.

Metric hierarchical (seeded) hierarchical (seeded) hierarchical (seeded) direct apricot
m = 100 m = 150 m = 200

Hausdorff 0.744303019 0.687825966 0.578381536 0.688321022
dH

Partial 0.725728616 0.684475004 0.569809642 0.685257115
Hausdorff dHK

chunks have more overlaps which decrease the selection accuracy.

3.5.2 Additional discussion

We compared the performance between direct apricot and hierarchical selection by using the
most recent, early-time, and mid-time RNA-seq samples in the SRA as the full sets. A more
robust comparison would be computing confidence intervals for partial Hausdorff distances for
each N value and compare the confidence intervals between different methods. Computing con-
fidence intervals would involve running direct apricot and hierarchical selection on a substantial
number of randomly selected subsets (used as the “full sets”) across the SRA spectrum for each
N value. Each randomly selected subset starts from a randomly selected position on the SRA
accession list and contains N consecutive samples starting from that position; the subset should
not contain randomly selected N samples, since we use the subset as the full set (we found that
randomly selected N samples have a much smaller number of samples that are similar to each
other and thus are not suitable to be used as a “full set”). This is a direction for future analysis.

We download 10,000 reads from each RNA-seq sample to represent that sample. We chose
this number since prior researchers found that 10,000 reads are sufficient to tell what genome this
sample belongs to, and we do not have extra disk space to hold more reads from all RNA-seq
samples in the SRA. We envision that downloading more reads (such as 100,000 reads) would
represent each sample better, and thus the selected representative samples based on the subsets
of reads would better represent the SRA full set. In order to evaluate the effect of downloading
different numbers of reads, one would need to download all reads (rather than the subset of reads)
from each of the RNA-seq samples in the full set. Currently, the partial Hausdorff distance is
computed based on the k-mer similarities using the subset of reads; this is effective for assessing
the representative set selection algorithm itself. However, to assess the effect of downloading
different numbers of reads, the partial Hausdorff distance would need to be computed using
all reads from each of the RNA-seq samples in the full set. In this assessment, although the
representative set is selected based on the subset of reads (10K or 100K reads), in order to
compare which representative set represents the RNA-seq full set better, one would need to use
all reads from each sample to compute the partial Hausdorff distance. The comparison between
the dHK value computed using 10K reads and the dHK value computed using 100K reads would
not be meaningful since they do not share the common ground. Thus, in this specific case, only
the comparison between the dHK values computed using all reads of each sample can tell which
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representative set represents the RNA-seq full set better. Let us show this proposed evaluation
process in more detail. First, one would select the representative set using 10K reads from
each sample; one would then compute the dHK based on the k-mer similarities using all reads
from each of the selected representative samples and all reads from each sample in the full set.
Second, one would select the representative set using 100K reads from each sample; one would
then compute the dHK based on the k-mer similarities using all reads from each of the selected
representative samples and all reads from each sample in the full set. Then, the dHK values of
these two cases can be compared to assess the effect of downloading 10K reads vs. downloading
100K reads. This is a direction for future analysis when extra disk space becomes available for
downloading all reads from each of the RNA-seq samples in the full set.

Bioinformatics tools should be validated and optimized on varying cell/tissue types and ex-
periments. Thus, our method takes in all available RNA-seq samples regardless of their tis-
sue/cell types, treatments, or experiments to select a representative set. However, our method
can also be adapted for selecting representative samples for specific tissues/cell types. This only
needs to be done at the full set construction stage. Our current SRA full set contains all RNA-seq
samples (excluding those non-public, aligned, or with no valid 17-mers). From the full SRA
accession list, one can extract those RNA-seq samples of specific tissues/cell types based on
their BioSample Attributes. These extracted samples of specific tissues/cell types can be used
as the full set, and then our hierarchical representative set selection can be performed to get
representative samples for specific tissues/cell types.

When we download the subset of reads for each RNA-seq sample, we skip the first 5000
reads, since the beginning of sequencing may contain some technical variation of signal in-
troduced in the sequencing process, as suggested by prior researchers. We also filter out the
technical reads, remove those tags’ sequences, and filter out reads that are all N ’s. When we do
k-mer counting using Jellyfish, k-mers with N ’s in the middle are skipped; however, bases with
low quality scores are still counted into k-mers, as Jellyfish does not read or consider the quality
scores. However, using k-mers instead of the original sequences to compute the similarity be-
tween samples is more resilient to sequencing errors. Our choice of optimal k-mer size 17 is to
ensure that the k-mer matches move from random to a representative of reads’ content and are
still resilient to sequencing errors. One potential improvement that could be made in Jellyfish
would be taking into account the base call quality scores for each read to filter out those k-mers
containing many low-quality bases (below a quality score threshold). We may also filter out
or trim those reads with many low-quality bases (below a quality score threshold) before doing
k-mer counting. These are directions for future work.

The hierarchical selection is more accurate than direct apricot for the most recent 1000 and
2000 samples and the mid-time 1000 samples. For the early-time 1000 samples, the hierarchical
selection is nearly as accurate as direct apricot. It seems that for smaller N ’s, the hierarchical
selection may have some advantage. A possible reason for the hierarchical selection being more
accurate than direct apricot in these cases is that the chunks generated by the seeded-chunking
method may have minimal or no overlaps. When chunks have no overlaps, the union of the
representative sets selected from every chunk would be similar to the representative set selected
directly from the original full set. Given that chunks have no overlaps, since the hierarchical se-
lection performs the 2nd-round of representative set selection – selecting representative samples
from the merged set (in the one-level hierarchy), it could be possible that the final representa-
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tive set is better than the representative set selected directly from the original full set, since the
direct selection only performs one round of selection. This is also supported by Table 3.10: for
the same “Recent 1000” samples, when chunks are large enough to avoid overlaps (m = 200;
m = 150), the hierarchical selection is more accurate than direct apricot; when the chunk size
is small (m = 100) such that there are chunk overlaps, the hierarchical selection is less accurate
than direct apricot. The selection accuracy loss of the hierarchical selection mainly comes from
chunk overlaps. In our observation, smaller full sets (e.g. N = 1000) are more likely to have
some clustered structures than large full sets, and thus would be more likely to generate chunks
with no overlaps (when the chunk size is large enough).

When we get the SRA full set, we exclude those non-public samples as we do not have
access to them; we are testing on what is publicly available. It is also more convenient for tools’
developers to use publicly available representative samples to evaluate bioinformatics tools. It
is possible that there might be a difference in sample distribution if those non-public samples
were in the full set. By the same reasoning, some non-public samples might not be sufficiently
represented by the representative set selected from publicly available samples only.
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Chapter 4

De novo error correction for RNA-seq long
reads using deep learning

A version of this chapter is in preparation for submission to a journal/conference and is joint
work with Carl Kingsford.

4.1 Background

Third-generation sequencing has become increasingly important in transcriptome analyses such
as isoform identification, study of alternative splicing, characterization of complex transcrip-
tional events, and study of transcription initiation. Due to its low cost, portability, extended
read-lengths, and improved throughput [108], Nanopore sequencing has become a compelling
choice for long-read RNA-seq. However, Nanopore long reads have high error rates (per-base
error rates vary and are up to ∼14% [56, 81]), which can affect transcriptome studies. Hence,
computational methods are needed for error correcting Nanopore long reads.

Error correction methods for genomic long reads that use only long reads (i.e. self-correction)
have been developed, such as Canu’s error correction module [43], LoRMA [83], MECAT [114],
and CONSENT [65], which are designed for or applicable to Nanopore genomic reads to re-
duce their error rates. There are also hybrid correction methods for Nanopore genomic long
reads [42, 60, 82] that require using short reads, and signal-based Nanopore genomic error cor-
rection tools [59, 106] that require raw electric signals (measurement of current) [77]. However,
Lima et al. [56] and Sahlin et al. [81] found that applying genomic error correctors to RNA-seq
long reads has problematic effects—genomic correctors split reads in low coverage regions; they
decrease the number of detected genes, the number of isoforms, and the number of detected
splice sites, and change the isoform landscape by removing/adding exons. Therefore, genomic
error correction tools are not suitable for transcriptomic long reads [81], and error correction
methods that are designed for RNA-seq long reads are needed.

