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Abstract
Sequence sketch methods generate compact fingerprints of large string sets for

efficient indexing and searching. Minimizers are one of such sketching methods,
sampling k-mers from a string by selecting the minimal k-mer from each sliding
window with a predetermined ordering. Minimizers sketches preserve information
to detect sufficiently long substring matches. This favorable property of minimizers,
and its ease of implementation, lead to wide adoption in a large number of software
and pipelines, including read mappers, genome assemblers, sequence databases and
more. Despite the method’s popularity, many theoretical and practical questions
regarding its performance remain open. This is especially true regarding the density
of minimizers, a simple yet powerful metric for minimizer performance. We have
neither understanding of density growth under various conditions, nor principled
approaches to construct minimizers with provably low density. This dissertation
attacks the lack of knowledge in minimizer sketches from multiple fronts.

In the first part, we are primarily concerned with asymptotic behavior for the
density of minimizer sketches. Minimizers are parameterized by the k-mer length k,
a window length w and an order on the k-mers. Using a number of new techniques,
we are able to provide a complete picture of how the density of optimal minimizer
grows with its parameters w and k. We also derive structural lemmas for universal
hitting sets and local schemes, two highly related concepts for minimizer design.
Together, these results serve as building blocks for future theoretical advances.

The next two parts are focused on constructing low-density minimizers in two
scenarios. In the second part, we propose the Miniception, the first construction
of minimizers that provably achieves better densities than a random minimizer in
practical configurations of w and k. This method is also simple to implement and
requires minimal overhead compared to existing implementations of random mini-
mizers. In the third and final part, we consider optimization of minimizer density
on a given reference sequence. The most common use case is when the given se-
quence is the reference genome or transcriptome. We propose the concept of polar
sets, which itself is a complementary concept of universal hitting sets and similarly
can be used to construct minimizers. Using polar sets, we propose efficient algo-
rithms to directly optimize the density of minimizers on a reference sequence up to
some error. Experiments show that both the Miniception and the polar set algorithms
can reliably outperform existing methods for constructing low-density minimizers,
without a reference and with a reference, respectively.
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Chapter 1

Introduction

1.1 The Era of Big Data Genomics is Here
Computational Genomics is the research field where advanced statistical and algorithmic meth-
ods are used to analyze genomic sequence and associated data, to gain insight into how DNA and
RNA sequences control the biology. This research field has seen a new wave of rapid growth in
the past few years, thanks to a multitude of factors:

• Rapid advance of genomic sequencing technologies, including short read sequencers (second-
gen or next-gen like Illumina) and long read sequencers (so-called “third-gen” such as
Oxford Nanopore MinION and PacBio SMRT [47, 102, 121, 123]) results in exploding
throughput of sequences.

• Emergence of single-cell RNA-sequencing [92, 104, 107, 114, 118, 120] and spatial tran-
scriptomics [18, 29, 50, 68, 69, 78, 98, 105, 106, 113, 122] for more fine-grained detection
of heterogeneity between cell populations, and better utilization of the advanced sequenc-
ing technologies as such graunlarity would not be possible without sufficient sequencing
thoroughput.

• Democratization of computing and storage due to falling costs and increased efficiency
of computing equipment, which in turn fosters large-scale (sometimes consortium-style)
collaborative efforts for a diverse set of topics.

All of these advancements indicate computational genomics has entered the phase where
sequencing data is abundant. As a simple indicator of the transformation undergoing this field,
the SRA (Sequence Read Archive), one of the largest public repositories for sequencing datasets,
is still on a healthy pace of exponential growth in both total sequence length and number of
datasets even up to the year of 2021 [33], while the Moore’s law (a similar thesis for computing
power) has been considered failing [108] or dead [119]. Thus, arguably even more so than the
computing field, we are undeniably at the big data era for computational genomics. This brings
along a number of interesting research lines, for which access to big data is essential.

Pan-Genomics [109]. The classical approach to human genomics is to first establish a sin-
gle reference genome, then for each new individuals, compare the new genome to the reference
and resolve differences. Such method has historically worked well, because the variation be-
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tween human genomes is typically small compared to its size – 0.1 percent is a common esti-
mate. However, as we expand to non-modal species (although for this discussion we will limit
ourselves to human genomics) and sequence more human genomes from diverse populations,
the shortcomings of such approaches have emerged. For example, studies on different popu-
lations [4, 22, 27, 38, 42, 51] reveal that diverging proportion of genomes are missing from
the commonly used human reference, which impose limitations on how to use these genomes.
Thus, studies on a large collection of genomes, without a central notion of “reference”, is very
important. While large-scale projects like 1KGP (1000 Genomes Project [115]) and SGDP (Si-
mons Genome Diversity Project [71]) are more focused on catalogue of genetic variants, ef-
forts to construct a pan-genome for humans include national efforts for Icelandic [51], Nether-
land [12, 34] and African and Asian [65] populations. Pan-genomes are usually represented as
genome graphs [36, 44, 93, 94] so the shared part of different genomes need not be stored mul-
tiple times. While pan-genome studies are more common in other species with smaller genomes
now, for human pan-genome, analyses has revealed hidden parts of the the genome that are as-
sociated to certain diseases [51, 112].