Two reference-based error correction methods that are specifically designed for transcrip-
tomic long reads, TranscriptClean [113] and FLAIR [94], were designed to correct base errors
and/or splice sites for RNA-seq long reads, but require using a reference genome. However, for
many non-model organisms, de novo (reference-free) error correction is required when a high-
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quality reference is unavailable. Recently, two de novo error correction methods specifically
designed for Nanopore RNA-seq long reads, isONcorrect [81] and RATTLE [22], were devel-
oped. Both isONcorrect and RATTLE are graph-based self-correction methods that use partial
order alignment (POA) for multiple sequence alignment (MSA) and consensus generation. Both
methods use clustering to group reads from the same gene/isoform and correct reads based on
each cluster. isONcorrect divides a read into intervals, and performs POA on the supporting
reads’ segments of each interval to create a consensus; it identifies “trusted variants” with high
enough support, and corrects the read segment by using the trusted variant with surrounding bases
closest to those in the read [81]. RATTLE performs POA on whole reads rather than segments
in a cluster to generate a consensus; it changes the read base to the consensus if the consensus
frequency is above a threshold and the read base’s error probability is high enough compared to
the consensus [22]. The two tools achieve similar reductions in the overall error rates [81].

The error profiles of ONT have not been thoroughly reported in the literature yet. Never-
theless, prior literature found that high error rates of ONT are partially due to the base-calling
errors in homopolymer regions—the errors (mainly deletions) in homopolymer regions are sub-
stantially higher than in non-homopolymer regions [23, 116]. Prior literature also found that, in
ONT reads, “A→T” and “T→A” substitutions are much less likely to occur than other substi-
tutions [50]. Transitions (A←→G, T←→C ) are more frequent than transversions (A←→C, A←→T,
G←→C, G←→T) in ONT reads [23]. The chance of errors is higher near the ends of a read, and
low-GC-content species have lower error rates than high-GC-content species [23]. These find-
ings suggest that the error profile information (i.e. factors associated with error occurrences or
error types) could be applied systematically to improve error correction. Although there are some
specific considerations that are informed by error profiles (e.g. setting thresholds for consensus
frequency, choosing trusted context, etc.), RATTLE and isONcorrect have not systematically
taken into account the error profile information.

Thus, our objective is to develop an error-profile-aware, generalizable correction method,
which not only uses supporting reads to generate the consensus but also learns the error profile
information systematically. Here, we present a novel error correction method, called deepCor-
rRNA, for self-correcting RNA-seq long reads de novo that combines the graph-based MSA-POA
and an error-profile-aware deep neural network. In this method, POA is performed to obtain the
consensus; our neural network model takes in both the observed read and the consensus se-
quence from the POA, such that the model learns the relationship between the observed read, the
consensus sequence, and the true read. The model also learns context dependencies along the
whole read. Our model also uses the error profile associated information and the MSA-matrix
associated information (see descriptions in “Method overview” in Section 4.2.1), so that the pre-
dicted correction is inferred from the combination of both the MSA-POA result (which addresses
the support from other reads) and the error profile related information (which traditional graph-
based self-correction methods did not systematically include). The model is trained by using an
organism with a good reference genome, and the model can be used to perform de novo error
correction for organisms without a good reference.

We evaluate our method, deepCorrRNA, on five ONT RNA-seq (cDNA) data sets (one hu-
man, three mouse, and one Drosophila data sets) using NanoSim [116], and compare the error
correction results with the state-of-the-art de novo error corrector for ONT RNA-seq reads, isON-
correct. Our results show that deepCorrRNA achieves similar reductions in the total error rates
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to isONcorrect. For all five data sets, deepCorrRNA performs better than isONcorrect on reduc-
ing the substitution and insertion rates, while isONcorrect performs better than deepCorrRNA on
reducing the deletion rate. In three out of the five data sets, deepCorrRNA has slightly lower post-
correction total error rates than isONcorrect, while in two out of the five data sets, deepCorrRNA
has slightly higher post-correction total error rates than isONcorrect; nevertheless, their values
are similar. While the model of deepCorrRNA is trained with the human data, its correction per-
formance on the mouse and Drosophila data demonstrates deepCorrRNA’s transferability and de
novo error correction capability, which can improve transcriptome analysis for non-model organ-
isms. With the comparable reductions of the total error rates to the state-of-the-art ONT-specific
corrector isONcorrect, deepCorrRNA presents a generalizable method.

4.2 Methods

4.2.1 Method overview

Fig. 4.1 illustrates an overview of the deepCorrRNA method. In this method, we first cluster
the reads such that the reads that came from the same isoform approximately go into the same
cluster. We then perform graph-based MSA-POA on the cluster—the set of supporting reads for
the read of interest, to get the consensus sequence and the MSA alignment matrix. Our neural
network model takes both the observed read sequence and the consensus sequence from the POA
as inputs in parallel, and the two sequences pass through RNNs simultaneously; the extracted
sequential features from parallel RNNs are fed into a series of fully connected layers to output
the probability for each class, and the model is trained against the true read to minimize the
loss. Here, the “true read” is the sequence on the reference genome that the read is aligned to.
Thus, the model learns the relationship between the observed read, the consensus sequence, and
the true read. Since the model is trained along the whole read through RNNs, it also learns the
context dependencies along the entire read for each base. The MSA alignment matrix associated
information, such as the occurrence frequencies and the average quality scores for every base
in the consensus sequence, are also fed into the RNN simultaneously, such that the level of
support and the quality of each consensus base are taken into account when predicting the correct
base. The model also takes in the error profile associated information, such as the base position,
the base quality, the read length, surrounding k-mers, GC content, etc. Thus, the predicted
correction is inferred from the combination of both the MSA-POA result and the error profile
related information.

4.2.2 Features and classes of the model

A series of factors may be related to an error occurred at a particular position in a read, such as:
(1) Error position in the read. The chance of errors could differ at the beginning, middle, and
end of the sequence. The quality of ONT reads drops at both ends (around the first 10 bases
and last 20 bases) due to less stable signals [23]. (2) Base at the error position. (3) Base quality
score at the error position. Base quality scores in FASTQ encode the error probability for each
base. (4) Read length. Longer reads may have a higher error rate. (5) Motif surrounding the
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Figure 4.1: Method overview of deepCorrRNA.

error position [50]. In ONT reads, deletions in homopolymer regions are the source of about
half of all sequencing errors. The indels in homopolymer regions are mainly deletions, although
there are some long insertions [23]. (6) Platform used. (7) Chemistry used in sequencing. (8)
Protocol kit used for sequencing. (9) Basecaller used. (10) Organism. The error rates differ
across different species. Low-GC-content species have lower error rates than high-GC-content
species in ONT reads [23]. (11) Substitution, insertion, and deletion rates. (12) Substitution-
rate confusion matrix for every possible base substitution [50]. In ONT reads, transitions are
more frequent than transversions [23]. (13) Length distributions of deletions, insertions, and
substitutions [116]. (14) The set of reads overlapping with the read of interest; their base quality
scores, mapped positions, mapped bases, and gaps. (15) Translocation speed and signal-to-noise
ratio in raw electrical signals [23].

Therefore, we design the following features for the network model:

1. Base position in the read. The position uses the aligned coordinate of the read, including
deletions, with the first base position = 0. The aligned coordinate is based on the pair-
wise alignment between the read and the consensus sequence. We use relative position
(absolute-position / sequence-length).

2. Base character at this position. They are the four regular base letters or deletion ‘-’.
3. Base quality score at this position. For regular base letters: use base quality scores in the

FASTQ file; for deletions: use the lowest score (0) in the score scale.
4. Read length. This is the actual read length, not including deletions.
5. Sequences surrounding this base position: (a) k-bases before this position; (b) k-bases after

this position. These left and right k-mers are the actual sequences in the read, not including
deletions.

6. GC content rate of the read.
7. Consensus base at this position. They are the four regular base letters or deletion ‘-’.
8. Occurrence frequency of this consensus base in the MSA-matrix column.
9. Average base quality score of this consensus base across its occurrences in the MSA-matrix

column. For deletion ‘-’, we use the mean of average base quality scores of those regular
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base-letter columns.
10. Number of supporting reads in MSA-POA. This is the total number of reads in the MSA-

POA set.
11. Strand of the read on cDNA.

For the surrounding k-mers, we use k = 5 by default, since Delahaye et al. [23] found that
considering 5-mers before or after the error position yields useful results when studying harmful
k-mers (k-mers that are frequently associated with a type of error).

The model is a 10-class classifier. The output prediction is a sequence of class labels corre-
sponding to every base position on the read. Each of the 10 classes represents one type of error
on the read with respect to the true read (including no error). The following are the 10 classes:

1. Insertion: this read base is an insertion to the true read.
2. Substituted A: this read base substituted a base ‘A’ on the true read.
3. Substituted C: this read base substituted a base ‘C’ on the true read.
4. Substituted G: this read base substituted a base ‘G’ on the true read.
5. Substituted T: this read base substituted a base ‘T’ on the true read.
6. Deleted A: this read position deleted a base ‘A’ from the true read.
7. Deleted C: this read position deleted a base ‘C’ from the true read.
8. Deleted G: this read position deleted a base ‘G’ from the true read.
9. Deleted T: this read position deleted a base ‘T’ from the true read.

10. No error: this read base is the same as the true read base.

4.2.3 Neural network model architecture
Fig. 4.2 illustrates the neural network model architecture. The model has five input branches,
each first passing through a masking layer (the details about padding and masking are discussed
in Section 4.2.8). The two time-distributed LSTM (i.e. hierarchical LSTM) blocks are for ex-
tracting the features of the two surrounding k-mers for each base in the read, as these sequences
of surrounding k-mers are two-levels of sequential features. The outputs from the two hierarchi-
cal LSTMs are concatenated with the read base-related features (read base character, position,
and quality), and then go into the left Bi-LSTM branch. The read and the consensus sequence
pass through two parallel branches of Bi-LSTMs—the left branch of Bi-LSTM is for extract-
ing the read base-related sequential features, and the right branch of Bi-LSTM is for extracting
the consensus base-related sequential features (consensus base character, occurrence frequency,
and average quality). The extracted features from the two Bi-LSTMs are concatenated together
along with the remaining read-level non-sequential features (read length, GC content, number
of supporting reads, and strand), and then go through multiple fully connected layers to get the
output prediction. The fully connected layers are time distributed, so that the model outputs
predicted class probabilities for every base position in the read. The input to each Bi-LSTM
or LSTM is batch normalized to stabilize and accelerate the training. To prevent overfitting, a
dropout layer with a dropout rate 0.2 is added after each of the first two fully connected lay-
ers, and the two Bi-LSTMs also use dropout with a rate 0.1. Our experiments found that these
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Figure 4.2: Neural network model architecture.

dropout rates effectively prevent overfitting. The final output layer uses softmax activation for
the probabilities of the 10 classes; the remaining fully connected layers use ReLU activation.
The LSTMs/Bi-LSTMs use tanh activation. The read bases and consensus bases are one-hot
encoded with length 5, as they also include deletions ‘-’ in addition to four regular base letters.
The k-mers before and after each base are one-hot encoded with length 4, as they are physical
sequences with only four regular base letters. Here, k is the size of surrounding k-mers, and l
is the sequence length. The model has 130,882 parameters with 130,774 trainable parameters;
non-trainable parameters are from the batch normalization layers.

The motivation of this model architecture is to concurrently extract the sequential features
from the observed read and the consensus sequence in synchronization and to learn context
dependencies along the read and the consensus sequence. NanoReviser [106], a signal-based
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genomic corrector, uses CNNs to process raw electric signals, and CNNs are also used in appli-
cations that encode features into images [48]. While CNNs are good at extracting features from
images/spatial data or data with strong locality, LSTMs/Bi-LSTMs are context-aware and excel
at learning sequential features. Our input features are sequence-based and LSTMs/Bi-LSTMs are
well suited for our application. DeepConsensus [5], a brand new method for consensus genera-
tion from PacBio HiFi sequencing subreads (published at the time we just completed this work),
uses an encoder-only transformer architecture.

Given 5 inputs: Xleft_kmers (k-mers before bases), Xright_kmers (k-mers after bases), Xread_feats
(read base-related features), Xcons_feats (consensus-related features), and Xrest_feats (remaining
read-level features), the formulation of our neural network model is summarized below:

Xlearnt_left_kmers = TimeDistributed-LSTM (16)(BatchNorm(Mask(Xleft_kmers))) (4.1)

Xlearnt_right_kmers = TimeDistributed-LSTM (16)(BatchNorm(Mask(Xright_kmers))) (4.2)
Xcomb_read_feats = CAT (Xlearnt_left_kmers, Xlearnt_right_kmers,Mask(Xread_feats)) (4.3)

Xlearnt_read_feats = Bi-LSTM (64×2)(BatchNorm(Xcomb_read_feats)) (4.4)

Xlearnt_cons_feats = Bi-LSTM (64×2)(BatchNorm(Mask(Xcons_feats))) (4.5)
Xall_feats = CAT (Xlearnt_read_feats, Xlearnt_cons_feats,Mask(Xrest_feats)) (4.6)

Xall_feats_fc1 = ReLU(TimeDistributed-FC(128)(Xall_feats)) (4.7)

Xall_feats_fc2 = ReLU(TimeDistributed-FC(32)(Xall_feats_fc1)) (4.8)

Ypredict = Softmax(TimeDistributed-FC(10)(Xall_feats_fc2)) (4.9)

where FC represents the fully connected layer, CAT represents concatenate, BatchNorm rep-
resents batch normalization, and the superscript (·) in LSTM, Bi-LSTM, and FC indicates the
number of their output units. The model is implemented using Keras-TensorFlow (v 2.8.0).

For training the model, we use Adam optimizer [40]. The loss function we use is Sparse
Categorical Cross Entropy. Weights in the network are initialized using Xavier uniform initial-
ization [30]. The model training parameters are given in Table 4.1.

Table 4.1: Model training parameters.

Optimizer Learning rate Loss Weights initialization Batch size Epochs

Adam optimizer 0.001 Sparse Categorical Cross Entropy Xavier uniform initializer 256 170

4.2.4 Training data and preprocessing
To learn the error profile information, we use human sequencing reads for training the model, as
simulated data does not capture the full scope of the error profile in real data (since ONT’s error
profile has not been well studied yet). We use NA12878 ONT transcriptomic cDNA reads [111]
for training. NA12878 was sequenced by MinION using the 1D ligation kit (SQK-LSK108) and
R9.4 chemistry (FLO-MIN106), and was basecalled using Guppy (v 4.2.2).

For preprocessing, we use Pychopper [67] (v1) to trim adapters/primers and poly-A tails,
and to orient reads to the forward strand. However, there are still many poly-A tails remaining.
Thus, we perform cutadapt [64] (v 3.5) three times to trim the remaining poly-A tails, since
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poly-A tails also contain sequencing errors making it difficult to remove all with one trim (after
3 trimmings, there are still remaining poly-A tails). Pychopper identifies and keeps full-length
reads and filters out the reads with the average quality score < 7. Cutadapt keeps the reads
with the read length ≥ 20. The parameters we use for Pychopper and cutadapt can be found in
Appendix Section 4.5.1. We take the first 3 million reads from the preprocessed NA12878 cDNA
data for the downstream analysis, and their statistics are given in Table 4.2. We call this set of 3
million reads “human data set 1.” More details about the training set are given in Section 4.3.1.

Table 4.2: Statistics of the first 3,000,000 reads of the preprocessed NA12878 cDNA data.

Max length Min length Average length Median length Mode length Std dev

8,951 20 677.5 550 500 462.6

4.2.5 Clustering and MSA-POA
To perform MSA-POA on the supporting reads, we cluster the reads such that the reads from the
same isoform approximately go to the same cluster. Currently, there are two RNA-seq long-read
clustering tools: isONclust [80] and RATTLE’s clustering module. isONclust uses a greedy clus-
tering algorithm that uses base quality values. Although isONclust is originally for gene-level
clustering, it can be adapted to do isoform clustering using higher mapped/aligned thresholds.
RATTLE’s clustering module has an isoform clustering mode; however, RATTLE’s clustering
requires a large amount of memory so it exceeds available memory for sizable data sets (it core
dumps with memory allocation errors for clustering 50K reads on our server, which has 1007 Gb
of RAM). Thus, we use isONclust (v 0.0.6.1) to cluster the reads.

The largest clusters can be fairly large (e.g. may contain nearly ∼10K reads), which are not
suitable for MSA-POA. Therefore, to handle large clusters, we designed the following approach
to perform clustering and extract the MSA-POA set (by setting the maximum MSA-POA set
size; let M be the maximum MSA-POA set size−1):

1. Use isONclust to cluster the reads with the thresholds (see Appendix Section 4.5.1) for
isoform clustering.

2. For clusters with > M reads:
(a) Sort the reads inside the cluster such that longer reads with higher quality appear

earlier.
(b) Use the top M reads in the sorted list to perform MSA-POA, which takes care of the

first M reads.
(c) For each of the remaining reads, group that read with the top M reads to perform

MSA-POA, since the top M reads are more reliable (because they have higher quality
and are longer).

3. For clusters with ≤M reads, perform MSA-POA on the full cluster.

Thus, the MSA-POA sets have ≤M + 1 reads. We use M = 800 by default.
We use SPOA (v 4.0.7) to perform graph-based MSA; SPOA is a SIMD (single instruction

multiple data)-accelerated POA algorithm developed in a consensus module Racon [103]. We
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perform SPOA on full reads in each cluster to generate the consensus and the MSA alignment
matrix. We only use clusters with at least 3 reads. In SPOA, we use Smith-Waterman alignment
mode, with the gap opening penalty −8 and the gap extension penalty −6. The parameters we
use for isONclust and SPOA can be found in Appendix Section 4.5.1.