Cancer Genomics [70]. Early efforts in cancer genomics rely on RNA microarrays, which
while helped expanding our understanding in cancer subtyping [23, 91], are severely limited in
that it cannot provide genome-wide base-pair information. The emergence of second-generation
sequencing technologies enabled better profiling of cancer genomes, and international consor-
tium like The Cancer Genome Atlas (TCGA) lead the effort to sequence multiple types of can-
cers. The TCGA has since grown to include more cancer types, with different types of sequenc-
ing data (including marker studies [39, 60, 61, 81] and more). Access to these comprehensive
atlases of cancer genomes has allowed “pan-cancer-genomics” type of studies [2, 15, 48, 97, 117]
where cancer induced genomic changes of different types can be jointly studied to reveal com-
mon biological pathways and processes.

1.2 Sequence Sketches are Essential Infrastructure
Underlying the big data paradigm of computational genomics, we face the fundamental problem
of storing, indexing and comparing large genomic datasets. Without space and/or time-efficient
representations of the dataset, these operations on large datasets are computationally infeasible
both in time and in (disk or memory) space. Sequence sketching is a broad class of algorithms
that specifically tackles this challenge by generating compact, (usually) lossy representations of
large sequencing datasets. These methods constitute essential infrastructure underlying modern
computational genomics.

The focus for this dissertation is the minimizer sketch, which is arguably one of the most
widely-used sketching methods in modern computational genomics. To put minimizer sketches
into context, in this section, we briefly discuss several other representative types of sequence
sketches and how they are used in practice for computational genomics.

Sequence Indexes: Suffix Trees and FM-indexes. Suffix trees, suffix arrays [1, 37, 124] and
FM-indexes [32] are data structures that allow for quick exact substring search, while poten-
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tially smaller in size compared to the underlying sequence. They are very popular for underlying
sequence alignment and read mapping, a pair of closely related fundamental problem in com-
putational genomics. A number of existing methods, including MUMmer3 [56], its successor
MUMmer4 [76], Bowtie [58], Bowtie 2 [57], SOAP2 [64], and many others, rely on these data
structures to quickly index massive genomes.

Locality-Sensitive Hashing and Set Sketching. Locality-sensitive hashes [41] are families
of hash functions where the probability of hash collision P (h(a) = h(b)) equals a similarity
measure S(a, b) between elements. This can be useful for quick approximate neighbour queries,
for which sequence alignment can be seen as a special instance. MHAP [8] and MashMap [43]
follow this approach.

Methods like MinHash sketch [13], where the sketch of a given set is the minimum hash
value from a random hash function, also fall into this category because the method itself can be
seen as LSH for Jaccard distance. Ordered MinHash [77] refines the skeching method to obtain
a gapped locality-sensitive hash (a relaxation of LSH definition) for edit distance. Mash [84] and
sourmash [14] use LSH to perform quick metagenomic distance estimation, which is used for
clustering and estimating number of species in metagenomic sequence mixtures.

Approximate Membership Queries. AMQ data structures, as its name suggests, supports
lossy query of membership, the most famous one being the Bloom Filter [11], named after its
inventor. Counting bloom filters [31], cascading bloom filters [55, 99] and quotient filters [7, 87]
are improvements to bloom filters that support more sophisticated queries (most notably counting
occurrences instead of presence) with better performance both space-wise and time-wise. These
data structures also support a number of important primitives in computational genomics, such
as k-mer counting. BFCounter [79] uses bloom filters as the underlying data structure. They
also see some use in genome assembly algorithms [19, 55] and de Bruijn graph construction
algorithms [86] to improve speed and sensitivity.

Sequence Bloom Trees [110] (and its descendants [111, 116]) and SeqOthello [125] extend
the concept of AMQ to perform approximate k-mer presence queries among a large collection
of sequencing libraries. Mantis [88] also falls into this category, although the algorithm allows
exact queries.

1.3 Minimizers as Sequence Sketches
In this section, we discuss minimizer sketches as useful primitives for computational genomics.
We present the definition of minimizer sketches, its important properties, and various applica-
tions that use minimizer sketches at their core.

1.3.1 Definition of Minimizer Sketches
Minimizer sketches [95, 96] are a class of sequence sketch methods that have seen extensive use.
For the purpose of this dissertation, a minimizer sketch (sometimes shorthanded as minimizers)
has three parameters: (w, k,O). k is the length of the k-mers of interest while w is the length of
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Figure 1.1: Example of a minimizer sketch, with w = 5, k = 3, and lexicographical orders. Left:
The first line is the sequence, every following line is one of the windows, highlighted part is the
k-mer selected. Right: The minimizer sketch of this sequence.

the window. For minimizers, a least one k-mer must be selected in any window of w consecutive
k-mers, or equivalently in any substring of length w + k − 1. Finally, O is a total order (i.e., a
permutation) of all the k-mers, and it determines how the k-mers are selected: in each window
the minimizer selects the minimum k-mer according to the orderO (hence the name minimizer),
and in case of multiple minimum k-mers, the leftmost one is selected. See Figure 1.1 for a
concrete example of a minimizer sketch.

1.3.2 Window Guarantee

A key property of minimizer sketches is what we call the window guarantee: If two sequences
share a sufficiently long substring (as long as a window of the minimizer), their minimizer
sketches share a k-mer from the shared part. See Figure 1.2 for a concrete example. It should
also be noted that even if two sequences do not share a sufficiently long substring, their sketches
might still share a k-mer. Specifically, if two sequences share a substring that are close to a
full window’s length, there is a good chance they will share a k-mer in the respective minimizer
sketches.