4.2.6 Feature extraction

From the MSA alignment matrix, we compute the occurrence frequency of the consensus base
in the MSA column and the average base quality score of the consensus base across its occur-
rences in the MSA column. The read quality sequence from the FASTQ file is converted into
numerical values based on the Phred+33 scale. We construct the pairwise alignment between
the read of interest and the consensus sequence by removing their common gaps. The read qual-
ity sequence, the consensus occurrence frequency sequence, and the consensus average quality
sequence are also aligned with them. The left and right k-mers for each base position on the
read are constructed based on the physical bases only. The shorter k-mers at the two ends of
the read are padded to length k (see details in Section 4.2.8). Other features such as GC-content
(GC-content = count(G+C)/ count(A+T +G+C)), read length, the number of supporting
reads in the MSA-POA set, and the strand of the read on cDNA are also extracted.

4.2.7 Creating true labels

We create the true labels based on the splice-aware alignment of the read to the reference genome.
To extract the true read, we use minimap2 [52] (v 2.21-r1071) to perform the splice-aware align-
ment of the read to the reference genome (GRCh38). We filter out secondary alignments, sup-
plementary alignments, and unaligned reads. We also skip chimeric alignments as they might be
caused by false alignments. From the alignment of the read to the reference genome, we con-
struct the true read, the pairwise alignment between the read and the true read, and true labels by
parsing the cs tag and the CIGAR string in the SAM file. Soft clips are treated as insertions at
the ends. When a read is mapped to the reverse strand of the genome, the cs tag and CIGAR are
reverse complemented from the original sequence; in this case, we reverse complement the con-
structed true read, the pairwise alignment, and true labels. The parameters we use for minimap2
can be found in Appendix Section 4.5.1.

To combine the true labels with the features, we need to merge the two pairwise alignments—
the pairwise alignment of the read vs. the true read and the pairwise alignment of the read vs.
the consensus. We perform this merge by using the read as the “center” sequence, and the
merge preserves existing gaps in the pairwise alignments. The merging proceeds column by
column: if there is no gap in the read sequences in both pairwise alignments, or if both have
gaps, put the character paired with the read sequence into the column. If there is a gap in the
read sequence in alignment 1, but no gap in the read sequence in alignment 2, place a gap for
sequences in alignment 2 at this column; and vice versa. All sequences with alignment 1 (read
sequence, consensus sequence, read quality, consensus occurrence frequency, consensus average
quality) match together consistently, and all sequences with alignment 2 (read sequence, true
read sequence, true labels) match together consistently.
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4.2.8 Padding and masking

One challenge here is highly variable sequence lengths (e.g. our read lengths range from 20 to
8,951 bp), while inputs to RNNs must have the same number of timesteps within each batch.
Moreover, back-propagation across very long sequences may result in vanishing gradients and
an unlearnable model, so in common practice, a limit of 250–500 timesteps is usually used for
large LSTM models. Thus, we set a maximum sequence length l, and the reads longer than l
are segmented into multiple sequences of length l. We use l = 600 by default (as our median
read length is 550). Although those longer reads are segmented, their “read length” and “base
position” features keep the original values. For those very long reads, the model learns the
contextual dependencies within 600 bp, which is likely sufficient. On the other hand, for those
sequences with lengths < l (600), we pad the sequence to the maximum sequence length l (600)
with value –1.

We mask the input sequences based on the padding value. The mask is propagated to the
output, such that the layers in the network ignore those masked timesteps. The mask is eventually
applied to the loss function, such that the loss on the padding placeholders would be ignored.

We also normalize the data columns of features, such that all feature values are within 0 and
1.

4.2.9 De novo error correction using the model

Through the prediction by the trained model, we error correct the reads de novo (without using a
reference genome, transcriptome, or annotation). Our method for error correcting the reads is as
follows. We correct the clusters one by one using the trained model. For each cluster:

1. Extract the features for all reads in the cluster; perform segmentation and padding.
2. Use the model to predict the class probabilities by using all features of reads in the cluster.
3. Convert the predicted probabilities into class labels; the model prediction is sequential.
4. Extract the mask by applying a standalone Masking layer to the input (as the model pre-

diction no longer carries the mask).
5. For each read in the cluster:

(a) Combine the predicted label segments for the read into a sequence of unmasked la-
bels (with the padded timesteps removed) by applying the mask, as a read can span
multiple segments.

(b) Correct the read sequence using the predicted labels.
(c) Re-construct the quality score sequence accordingly (keep original scores for un-

changed bases; assign a score 10 to corrected bases).
6. Write the corrected read sequences and quality scores to a FASTQ file.

The output FASTQ files of all corrected clusters are merged together along with the original
FASTQ files of the uncorrected clusters (i.e. clusters with < 3 reads).

The code and the trained model for deepCorrRNA are available at:
https://github.com/Kingsford-Group/dlerrorcorrectrna.

98

https://github.com/Kingsford-Group/dlerrorcorrectrna


Substitution rate Insertion rate Deletion rate Total error rate
0

2

4

6

8

10

Er
ro

r r
at

e 
(%

)

Figure 4.3: Error rates of the first 3 million reads of the preprocessed NA12878 cDNA data.

4.3 Results

4.3.1 Neural network model training and evaluation results
To create the training and test sets, we randomly sample Nc clusters from the clusters of the first
3 million reads of the NA12878 cDNA data [111]. From each sampled cluster, we randomly
sample Nr reads if the cluster has > Nr reads; otherwise, take all reads in the cluster. Nc ≫ Nr.
From these sampled reads, we split the training and test sets in a 4:1 ratio with random shuffling.

Fig. 4.3 shows the error rates of the first 3 million reads of the preprocessed NA12878 cDNA
data, computed using NanoSim. Since the majority of the bases in the reads have no errors, the
10 classes are imbalanced—while the “No error” class is the majority class, the other 9 classes
are minority classes (refer to Table 4.15 for the class label distribution). A common practice to
handle imbalanced classes is using class weights, such that the model training could pay more at-
tention to the minority classes. Scikit-learn is often used to compute class weights, and in scikit-
learn’s formula, the class weights are inversely proportional to their frequencies. However, we
found that using the scikit-learn computed class weights that are exactly inversely proportional
to the frequencies and with large differences of values, the model training became unstable, and
F1-scores on the minority classes became much lower than those without using class weights.
Although adjusting the class weights by significantly reducing their value differences proportion-
ally could yield a stabler training and improve the F1-scores on the minority classes, we found
that the class weights boost the recall of the minority classes at the price of decreasing their
precision consistently regardless of the value tuning. Although smaller class weight values may
achieve a better balance between precision and recall and increase the F1-scores for the minority
classes, the F1-scores’ improvements are small and the precision is still reduced. However, the
precision is very important for our application, since we do not want to introduce many new
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errors in the error correction process. In our application, sacrificing the precision to boost the
recall would not be beneficial, as our top priority is to get a lower total error rate.

Thus, we use a different approach instead of class weights to improve the model performance
on the minority classes (to increase the precision and recall together). We progressively enlarge
the training set by approximately doubling Nc and Nr with each increase. Tables 4.16–4.18 show
the classification reports of the models trained with the data set generated from Nc = 2000 ran-
domly sampled clusters and Nr = 10 randomly sampled reads per cluster, the data set generated
from Nc = 5000 randomly sampled clusters and Nr = 20 randomly sampled reads per cluster,
and the data set generated from Nc = 10000 randomly sampled clusters and Nr = 40 randomly
sampled reads per cluster, respectively. We can see that with each increase in the training set,
the precision and recall mostly increase simultaneously for the minority classes, which signifi-
cantly improves their F1-scores. Meanwhile, the model performance on the majority class (“No
error”) is maintained or slightly improved, which is desirable as we want to maintain the high
accuracy for the correct bases. Therefore, we further increase the training set by doubling Nc and
Nr again, and train our model with the data set generated from Nc = 20000 randomly sampled
clusters and Nr = 80 randomly sampled reads per cluster; the training and test sets used for our
model are shown in Table 4.3.

This approach works because with each increase in the training set, we are increasing the
occurrences of the minority classes to help the model learn from them. In our application, we
are not seeking to even out the performance between the majority and minority classes; we want
to maintain the high accuracy of the majority class while improving the performance of the
minority classes. By progressively enlarging the training set, we are observing the improvement
on the minority classes and also observing the saturation of the improvement after the training
set reaches a certain size. This helps estimate the best possible improvement that we may reach.

Table 4.3: Model trained with the data set created from Nc = 20000 randomly sampled clusters
& Nr = 80 randomly sampled reads per cluster.

Training set Test set Epochs Test accuracy

253444 reads (516129 samples after segmentation) 63361 reads (129468 samples after segmentation) 170 0.9634

The training history as illustrated in Fig. 4.4 indicates that the model is not overfit, and 170
epochs are sufficient for this training set. Here, we use the validation split of 0.1 during the
training. The training accuracy is slightly lower than the validation accuracy, because we use
dropouts in the model. Dropouts are turned off at testing time, so the model at testing time is
more robust and can lead to a higher accuracy.