1.3.3 Using Minimizers in Computational Genomics

The minimizer sketches are very versatile and have seen extensive use in a diverse range of
applications. We discuss a few use cases that are most prominent and relevant to this dissertation.

Sequence Assembly. The minimizer sketches were first introduced to computational genomics
[62, 95, 96] as a method to overlap reads in preparation for assembling contigs in the OLC
(overlap-layout-consensus) genome assembly paradigm. In short, reads are organized into bins
using their minimizers as index, and reads within the same bin are tested for overlapping using
more accurate but slower methods.
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Figure 1.2: Example of window guarantees, with w = 5 and k = 3. As seen in this figure, the
two sequences share a window (substring of length 7), and they are guaranteed to share a k-mer
in their respective minimizer sketch. The shared k-mer is highlighted on the right-hand side of
this figure.

Read Mapping. Minimap [62] and Minimap2 [63] are modern methods for read mapping that
use minimizers to quickly find matches between the reads and the reference genome. Usually, the
reference is processed first. The minimizers of the reference enter a hash table with associated
locations in the reference. The reads are then processed through the same minimizer sketch.
For each minimizer in the read sequence, if that k-mer is also present in the reference as a
minimizer, the list of associated locations are used as potential locations for alignment. There
are improvements to this approach [45, 46, 127] that also use (modified versions of) minimizers
for fast filtering of potential alignment locations.

k-mer Counting. k-mer counting is another important problem in computational genomics,
and the first step of these counting methods is usually to split k-mers into buckets then leverage
parallel and cloud computing to quickly process each bucket. Minimizers are commonly used
to determine the bucketing of k-mers [25, 30, 66, 90] by treating the k-mer as a window of a
minimizer. This requires definition of a shorter seed length than k, which we denote as k0. We
thus select k0-mer in a k-mer, then use the selected k0-mer as the bucket key. Since minimizer
sketches are deterministic, this splitting will never result in same k-mer being dispatched to two
different buckets. Additionally, adjacent stretches of k-mers in the same bucket are merged into
sequences longer than k called super k-mers. Using super k-mers can greatly decrease space and
time cost of k-mer counting algorithms, enabling them to scale to larger sequence collections
with longer k-mers.

de Bruijn graph construction. Given a set of sequences and a value k, one can construct the
de Bruijn graph of order k, a directed graph where nodes indicate distinct k-mers and edges
indicate adjacency between k-mers (more concretely, given an input sequence, for each of the
sequence’s (k + 1)-long substring, there is an edge from its k-long prefix to its k-long suffix).
In this graph, it is guaranteed that each input sequence can be reconstructed by walking on the
resulting graph. This property makes de Bruijn graphs desirable for genome assemblies [126],
as the process of assembling genomes can be seen as spelling out sequences on the de Bruijn
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graph constructed from input reads. However, construction of de Bruijn graph is not a straight-
forward matter and can be costly if not implemented carefully. BCALM [20] and its successor,
BCALM2 [21] are efficient methods to construct de Bruijn graphs. These methods split k-mers
into different buckets with minimizers, similar to how k-mer counters split k-mers, then create
maximal contigs from each buckets before merging contigs from different buckets to create a
compact representation of the de Bruijn graph.

1.4 Minimizers as Combintorial and Optimization Objects
In this section, we discuss minimizer sketches as combintorial objects that can be optimized.
Thus, we present parameterization of minimizer sketches, the objective (density as suggested by
disseratation title), and existing methods that perform such optimization.

1.4.1 Optimizing a Minimizer Sketch

A minimizer sketch has three parameters: {w, k,O}. We are focused on optimizing O through-
out this dissertation, on a wide range of w and k. It should be noted though that we do not
directly select or choose the value of w and k. Selection of these two parameters are highly
application-specific and is outside the scope of this dissertation. Recall that O is a total order
(i.e. a permutation) of all k-mers, and it determines how the k-mers are selected. Throughout this
dissertation, when we talk about optimization of minimizer sketches, we mean the optimization
of this total order with fixed w and k, unless otherwise specified. The search space for this total
order is astronomical. There are O(4k!) possible total orders in a universe of k-mers assuming
an alphabet of 4, and brute-force search methods become infeasible even for k = 2.

Baseline Methods. When we optimize a minimizer sketch, we need a reference or baseline
against which to compare. In this dissertation, the most common baselines we use are Lexico-
graphical minimizers and Random minimizers. A lexicographical minimizer sketch is simply a
minimizer sketch where O is the lexicographical order; For example, the minimizer as shown in
Figure 1.1 is a lexicographical one (AAA < AAC < AAT · · · < TTT ). A random minimizer
sketch is, strictly speaking, a distribution of minimizer sketches, where each possible ordering
gets equal weight. When we measure the performance of a random minimizer sketch, we mean
its expected performance over the randomness of the ordering. Random minimizer sketches are
widely used, and in practice, they are implemented by first obtaining a pseudo-random hash func-
tion with certain guarantees of randomness, then implement O as the implied total order from
hash values. In next section, we will discuss other more sophisticated constructions of minimizer
sketches against which we compare our new construction approaches.

1.4.2 Density of Minimizers as Measurement of Efficiency

Sequence-Blind Setting. The core measure of performance we consider for minimizer is the
density. To calculate density, we first assume a sufficiently long sequence where the character
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at each location is independently selected from the alphabet with equal probability (for exam-
ple, using the genomic alphabet, each character has 25 percent chance of being A, C, G or T
independent of everything else). The density of the minimizer sketch is the expected number
of k-mers in the sequence that is the minimizer of at least one window, divided by the number
of k-mers in the string. In the case where the string is sufficiently long, we can also use the
length of the string to approximate the number of k-mers. This randomization process ensures
that each minimizer will have a unique density value, and a reference sequence is not required
for evaluation. The setup where we choose the ordering of k-mers to optimize this density value
is called sequence-blind throughout this dissertation.

In general, minimizer sketches with lower densities are desirable as fewer selected positions
imply reduction in the run time or memory usage of applications using minimizers, while pre-
serving the window guarantee with the same parameter. For example, a long-read aligner like
Minimap2 [63] stores the positions of every selected k-mer of a reference genome to find exact
match anchors for seed-and-extend alignment. (The parameters k and w are constrained by the
required sensitivity of alignment in this case, and we do not tune them.) A minimizer sketch
with lower density thus offers both lower storage and memory cost, and faster runtime due to
fewer anchors to check for match and fewer pairs of anchors matched. Similar arguments can be
made for sequence assemblers where lower density sketches lead to better runtime. These state-
ments can be made explicit under the assumption where the reads are sampled uniformly from
the reference sequence. For a k-mer counter, minimizer sketches with lower density naturally
imply more even spacing of anchors which implies less space wasted for duplicate anchors, and
similarly would lead to improved computational performance.

For given parameters w and k, the choice of the order O changes the (expected) density. The
density of a minimizer is lower bounded by 1/w, where exactly 1 position per window is selected,
and upper bounded by 1, where every position is selected. A minimizer sketch with a density of
1/w may not exist for every choice of w and k, and how to find an order O with the smallest
possible density for any w and k efficiently is still an open question due to the astronomical
search space of this problem.

Sequence-Specific Setting. Instead of calculating the average density over a random input
string, we can also calculate density for one particular string, that is, the number of positions
selected divided by the number of k-mers on an input string. Similarly, when the string is long
enough, we replace the divisor by the length of the string for simplicity. The resulting density
value is called specific density, and the setting where we optimize this value (with a fixed input
sequence) is called sequence-specific.

When applying minimizers in computational genomics, in many scenarios the sequence is
known well in advance and it does not change very often. For example, a read aligner may
align reads repeatedly against the same reference genome (e.g., the human reference genome).
In such cases, optimizing the density on this specific sequence is more meaningful than on a
random sequence. Moreover, the human genome has markedly different properties than a random
sequence and optimization for the average case may not carry over to this specific sequence. In
the read aligner example, a minimizer with lower specific density leads to a smaller index to save
on disk and fewer seeds to consider in the seed-and-extend alignment algorithm while preserving
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the same sensitivity thanks to the window guarantee (as w is unchanged; See Section 1.3.2).
Low specific density similarly provides various benefits to many downstream applications as

we have discussed in the previous subsection. It is worth noticing that specific density can be
much lower than the (average) density when the minimizer sketch is properly optimized, and
optimization of specific density and optimization of (expected) density can be very different
problems.

1.4.3 Universal Hitting Sets

Optimization of low-density minimizer sketches, especially in the sequence-specific setup, has
long been interwined with optimization of compact universal hitting sets, and in this section we
provide a brief overview of the concept to prepare for the upcoming discussion.

A Universal Hitting Set (UHS) is a set of k-mers such that every long enough string (of length
w + k − 1 or longer) contains an element from the set as a substring. More formally, for any
window containing w k-mers, the window would always contain one of the k-mers in the set
regardless of the window content. We call such a set a universal hitting set for parameters w and
k. From the combintorial perspective, these are sets of (constant length) unavoidable words [17],
i.e., words that must be contained in any long strings.

Universal hitting sets and unavoidable sets have many interesting properties of their own.
However, we are most interested in their interplay with minimizer sketches.

There is a two-way correspondence between minimizer sketches and universal hitting sets:
each minimizer sketch has a corresponding UHS, and a UHS defines a family of compatible min-
imizer sketches [73, 74]. A compatible minimizer sketch with a UHS is a sketch with identical k
and w to the UHS, and with orderingO satisfying that any k-mer in the UHS compares less than
any k-mer outside the UHS. The relative size of the UHS, defined as the size of UHS over the
number of possible k-mers, provides an upper bound on the density of any compatible minimizer
sketch: the density is no more than the relative size (the size of the UHS divided by number of
possible k-mers) of the universal hitting set [85].

1.4.4 Early Work on Low-Density Minimizers

As discussed before, random minimizer sketches serve as a reasonable baseline, and indeed it
has been widely used in different contexts. Previous work on analysis and construction of low-
density minimizers can be roughly split into two groups. The first group of results focus on the
asymptotic behaviour of minimizer sketches in sequence-blind scenarios, and the second group
of results focus on the practical performance in both sequence-blind and sequence-specific setups
(measuring both density and specific density), with slightly more focus on sequence-specific
setups.