Our model achieves the test accuracy of 0.9634. The classification report of our model eval-
uated using the test set is shown in Table 4.4. Although the model still favors the majority class
(“No error”) to give it a high F1-score (which is desirable in our application), its performance
(F1-scores) on the minority classes is substantially improved. Notably, the precision of the mi-
nority classes are all above 0.8, which is important for our application. The model performs
better on the deletion classes than the substitution classes; one possible reason is that the dele-
tion classes are ∼1.6X more frequent than the substitution classes. The insertion class has about
equal performance to the substitution classes, although it is larger; a possible reason is that the
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Figure 4.4: Training history of the model (trained with the data set from Nc = 20000 random
clusters & Nr = 80 random reads per cluster).

situation for insertions is complicated (due to leftover poly-A tails, etc.), so it would be harder
for the model to learn. In the classification report, the “support” is the number of bases in a class
in the true labels of the test set; the “macro avg” is the unweighted mean over all classes; the
“weighted avg” is the support-weighted mean over all classes.

The confusion matrix of the model evaluated using the test set is shown in Table 4.5. To
handle the masked timesteps and 2D labels in computing the confusion matrix, we extract the
mask by applying a standalone Masking layer to the input and convert 2D labels into unmasked
labels using the mask. In the confusion matrix, rows are true labels, columns are predicted
labels, and the numbers are the number of bases belonging to a class. The confusion matrix illus-
trates that deletions are never misclassified as substitutions or insertions. And substitutions are
never misclassified as deletions. Insertions are almost never misclassified as deletions, but are
misclassified as substitutions for a set of bases. The deleted base letters have a set of misclassifi-
cations across each other. Substitutions are misclassified as insertions for a set of bases, but the
substituted base letters have fewer misclassifications across each other. Some correct bases are
misclassified as error bases for all 9 types of errors, with insertions the most, but their fractions
are small (< 0.75% in total). On the other hand, for all 9 types of errors, some error bases are
not detected and are mis-treated as no error, with insertions the most and deletions the least.

We also further enlarged the training set by doubling Nc and Nr once again to retrain the
model. However, we found that the retrained model did not show beneficial improvement over
this model on the minority classes. After the training set reaches a certain size, the improvement
on the minority classes tends to become saturated. Thus, this model is used for error correcting
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Table 4.4: Classification report of the model (trained with the data set created from Nc = 20000
randomly sampled clusters & Nr = 80 randomly sampled reads per cluster), evaluated using the
test set.

precision recall F1-score support

Insertion 0.80 0.64 0.72 2342599
Substituted_A 0.82 0.63 0.71 347636
Substituted_C 0.82 0.68 0.74 456338
Substituted_G 0.83 0.64 0.72 412506
Substituted_T 0.83 0.63 0.72 365707

Deleted_A 0.83 0.83 0.83 612480
Deleted_C 0.85 0.82 0.83 650999
Deleted_G 0.82 0.84 0.83 677938
Deleted_T 0.87 0.80 0.83 605985
No_error 0.98 0.99 0.98 52845896

accuracy 0.96 59318084
macro avg 0.85 0.75 0.79 59318084

weighted avg 0.96 0.96 0.96 59318084

Table 4.5: Confusion matrix of the model (trained with the data set created from Nc = 20000
randomly sampled clusters & Nr = 80 randomly sampled reads per cluster), evaluated using the
test set.

Insertion Sub_A Sub_C Sub_G Sub_T Del_A Del_C Del_G Del_T No_error

Insertion 1510393 19968 30238 22201 19391 0 1 5 4 740398
Sub_A 28754 217645 5188 1570 3297 0 0 0 0 91182
Sub_C 34429 3612 309202 4783 1596 0 0 0 0 102716
Sub_G 35717 2017 6200 264304 3614 0 0 0 0 100654
Sub_T 30762 3364 1484 4885 230581 0 0 0 0 94631
Del_A 0 0 0 0 0 507824 24555 32077 17717 30307
Del_C 0 0 0 0 0 26859 530834 41064 19223 33019
Del_G 0 0 0 0 0 28764 26762 570023 16900 35489
Del_T 0 0 0 0 0 28450 27148 35996 481857 32534

No_error 241455 17242 23260 19293 18662 21069 16970 18826 16786 52452333

the reads in deepCorrRNA.

4.3.2 ML-based deepCorrRNA achieves similar total error rate reductions
to state-of-the-art isONcorrect on human data

To evaluate the error correction results, we use the NanoSim (v 3.0.0) read analysis module to
compute the base-level error rates. The NanoSim read analysis is based on aligning the reads to
the reference genome/transcriptome using minimap2. For human data, the Ensembl GRCh38 ref-
erences are used in evaluation. For comparison, we also run isONcorrect (v 0.0.8) with default
parameters. The parameters we use for NanoSim and isONcorrect can be found in Appendix
Section 4.5.1. We evaluate deepCorrRNA on a human ONT transcriptomic cDNA data set (Ta-
ble 4.6. Human data set 2 has no overlaps with the human data set 1 that is used in training).

ML-based deepCorrRNA achieves similar reductions in the total error rates to state-of-the-
art isONcorrect on human data. Table 4.7 shows the error correction results for the human data
set 2 that contains middle 500,000 reads of preprocessed NA12878 cDNA data [111]. The post-

102



Table 4.6: Human ONT cDNA data set used in evaluation, sequenced by MinION.

Data set Description Chemistry/Kit Basecaller Max length Median length % Reads uncorrectable

Human data set 2 Middle 500,000 reads R9.4 Guppy 7,307 580 12.03%: singletons;
of preprocessed SQK-LSK108 (v 4.2.2) 3.13%: in 2-reads clusters.
NA12878 cDNA ⇒ 15.16% not corrected.

correction error rates here are for all reads in this data set including 15.16% of reads that are
not corrected (which are singletons or in 2-reads clusters). deepCorrRNA performs better than
isONcorrect on correcting substitutions and insertions, while isONcorrect performs better than
deepCorrRNA on correcting deletions. In human data set 2, deepCorrRNA has a slightly lower
post-correction total error rate than isONcorrect, yet their values are similar.

An interesting phenomenon is that deepCorrRNA’s performance on reducing deletions seems
lower than on reducing substitutions and insertions, while the model evaluation shows that the
F1-scores on deletions are higher than the F1-scores on substitutions and insertions. The reason
for this phenomenon is that, given the insertion class’s precision of 0.80 (which is lower than
other classes’ precision), the false positive insertions cause the error correction process to remove
those bases that are correct bases or substituted bases. This increases the post-correction deletion
rate. In the confusion matrix (Table 4.5), the numbers in the first column except for the first row
are false positive insertions. In the last row (“No_error”), the number in the first column is
>10X larger than the numbers in other error-type columns. The four numbers in the first column
corresponding to the substitution rows are also relatively not low. These false positive insertions
will become deletions after error correction, contributing to the resulting deletion rate.

Table 4.7: Error correction results for human data set 2: middle 500,000 reads of preprocessed
NA12878 cDNA data.

Original reads deepCorrRNA isONcorrect
(filtered reads with quality <7) (error correction output reads) (error correction output reads)

Substitution rate (%) 3.24026 1.37935 1.67937
Insertion rate (%) 2.85817 1.34842 1.61290
Deletion rate (%) 4.96583 3.51204 3.04169

Total error rate (%) 11.06425 6.23980 6.33395

We also examine how error correction by deepCorrRNA may affect variants in the reads.
Since Genome in a Bottle (GIAB) has benchmark (high-confidence) variant calls [104] for
NA12878, we perform a post hoc analysis on variants for the human data set 2 (i.e. middle
500,000 reads of preprocessed NA12878 cDNA data). In this analysis, we use NA12878 (HG001)
GRCh38 benchmark (v4.2.1) VCF (SNPs and indels) from the GIAB. We align the original reads
in the human data set 2 to the reference genome (GRCh38) using minimap2 (v2.21-r1071) splice-
aware alignment. From the alignments, we use “bcftools mpileup” and “bcftools call” (bcftools
v1.15.1) to do variant calls for the original reads. We use the same process (with the same pa-
rameters) to do variant calls for the error-corrected reads from deepCorrRNA. Table 4.8 shows
that while 5138 GIAB variants are found in the original reads, 5382 GIAB variants are found in
deepCorrRNA error correction output reads. Thus, 244 more (4.75% more) GIAB variants are
found in deepCorrRNA error correction output reads than in the original reads. This is because
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deepCorrRNA is reference-free and uses long reads themselves to do self-correction, so that most
variants are retained. While error correction could lose some variants when the minor allele with
a very low number of reads covering it gets “corrected,” error correction by deepCorrRNA helps
more variants to be recovered when the errors in the reads are removed. This indicates that,
overall, error correction by deepCorrRNA would benefit variants analysis.