Winnowing Bounds and Improvements. The original winnowing paper [103] gave two re-
sults about the density of minimizer sketches (under the sequence-blind setting): under some
simplifying assumptions, (1) the density of a random minimizer sketch, regardless of w and k,
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is 2/(w + 1) and (2) the density of any minimizer sketch is lower-bounded by 1.5/(w + 1). Al-
though these estimates are useful in practice, they are dependent on some hidden assumptions
and do not represent the behavior of minimizer sketches in all cases.

These results have since been refined in multiple ways by looking at the asymptotic behavior
of minimizers, and by considering the extreme cases with w ≫ k (that is, w is much larger than
k) and k ≫ w. First, when w is fixed and k ≫ w, construction of minimizer sketches with
density of 1/w + O(ke−αk) is possible for some α > 0 [74]. Such construction has density
arbitrarily close to the optimal 1/w for sufficiently large k. The apparent contradiction between
this result and the previously stated lower bound of 1.5/(w+1) stems from a hidden assumption:
k should not be too large compared to w. Second, it is shown that when k is fixed and w ≫ k, the
density of any minimizer is Ω(1). Hence, a density of 2/(w+ 1), or even O(1/w), as previously
stated does not apply when w ≫ k [74]. This is similarly because the previous estimate relies
on a hidden assumption: k should not be too small compared to w.

Practical Constructions of Minimizer Sketches. Most of the prior methods for constructing
practical low-density minimizer sketches take the route of creating UHS-compatible minimizer
sketches. That is, they first construct a compact universal hitting set (small cardinality or relative
size, implying tight density upper bounds), then use a compatible minimizer sketch for the actual
sketching part. The DOCKS paper [85] proposes the idea of using universal hitting sets to con-
struct low-density minimizers, and establishes the connection between the relative size of UHSes
and density of compatible minimizer sketches. The DOCKS [85] and ReMuVal [24] algorithms
are heuristics to generate compact universal hitting sets (again, these are UHSes with small rela-
tive size leading to low density). Both algorithms use the Mykkeltveit set [82], a special subset of
k-mers that can be seen as a minimal UHS with sufficiently large window length w, as a starting
point. ReMuVal algorithm was proposed to construct UHSes with larger k from smaller k, and
it starts with a Mykkeltveit set with a lower order. These methods are later improved by Ekim
et al. [28] to enable better scaling. It enables construction of UHSes up to k = 16, at which point
even storing the universal hitting sets becomes a significant issue.

Depending on the application, some other variants of minimizer sketches have been proposed.
These sketches are not explicitly designed with minimizing density in consideration. Frequency-
based orders are examples of sequence-specific minimizer sketches [21, 46]. In these construc-
tions, k-mers are ordered by their occurrence frequency, with rarer k-mers placing lower in the
minimizer ordering. The intuition is to select rare k-mers as they should be spread apart in the
sequence, hence giving a sparse sampling. Winnowmap [46] uses a two-tier classification (very
frequent vs. less frequent k-mers), and combined with a weighted hash function to introduce
randomness into the ordering, achieves better performance compared to strictly frequency-based
orders. Finally, Syncmers [26] are generalizations of minimizer sketches for which the win-
dow guarantee does not necessarily hold. They are shown to be effective sketches for sequence
identity conservation in several applications.
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1.5 Our Contribution

1.5.1 Theoretical Foundation of Low-Density Minimizer Sketches

The prior theoretical work on universal hitting sets and minimizer sketches are severely lacking.
We have very limited idea how minimizer sketches perform (measured in density) outside of
very extreme cases (except the case where we make some assumptions). Finding asymptotically
optimal minimizer sketches, that is, minimizer sketches with density O(1/w), has also been long
an open problem. Our first major contribution is a complete resolution of this open problem.
More specifically, we show that

• A sufficient and necessary condition that asymptotically optimal minimizer sketch exists:
When we treat k as a growing function of w, the length of the k-mers needs to grow at
least as fast as the logarithm of the window size.

• The lexicographcial minimizer is in fact asymptotically optimal.
The second result is interesting, in the sense that it reveals a sizable gap between the theory

and the practice of minimizers. The lexicographic minimizers are optimal for asymptotic density.
However, in practice, they are usually considered the worst minimizers and are avoided. Another
example of such gap is that prior state-of-the-art methods for practical low-density minimizers
(like those generating low-density minimizer sketches with UHSes) only provide weak density
guarantees.

We also strengthen the statement in Schleimer et al. [103], which says the density of a random
minimizer is 2/(w+ 1) under some assumptions on k-mer distribution. We are able to provide a
theorem to the same effect, but with very explicit assumptions on the value of k. Although still
in asymptotic small-o notation, this provides assurance that practical random minimizer sketches
indeed achieve density close to 2/(w + 1).

Our contribution to the theoretical front of minimizer research also includes interesting struc-
tural lemmas for Mykkeltveit sets and local schemes.

Mykkeltveit sets, as described before, are minimal UHSes when the windows are sufficiently
long. More precisely speaking, they are minimal decycling sets for the corresponding de Bruijn
graph. A natural question is thus how long are the remaining paths in the de Bruijn graph after
removing the Mykkeltveit k-mers, and more specifically, if the remaining path length is O(k).
If that hypothesis were true, we would be able to construct instances of asymptotically optimal
minimizers by simply using minimizer schemes compatible with the original Mykkeltveit set
(without any of the modifications that are done in existing methods). We answer this in the
negative, and show that the remaining path length is asymptotically bounded between k2 and k3.
To achieve this, we develop a novel complex plane embedding of the de Bruijn graph, where
edges become rotations on the complex plane and a potential function characterizes paths in the
de Bruijn graph not touching Mykkeltveit k-mers.

Finally, local schemes are natural extensions of minimizer schemes. They can be seen as
the minimal implementation of sequence location selection methods that satisfy the window
guarantee, i.e. if two sequences share a window, the same k-mer is present in the respective
sketches. More concretely, a local scheme is an arbitrary function from window sequences to
a location within the window. We establish several structural lemmas between UHSes, local
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schemes and minimizers, including an explicit two-way connection between UHSes and local
schemes, which provides some hint that optimizing a local scheme might not be significantly
harder than optimizing a UHS.

In general, these results give a solid theoretical foundation for better characterization and
optimization of low-density minimizers, compact universal hitting sets, and potentially future
low-density local schemes.

1.5.2 Sequence-Blind Low-Density Minimizer Sketches
As revealed in the last section, random minimizer sketches have approximately density of 2/(w+
1) in most practical cases; An intuitive explanation is that a random minimizer selects around
two k-mers per window. It is natural to wonder how can we beat this baseline, that is, if we can
get a minimizer sketch that selects less than two k-mers per window (preferably down to one
k-mer, which is the absolute minimum to still meet the window guarantee).

Earlier analyses [74] proved that when k ≫ w, constructions of minimizer sketches exist
that achieve almost optimal density of 1/w (one k-mer per window), but the scenario is unlikely
in practice. Another analysis [73] can potentially bound density of universal hitting set derived
minimizer sketches away from 2/(w + 1). However, closer inspection reveals that the approach
depends on certain assumptions that are likely not true for practical scenarios (See Section 4.2.1).
Earlier methods based on universal hitting sets are able to empirically achieve lower density, but
there are no guarantee on the relative size of the universal hitting set, and thus no guarantee on
the density. It was an open question whether there exists a minimizer sketch that is strictly better
than a random minimizer sketch outside of the restrictive configuration of k ≫ w.

We answer this open question in the affirmative. We provide a construction of minimizer
sketches called the Miniception, with expected density on a random string of 1.67/w + o(1/w)
when k ≈ w. This is an example of minimizer sketches with guaranteed density < 2/(w + 1)
that works for infinitely many w and k, not just an ad-hoc example working for one or a small
number of parameters w and k. This is also the first example of a family of minimizers with
guaranteed expected density < 2/(w + 1) that works when k ≈ w instead of the less practical
case of k ≫ w.

The construction and analysis of the Miniception critically relies on a concept called charged
windows with related properties. More specifically, a charged window of a minimizer is a
window where the first or the last k-mer is selected as the minimizer. In the first part of
the dissertation, we show that the set of charged windows is itself a universal hitting set over
(w+k−1)−mers. (This is in fact a special case of the local schemes’ structural lemma, as noted
in the last section.) The name Miniception pays tribute to the 2010 movie Inception directed by
Christopher Nolan, where the stage is set at dreams that are within other dreams. In constructing
the Miniception, we are essentially taking one minimizer sketch and using its set of charged win-
dows to build another minimizer sketch, thus having a minimizer inside a minimizer (and just
like the setup in the movie, the process can be repeated if desired).

Moreover, unlike other methods with low density in practice [24, 28, 85], the Miniception
does not require the use of expensive heuristics to precompute and store a large set of k-mers.
Selecting k-mers with the Miniception is as efficient as a selecting k-mers with a random mini-
mizer using a hash function and does not require any additional storage. It is our belief that the
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Miniception is a versatile method and can see more use in practice.

1.5.3 Sequence-Specific Low-Density Minimizer Sketches
Most of prior work on low-density minimizers concentrates on the sequence-blind scenario. The
sequence-blind scenario focuses on the “average” scenario where the input sequence for sketch-
ing is essentially random. For computational genomic applications though, the more “average”
case might be where we are sketching a particular sequence such as the reference genome, which
falls into the sequence-specific scenario as we describe before. However, constructions of low-
density minimizer sketches have been much less understood in sequence-specific scenario, and
there are cases where sequence-specific density can be much lower than the (expected) density
for a minimizer sketch. Additionally, the Miniception sees its performance degrade significantly
when w becomes larger than k, which is in fact a common configuration in practice. Con-
structions of low-density minimizers in these configurations, even if only for sequence-specific
scenarios, are desirable.

A second motivation for this aim is the prevalence of universal hitting set based approaches.
While the framework is elegant, it has critical shortcomings making it infeasible for analysis in
many scenarios. In general, prior methods for low-density minimizer schemes start with con-
struction of a compact universal hitting set. While the relative size of the UHS is indeed a upper
bound of the resulting density, the bound is one-sided and can in many cases become loose. In
such scenarios, the existing methods risk optimizing for a irrelevant objective. Worse, when the
window length is somewhat large compared to k-mer length (w ≥ 2k approximately), the den-
sity bound provided by UHS guarantees are essentially useless. Alternatives to this framework
can be helpful for method development of low-density minimizer sketches.