Table 4.8: Variants analysis results for human data set 2: middle 500,000 reads of preprocessed
NA12878 cDNA data.

In original reads In deepCorrRNA error correction output reads

Number of GIAB variants found 5138 5382

4.3.3 deepCorrRNA achieves similar total error rate reductions to isON-
correct on mouse and Drosophila data, demonstrating de novo capa-
bility

Since our model is trained using human data, we evaluate deepCorrRNA on different organisms
without retraining to examine its de novo error correction capability. For evaluation, the different
organism needs to have a good reference genome, but in the error correction process, we do not
use any of its references as if the references are unavailable. We use mouse and Drosophila data
for this examination. For mouse data, the Ensembl GRCm38 references are used in evaluation.
We evaluate deepCorrRNA on three mouse ONT transcriptomic cDNA data sets (Table 4.9) with
varying error rate profiles.

Table 4.9: Mouse ONT cDNA data sets used in evaluation, sequenced by MinION.

Data set Description Chemistry/Kit Basecaller Max length Median length % Reads uncorrectable

Mouse data set 1 First 500,000 reads R9.4.1 Guppy 8,111 700 14.08%: singletons;
of preprocessed PCS108 (v 2.3.5) 4.51%: in 2-reads clusters.

ERR3363660 cDNA ⇒ 18.59% not corrected.

Mouse data set 2 First 500,000 reads R9.4.1 Guppy 8,017 750 6.1%: singletons;
of preprocessed SQK-LSK109 (v 4.0.11) 3.13%: in 2-reads clusters.

SRR17960984 cDNA ⇒ 9.23% not corrected.

Mouse data set 3 First 500,000 reads R9.4.1 Guppy 8,418 780 8.99%: singletons;
of preprocessed SQK-LSK109 (v 4.0.11) 5.26%: in 2-reads clusters.

SRR17960971 cDNA ⇒ 14.25% not corrected.

deepCorrRNA achieves similar reductions in the total error rates to isONcorrect on mouse
data, demonstrating its de novo error correction capability. Table 4.10 shows the error correction
results for the mouse data set 1 that contains first 500,000 reads of preprocessed ERR3363660 [87]
cDNA data. The post-correction error rates here are for all reads in the data set including 18.59%
of reads that are not corrected (which are singletons or in 2-reads clusters). This mouse data set
has lower original error rates than the human data set. As in the human data set, deepCorrRNA
performs better than isONcorrect on correcting substitutions and insertions, while isONcorrect
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performs better than deepCorrRNA on correcting deletions. deepCorrRNA has a slightly lower
post-correction total error rate than isONcorrect, and their values are similar.

Table 4.10: Error correction results for mouse data set 1: first 500,000 reads of preprocessed
ERR3363660 cDNA data.

Original reads deepCorrRNA isONcorrect
(filtered reads with quality <7) (error correction output reads) (error correction output reads)

Substitution rate (%) 2.91618 1.08498 1.32605
Insertion rate (%) 2.38456 1.05038 1.20536
Deletion rate (%) 4.26372 2.45860 2.14280

Total error rate (%) 9.56445 4.59396 4.67421

Table 4.11 shows the error correction results for the mouse data set 2 that contains first
500,000 reads of preprocessed SRR17960984 [20] cDNA data. The post-correction error rates
here are for all reads in the data set including 9.23% of reads that are not corrected (which are
singletons or in 2-reads clusters). This mouse data set has a different original error-rate distribu-
tion from the previous data sets—while in the prior data sets, the deletion rate is the highest and
the insertion rate is the lowest, in this data set, the insertion rate is the highest and the substitution
rate is the lowest. As in the previous data sets, deepCorrRNA performs better than isONcorrect
on correcting substitutions and insertions, while isONcorrect performs better than deepCorrRNA
on correcting deletions. deepCorrRNA has a slightly higher post-correction total error rate than
isONcorrect, but their values are similar. deepCorrRNA has 54.36% reduction on the total error
rate after error correction.

Table 4.11: Error correction results for mouse data set 2: first 500,000 reads of preprocessed
SRR17960984 cDNA data.

Original reads deepCorrRNA isONcorrect
(filtered reads with quality <7) (error correction output reads) (error correction output reads)

Substitution rate (%) 3.21844 1.07116 1.22315
Insertion rate (%) 3.87380 1.48348 1.73728
Deletion rate (%) 3.72607 2.38326 1.64315

Total error rate (%) 10.81831 4.93791 4.60359

Table 4.12 shows the error correction results for the mouse data set 3 that contains first
500,000 reads of preprocessed SRR17960971 [20] cDNA data. The post-correction error rates
here are for all reads in the data set including 14.25% of reads that are not corrected (which are
singletons or in 2-reads clusters). This mouse data set has a similar original error-rate distribution
to mouse data set 2, but its total error rate is higher than all previous data sets. As in all other data
sets, deepCorrRNA performs better than isONcorrect on correcting substitutions and insertions,
while isONcorrect performs better than deepCorrRNA on correcting deletions. deepCorrRNA
has a slightly lower post-correction total error rate than isONcorrect, and their values are similar.

Mouse transcriptome and human transcriptome share some similarities. Therefore, to further
examine the de novo error correction capability, we also use Drosophila that is far different from
human. We evaluate deepCorrRNA on a Drosophila ONT transcriptomic cDNA data set without
retraining (Table 4.13). The Ensembl BDGP6.32 references are used in evaluation.
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Table 4.12: Error correction results for mouse data set 3: first 500,000 reads of preprocessed
SRR17960971 cDNA data.

Original reads deepCorrRNA isONcorrect
(filtered reads with quality <7) (error correction output reads) (error correction output reads)

Substitution rate (%) 3.61341 1.36674 1.72010
Insertion rate (%) 4.33099 1.85731 2.48390
Deletion rate (%) 4.15452 3.04277 2.19067

Total error rate (%) 12.09893 6.26682 6.39467

Table 4.13: Drosophila ONT cDNA data set used in evaluation, sequenced by MinION.

Data set Description Kit Basecaller Max length Median length % Reads uncorrectable

Drosophila data set First 500,000 reads SQK-PCS109 unknown 8,828 690 3.58%: singletons;
of preprocessed 1.35%: in 2-reads clusters.

SRR15541957 cDNA ⇒ 4.93% not corrected.

deepCorrRNA achieves similar reductions in the total error rates to isONcorrect on Drosophila
data, further demonstrating its de novo error correction capability. Table 4.14 shows the error
correction results for the Drosophila data set that contains first 500,000 reads of preprocessed
SRR15541957 [11] cDNA data. The post-correction error rates here are for all reads in the data
set including 4.93% of reads that are not corrected (which are singletons or in 2-reads clusters);
this percentage of uncorrected reads is lower than those of human and mouse data sets. As in
the human and mouse data sets, deepCorrRNA performs better than isONcorrect on correcting
substitutions and insertions, while isONcorrect performs better than deepCorrRNA on correcting
deletions. deepCorrRNA has a slightly higher post-correction total error rate than isONcorrect,
yet their values are similar. deepCorrRNA has 60.98% reduction on the total error rate after error
correction.

Table 4.14: Error correction results for Drosophila data set: first 500,000 reads of preprocessed
SRR15541957 cDNA data.

Original reads deepCorrRNA isONcorrect
(filtered reads with quality <7) (error correction output reads) (error correction output reads)

Substitution rate (%) 3.37010 1.00464 1.21871
Insertion rate (%) 2.22500 0.76037 0.81495
Deletion rate (%) 3.94168 1.95646 1.43723

Total error rate (%) 9.53678 3.72147 3.47089

deepCorrRNA’s correction performance on the mouse data with various error rate profiles
and on the data of Drosophila that is far different from human demonstrates its ability to error
correct the reads for non-model organisms when a high-quality reference is unavailable.

4.4 Discussion
Our results show that the ML-based deepCorrRNA has comparable error-rate reductions to state-
of-the-art ONT-specific isONcorrect and demonstrates effective de novo error correction capa-
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bility, while it takes into account the error profile associated information systematically, which
makes this correction method generalizable. Learning error profile related features systemati-
cally through the deep neural network in deepCorrRNA avoids manual parameters such as set-
ting thresholds for consensus frequency, quality, etc. and other heuristics in prior graph-only
methods, and allows the model to learn the relationships between harmful k-mers, etc. and error
occurrences/types to help error detection.

deepCorrRNA presents a generalizable method that may be applied to different technologies.
While the current model is trained with ONT reads, our model can be used as a pre-trained model
for other technologies. For a different technology (e.g. PacBio), we can train a model with the
training reads from that technology by using our current model as a pre-trained model—using
one of the three transfer learning strategies: 1) re-learning all weights using the architecture of
the pre-trained model (with or without its nanopore-trained weights as initialization), 2) learning
the weights of some layers (higher layers) while leaving other layers (initial layers) frozen, or 3)
using the pre-trained model as a fixed feature extraction mechanism (only training the fully con-
nected layers). As a result, deepCorrRNA can be a versatile error correction tool that fits to differ-
ent technologies—the implementation supports applying such various models using –technology
as a parameter and loading the trained model of the user-specified technology to error correct the
reads. Assessing the approaches’ generalizability on other sequencing technologies is a direction
for future work.