In this part of the dissertation, our contribution is twofold.
First, we propose the concept of polar sets. They can be seen as complementary ideas to the

universal hitting sets: while a UHS is a set of k-mers that intersects with every w-long window
at least once, a polar set is a set of k-mers that intersect with any window at most once. The
name “polar set” is an analogy to a set of polar opposite magnets that cannot be too close to one
another. More succinctly speaking, our construction builds upon sets of k-mers that are sparse
in the sequence of interest. This property allows us to derive tight bounds on sequence-specific
density of compatible minimizer sketches, using simple measurements called the link energy
over the polar sets. In comparison, while we can simply measure the size of a universal hitting
set and use it as a upper bound on the density of compatible minimizer sketches, the bound is not
tight on both sides and becomes useless in cases described above.

Second, we show that the problem of finding a polar set with maximum total link energy
is, unsurprisingly, NP-hard, and describe heuristics to create polar sets that provably lead to
minimizer sketches with low specific density. A generalization called layered polar sets is also
needed for performance reasons, although the core concept and theory remains the same. We
show that our implementation of these heuristics generates minimizers that have specific density
on the human reference genome much lower than any other previous methods, and, for some
parameter choices, relatively close to the theoretical minimum. While the polar set method does
not universally work for all possible parameter choices of w and k due to its own set of inherent
issues, the proposal of polar sets and associated heuristics can serve as important first steps in
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efficient and practical optimization of low density minimizer sketches.

1.6 Significance
In this dissertation, we focus on minimizer sketches. This sketch has seen extensive use in various
aspects in computational genomics, but the research on the sketching method itself is less exten-
sive compared to its usage. Broadly speaking, our work answers questions regarding theoretical
guarantees and practical optimization of minimizer sketch performance. Our work settles open
conjectures, proposes novel algorithms for optimization, and perform rigorous benchmarking to
put the results into practical context. We believe both the results presented in this dissertation,
as well as the techniques that lead to the results, are valuable for the research community to fur-
ther understand and optimize minimizer sketches, and to play a larger role in this era of big data
genomics.

13



14



Chapter 2

Theoretical Foundation of Low-Density
Minimizer Sketches

This chapter describes our work work on the theoretical front of design and analysis of low-
density minimizers.

Section 2.1 contains notations and a brief overview of our results. From here, this chapter
can be further divided into three smaller parts.

The first part consists of Section 2.2 and Section 2.3. We will start by presenting several
theorems establishing stronger connections between minimizers, universal hitting sets and gen-
eralizations of minimizers called forward/local schemes in Section 2.2. Underlying the theorems
is the core concept of charged contexts, which itself is a generalization of charged windows as
proposed in Schleimer et al. [103] to local schemes. These results serve as cornerstones of later
analyses. Section 2.3 constructs and measures the size of a forbidden word universal hitting set.
We present this result because it is the stepping stone to the next set of results.

The second part deals with the Mykkeltveit set and contains Section 2.4, Section 2.5 and
Section 2.6. As discussed before, Mykkeltveit sets are minimal decycling sets, and thus minimal
universal hitting sets for sufficiently large value of w. However, the window length at which
Mykkeltveit sets become universal hitting sets is still unknown. In Section 2.4, we present our
slightly modified construction of the Mykkeltveit set and its embedding to the complex plane.
In Section 2.5, we upper bound the longest path length for our modified Mykkeltveit set, and in
Section 2.6 we present the lower bound.

Finally, in the last part, Section 2.7, we present results on lexicographical and random min-
imizers, settling lexicographical minimizer sketches as asymptotically optimal, and fixing the
densities of random minimizer sketches as 2/(w + 1) + o(1/w) in certain scenarios.

A version of this chapter except Section 2.7 is published in RECOMB 2020 [130]. A version
of Section 2.7 (alongside the next chapter) is published in ISMB 2020 [128].

2.1 Notation and Overview
For the first section, we will use the phrase “minimizer scheme” to refer to minimizer sketches,
to keep in line with its extensions which are called “local scheme” and “forward scheme”.
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Universal hitting sets. Consider a finite alphabet Σ = {0, . . . , σ − 1} with σ ≥ 2 elements. If
a ∈ Σ, ak denotes the letter a repeated k times. We use Σk to denote the set of strings of length
k on alphabet Σ, and call them k-mers. If S is a string, S[n, l] denotes the substring starting at
position n and of length l. For a k-mer a ∈ Σk and an l-long string S ∈ Σl, we say “a hits S” if
a appears as substring of S (a = S[i, k] for some i). For a set of k-mers A ⊆ Σk and S ∈ Σl,
we say “A hits S” if there exists at least one k-mer in A that hits S. A set A ⊆ Σk is a universal
hitting set for length L if A hits every string of length L.

The concept of universal hitting sets also appear in classical combintoratics as unavoidable
words [17, 101] with constant length. Other researches in this line extends the concept to partial
k-mers and/or variable length substrings [10, 16, 40].

de Bruijn graphs. Many questions regarding strings have an equivalent formulation with graph
terminology using de Bruijn graphs. The de Bruijn graph BΣ,k on alphabet Σ and of order k has
a node for every k-mer, and an edge (u, v) for every string of length k+1 with prefix u and suffix
is v. There are σk vertices and σk+1 edges in the de Bruijn graph of order k.