The precision of the insertion class plays a critical role in reducing the deletion rate, since
false positive insertions would become deletions post-correction. An important factor that could
affect the precision of the insertion class is the clustering accuracy. When a read that should
not belong to the same cluster as the other reads is clustered together with the other reads, the
read could have a region of insertions when aligned to the consensus of the cluster, although
this region is not actually insertions with respect to the true read. We found these cases in the
clusters. This could confuse the model and make it harder to learn and predict. To increase the
clustering accuracy, we experimented with a stricter clustering with isONclust by increasing the
mapped/aligned thresholds and reducing the window-size for minimizers. However, the stricter
clustering causes 27.4% of reads to be singletons in the human data set 1, compared to just
8.3% of reads being singletons with the clustering parameters used for the experiments here.
The clustering accuracy gain is not worth leaving 27.4% of reads not clustered and thus not
corrected. Since the model performance can be somewhat limited by the clustering accuracy,
it would be beneficial to develop a new clustering tool for RNA-seq long reads that performs
accurate isoform-based clustering (such that only the reads from the same isoform are clustered
together) and is able to handle large data sets (although RATTLE has an isoform clustering mode,
it has memory problems for sizable data sets). This is also a direction for future work.

Class weights boost the recall of the minority classes but sacrifice their precision, which is
not beneficial to our application. To further improve the model performance on the minority
classes, other approaches may also be explored, such as optimized loss functions for imbalanced
data [53]. Furthermore, the feature set of the model could be further extended when additional
sequence-level error-related factors can be identified. Moreover, analyzing the feature impor-
tance in the model for all features may offer some insights on how much the error profile related
features contribute to the model performance gain. These are more directions for future work.

The current model is trained with ONT cDNA reads. deepCorrRNA can be extended to ONT
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direct RNA sequencing technology by retraining the model using direct RNA sequencing reads
with a slightly modified feature set (removing the strand feature or labeling all reads as forward
strand; encoding base letters ‘ACGU’). The preprocessing should be modified as Pychopper is
only applicable to cDNA reads. Additionally, another direction for future work could be training
the model with the combination of the reads from multiple organisms and comparing the model
performance with the current model.

4.5 Appendix

4.5.1 Parameters used in software tools or packages

For Pychopper:
cdna_classifier.py 〈input.fastq〉 〈output.fastq〉 -t 85

For cutadapt:
a) for the first and the second trims:
cutadapt -a “A{60}” -O 20 -m 20 -e 0.05 -j 80 -o 〈output.fastq〉 〈input.fastq〉
b) for the third trim:
cutadapt -a “A{60}” -O 16 -m 20 -e 0 -j 80 -o 〈output.fastq〉 〈input.fastq〉

For isONclust:
isONclust –t 32 –ont –mapped_threshold 0.9 –aligned_threshold 0.7 –fastq 〈input.fastq〉

–outfolder 〈output_folder〉
isONclust write_fastq –N 1 –clusters final_clusters.tsv –fastq 〈input.fastq〉 –outfolder 〈out-

put_folder〉
For SPOA:

spoa -l 0 -r 2 〈input.fastq〉 > 〈output.fasta〉
For minimap2:

minimap2 –cs -ax splice -t 85 GRCh38.fa 〈input.fastq〉 -o 〈output.sam〉
For NanoSim:

a) for human:
read_analysis.py transcriptome -i 〈input.fastq〉 -rg GRCh38.fa -rt Homo_sapiens.GRCh38.cdna.all.fa

-annot Homo_sapiens.GRCh38.90.gtf –no_model_fit -o 〈output_dir/output_prefix〉 -t 39
b) for mouse:
read_analysis.py transcriptome -i 〈input.fastq〉 -rg GRCm38.fa -rt Mus_musculus.GRCm38.cdna.all.fa

-annot Mus_musculus.GRCm38.92.gtf –no_model_fit -o 〈output_dir/output_prefix〉 -t 39
c) for Drosophila:
read_analysis.py transcriptome -i 〈input.fastq〉 -rg BDGP6.32.fa

-rt Drosophila_melanogaster.BDGP6.32.cdna.all.fa -annot Drosophila_melanogaster.BDGP6.32.107.gtf
–no_model_fit -o 〈output_dir/output_prefix〉 -t 39
For isONcorrect:

run_isoncorrect –t 20 –fastq_folder 〈fastq_folder〉 –outfolder 〈output_folder〉
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4.5.2 Additional tables

Table 4.15: The distribution of class true labels for the 10 classes.

Class Labels Label Percent (%)

Insertion 4.006
Substituted_A 0.605
Substituted_C 0.785
Substituted_G 0.705
Substituted_T 0.639

Deleted_A 1.048
Deleted_C 1.108
Deleted_G 1.163
Deleted_T 1.055
No_error 88.885

Table 4.16: Classification report of the model trained with the data set generated from Nc = 2000
randomly sampled clusters and Nr = 10 randomly sampled reads per cluster, evaluated using the
test samples.

precision recall F1-score support

Insertion 0.74 0.52 0.61 92555
Substituted_A 0.74 0.60 0.66 14685
Substituted_C 0.78 0.61 0.69 18815
Substituted_G 0.75 0.60 0.67 17085
Substituted_T 0.77 0.59 0.67 15263

Deleted_A 0.76 0.75 0.76 25287
Deleted_C 0.76 0.76 0.76 27018
Deleted_G 0.75 0.77 0.76 28111
Deleted_T 0.77 0.75 0.76 25410
No_error 0.97 0.99 0.98 2179135

accuracy 0.95 2443364
macro avg 0.78 0.69 0.73 2443364

weighted avg 0.95 0.95 0.95 2443364

The data set in Table 4.16 has 10184 training reads and 2546 test reads (21151 training sam-
ples and 5305 test samples after segmentation), and the model is trained for 150 epochs. The
“support” is the number of bases.

The data set in Table 4.17 has 34916 training reads and 8730 test reads (73182 training
samples and 18171 test samples after segmentation), and the model is trained for 160 epochs.
The “support” is the number of bases.

The data set in Table 4.18 has 95657 training reads and 23915 test reads (198325 training
samples and 49976 test samples after segmentation), and the model is trained for 169 epochs.
The “support” is the number of bases.
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Table 4.17: Classification report of the model trained with the data set generated from Nc = 5000
randomly sampled clusters and Nr = 20 randomly sampled reads per cluster, evaluated using the
test samples.

precision recall F1-score support

Insertion 0.76 0.63 0.69 330233
Substituted_A 0.82 0.60 0.69 49821
Substituted_C 0.82 0.64 0.72 64132
Substituted_G 0.81 0.62 0.70 57523
Substituted_T 0.82 0.60 0.70 52125

Deleted_A 0.82 0.78 0.80 86826
Deleted_C 0.81 0.79 0.80 91237
Deleted_G 0.79 0.82 0.80 95415
Deleted_T 0.83 0.77 0.80 87444
No_error 0.97 0.99 0.98 7446245

accuracy 0.96 8361001
macro avg 0.83 0.72 0.77 8361001

weighted avg 0.96 0.96 0.96 8361001

Table 4.18: Classification report of the model trained with the data set generated from Nc =
10000 randomly sampled clusters and Nr = 40 randomly sampled reads per cluster, evaluated
using the test samples.

precision recall F1-score support

Insertion 0.79 0.62 0.70 883373
Substituted_A 0.80 0.64 0.71 135457
Substituted_C 0.82 0.65 0.73 176332
Substituted_G 0.81 0.65 0.72 158108
Substituted_T 0.82 0.63 0.71 142858

Deleted_A 0.85 0.79 0.82 238239
Deleted_C 0.83 0.81 0.82 251470
Deleted_G 0.78 0.85 0.81 262717
Deleted_T 0.84 0.79 0.82 236303
No_error 0.98 0.99 0.98 20563989

accuracy 0.96 23048846
macro avg 0.83 0.74 0.78 23048846

weighted avg 0.96 0.96 0.96 23048846
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Chapter 5

Conclusion

The work presented here has improved our ability to study and analyze complex transcriptomes
through the development of new algorithms and computational methods as well as data analysis.

In Chapter 2, we developed the first long-read transcript assembler Scallop-LR, and thus
opened up the ability to assemble single-molecule RNA-seq long reads to identify many tran-
scripts and novel isoforms that are missed by Iso-Seq Analysis. Scallop-LR’s algorithms are
designed to deal with the challenges and characteristics in long reads. By representing long
reads as long phasing paths and preserving phasing paths in assembly, Scallop-LR handles the
long read lengths and makes full use of the information in long reads. Taking advantage of
long-read-specific features such as the read boundary information, Scallop-LR constructs more
accurate splice graphs to improve the transcript assembly. Using a post-assembly clustering al-
gorithm, Scallop-LR reduces false negatives in assembly. Scallop-LR also deals with the higher
error rates in long reads. Analyzing 26 PacBio data sets with Scallop-LR, Iso-Seq Analysis, and
StringTie, we quantified the amount by which transcript assembly improved the Iso-Seq results,
revealing the advantage of long-read transcript assembly. Using combined multiple evaluation
methods, we show that Scallop-LR not only correctly assembles more known transcripts but also
finds more potential novel isoforms than Iso-Seq Analysis. The sensitivity of the Iso-Seq method
is limited by the factor that not all CCS reads represent full transcripts [78]. We demonstrate that
Scallop-LR can improve this situation by identifying more true transcripts and potential novel
isoforms through transcript assembly. With long-read-specific optimizations, Scallop-LR assem-
bles more known transcripts and potential novel isoforms than StringTie for the human transcrip-
tome. Our results indicate that long-read transcript assembly by Scallop-LR can reveal a more
complete human transcriptome and benefit transcriptome studies.

In Chapter 3, we developed the first representative set selection approach that can scale to col-
lections of the size of the full set of public human RNA-seq samples in the SRA, thus enabling
comprehensive evaluation and parameter optimization of RNA-seq analysis tools by using repre-
sentative RNA-seq samples. To handle the memory and runtime challenges in the k-mer counting
approach that selects a representative set based on k-mer similarities between RNA-seq sam-
ples, we developed a novel method: hierarchical representative set selection. Our hierarchical
representative set selection algorithm breaks representative set selection into sub-selections and
hierarchically selects representative samples through multiple levels. We also developed a novel
seeded-chunking method and designed a mean2-weighting scheme. We demonstrate that our
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novel hierarchical representative set selection method can greatly reduce the runtime and mem-
ory usage of the direct representative set selection with the full similarity matrix computation,
while still achieving summarization quality close to that of the direct representative subset se-
lection. We show that hierarchical representative set selection substantially outperforms random
sampling on the entire SRA set of human RNA-seq samples, thus providing a practical solution
to representative set selection on large databases like the SRA and facilitating comprehensive
evaluation of bioinformatics tools for transcriptome analyses.

In Chapter 4, we developed the first de novo RNA-seq long-read error correction method
that incorporates the error profile related information systematically using deep learning. To
error correct Nanopore RNA-seq long reads for non-model organisms without a good refer-
ence, we developed a novel, error-profile-aware error correction method deepCorrRNA to self-
correct RNA-seq long reads de novo. deepCorrRNA combines a graph-based MSA-POA and
a Bi-LSTMs/LSTMs-based deep neural network that incorporates the error profile related in-
formation systematically. Evaluating deepCorrRNA on five ONT RNA-seq data sets of three
organisms, we show that ML-based deepCorrRNA achieves similar reductions in the total er-
ror rates to state-of-the-art ONT-specific RNA-seq error corrector isONcorrect. While its model
is trained with the human data, deepCorrRNA’s correction performance on different organisms
(mouse and Drosophila) demonstrates its effective de novo error correction capability and trans-
ferability. With comparable error reductions to the state of the art and employing general-
ized (technology/organism independent) error profile related features comprehensively, deep-
CorrRNA presents a generalizable method that may be applied to different technologies. High-
quality, generalizable, de novo error correction for RNA-seq is possible through machine learn-
ing, and we show that through our novel method deepCorrRNA, which takes advantage of both
graph-based MSA-POA and deep neural network’s strengths while integrating the error profile
associated information. deepCorrRNA’s de novo error correction capability for RNA-seq long
reads can benefit the transcriptome study of various non-model organisms.

There are also limitations in this work, which open up the opportunity for future work. Cur-
rently, Scallop-LR is designed for PacBio long reads. For ONT RNA-seq long reads, it was found
in experiments that for both direct RNA and cDNA with full-length enrichment, for transcript
lengths < 2.5kb, the reads are mostly full-length; for transcript lengths > 2.5kb, the reads are less
likely to be full-length [93]. Hence, before the direct RNA technology is improved, transcript
assembly could still be useful for ONT long reads. Thus, a direction for future work is to adapt
Scallop-LR to ONT long reads by rebuilding the analysis pipeline and changing the transcript
boundary identification functionality.

Another direction for future work is developing a hybrid transcript assembler that combines
short reads and long reads. There have been hybrid genome assemblers using both short and long
reads, such as MaSuRCA [118] and hybridSPAdes [2]. Although there are two de novo transcript
assemblers using hybrid sequencing, IDP-denovo [28] and Trinity [32], Trinity and IDP-denovo
do not assemble long reads; they assemble short reads and use long reads to improve the assembly
of short reads. Thus, a direction for future work is to develop a reference-based hybrid transcript
assembler that can assemble both short reads and long reads simultaneously, thus combining the
advantages of short reads (low error rates, high throughput) and long reads (long read lengths).

We use the partial Hausdorff distance to evaluate our hierarchical representative set selection.
To perform further evaluation on the representative sets, a useful evaluation method could be
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using the representative set as the training set to train classifiers to compare the classification
accuracy. The classifiers could take the gene expression vectors or transcript abundance vectors
as input features, and we could compare the classification accuracy of the models trained by
using different representative sets. This is also a direction for future work.

In our k-mer counting-based approach for representative set selection, we download 10,000
reads from each RNA-seq sample to represent that sample. We chose this number since prior
researchers found that 10,000 reads are sufficient to tell what genome this sample belongs to,
and we do not have extra disk space to hold more reads from all RNA-seq samples in the SRA.
We envision that downloading more reads (such as 100,000 reads) would represent each sample
better, and thus the selected representative samples based on the subsets of reads would better
represent the SRA full set. Thus, a direction for future work is to assess the effect of downloading
different numbers of reads from an RNA-seq sample (such as 10K reads vs 100K reads) on the
selected representative set, when extra disk space becomes available.

Because deepCorrRNA integrates generalized (technology/organism independent) error pro-
file related features systematically, this method is generalizable and may be applied to different
technologies. While the current model of deepCorrRNA is trained with ONT reads, applying
this method to different technologies can be done through transfer learning by using the current
model as a pre-trained model. Thus, a future work is to apply this method to a different technol-
ogy (such as PacBio) to experimentally show the generalizability of deepCorrRNA’s method on
other sequencing technology.

In deepCorrRNA, the precision of the insertion class plays a critical role in the output dele-
tion rate, since false positive insertions would become deletions post-correction. An important
factor that affects the precision of the insertion class is the clustering accuracy. When a read that
should not belong to the same cluster as the other reads is clustered with them, the read could
have a region of insertions when aligned to the consensus of the cluster, although this region is
not insertions with respect to the true read. This could confuse the model learning and predic-
tion. Since the model performance can be somewhat limited by the clustering accuracy, it would
be beneficial to develop a new clustering tool for RNA-seq long reads that performs accurate
isoform-based clustering and is able to handle large data sets. This is an interesting direction for
future work.

To further improve deepCorrRNA’s model performance on the minority classes, other ap-
proaches may also be explored, such as optimized loss functions for imbalanced data [53]. Fur-
thermore, the feature set of the model could be further extended when additional sequence-level
error-related factors can be identified. The current model is trained with ONT cDNA reads. deep-
CorrRNA can be extended to ONT direct RNA sequencing technology by retraining the model
using direct RNA sequencing reads while encoding RNA base letters. These are more directions
for future work.

The new algorithms, computational methods, data analysis, and ideas presented in this dis-
sertation will improve the study of transcriptomes to gain new biological insights as the cost of
third-generation sequencing decreases and data availability increases. Analyzing the novel iso-
forms identified by Scallop-LR through assembling single-molecule RNA-seq long reads could
further our understanding on how altered expressions of genetic variations lead to complex hu-
man diseases, and thus help develop more effective treatments to those diseases. RNA-seq anal-
ysis tools including read mappers, transcript assemblers, and expression abundance estimators
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can be validated and optimized using the representative RNA-seq samples selected by our hierar-
chical representative set selection method; these tools can be used in transcription profiling that
may lead to the discovery of novel biomarkers, help predict therapy response, or help identify the
molecular mechanisms leading to a disease. De novo error correction of RNA-seq long reads by
deepCorrRNA can improve the transcriptome analyses of diverse non-model organisms; studying
the transcriptomes of non-model organisms could address a wide range of important evolutionary
and ecological questions.
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