There is a one-to-one correspondence between strings and paths inBΣ,k: a path with w nodes
corresponds to a string of L = w + k − 1 characters. A universal hitting set A corresponds to
a depathing set of the de Bruijn graph: a universal hitting set for k and L intersects with every
path in the de Bruijn graph with w = L − k + 1 vertices. We say “A is a (α, l)-UHS” if A is a
set of k-mers that is a universal hitting set, with relative size α = |A|/σk and hits every walk of
l vertices (and therefore every string of length L = l + k − 1).

A de Bruijn sequence is a particular sequence of length σk+k−1 that contains every possible
k-mer once and only once. Every de Bruijn graph is Hamiltonian and the sequence spelled out
by a Hamiltonian tour is a de Bruijn sequence.

Generalization of minimizer schemes. A local scheme [103] is a method to select positions
in a string. A local scheme is parameterized by a selection function f . It works by looking
at every w-mer of the input sequence S: S[0, w], S[1, w], . . ., and selecting in each window a
position according to the selection function f . The selection function selects a position in a
window of length w, i.e., it is a function f : Σw → [0 : w − 1]. The output of a local scheme
when applied to sketch a sequence is (similarly to minimizers) the set of selected positions:
{i+ f(S[i, w]) | 0 ≤ i < |S| − w}.

A forward scheme is a local scheme with a selection function such that the selected positions
form a non-decreasing sequence. That is, if ω1 and ω2 are two consecutive windows in a sequence
S, then f(ω2) ≥ f(ω1)− 1.

A minimizers scheme is scheme where the selection function takes in the sequence of w con-
secutive k-mers and returns the “minimum” k-mer in the window (hence the name minimizers).
The minimum is defined by a predefined order on the k-mers (e.g., lexicographic order) and the
selection function is f : Σw+k−1 → [0 : w − 1].

See Figure 2.1 for examples of all 3 schemes. The local scheme concept is the most general as
it imposes no constraint on the selection function, while a forward scheme must select positions
in a non-decreasing way. A minimizers scheme is the least general and also selects positions in
a non-decreasing way.
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(a)

CACTGCTGTACCTCTTCT

CACTGCT-----------
-ACTGCTG----------
--CTGCTGT---------
---TGCTGTA--------
----GCTGTAC-------
-----CTGTACC------
------TGTACCT-----
-------GTACCTC----
--------TACCTCT---
---------ACCTCTT--
----------CCTCTTC-
-----------CTCTTCT

(b)

CACTGCTGTACCTCTTCT

CACTGCT-----------
-ACTGCTG----------
--CTGCTGT---------
---TGCTGTA--------
----GCTGTAC-------
-----CTGTACC------
------TGTACCT-----
-------GTACCTC----
--------TACCTCT---
---------ACCTCTT--
----------CCTCTTC-
-----------CTCTTCT

(c)

CACTGCTGTACCTCTTCT

CACTGCT-----------
-ACTGCTG----------
--CTGCTGT---------
---TGCTGTA--------
----GCTGTAC-------
-----CTGTACC------
------TGTACCT-----
-------GTACCTC----
--------TACCTCT---
---------ACCTCTT--
----------CCTCTTC-
-----------CTCTTCT

Figure 2.1: Examples of minimizers, local schemes, and forward schemes. (a) Example of
selecting minimizers with k = 3, w = 5 and the lexicographic order (i.e., AAA < AAC <
AAG < . . . < TTT). The top line is the input sequence, each subsequent line is a 7-bases
long window (the number of bases in a window is w + k − 1 = 7) with the minimum 3-mer
highlighted. The positions {1, 2, 5, 9, 10, 11} are selected for a density d = 6/(18 − 3 + 1) =
0.375. (b) On the same sequence, an example of a selection scheme for w = 7 (and k = 1
because it is a selection scheme, hence the number of bases in a window is also w). The set
of positions selected is {1, 6, 7, 8, 11, 13, 14}. This is not a forward scheme as the sequence of
selected position is not non-decreasing. (c) A forward selection scheme for w = 7 with selected
positions {1, 7, 8, 12, 13}. Like the minimizers scheme, the sequence of selected positions is
non-decreasing.

Selection schemes. A forward or local selection scheme is a forward or local scheme with
k = 1. Selection schemes thus have a single numeric parameter w as the word length. Local and
forward schemes were originally defined [74] with a function defined on a window of w k-mers,
f : Σw+k−1 → [0 : w − 1], similarly to minimizers. While the notion of k-mer is central to the
definition of the minimizers schemes, it has no particular meaning for a local or forward scheme:
these schemes select positions within each window of a string S, and the sequence of the k-mers
at these positions is no more relevant than sequence elsewhere in the window to the selection
function. Thus, we do not consider minimizer schemes with k = 1 for this part.

There are multiple reasons to consider selection schemes. First, they are slightly simpler than
general local or forward schemes as they have only one parameter, namely the window length w.
Second, in our analysis we consider the case where w is asymptotically large, therefore w ≫ k
and the setting is similar to having k = 1. Finally, this simplified problem of optimizing den-
sity of selection schemes still provides information about the general problem of local schemes.
Suppose that f is the selection function of a selection scheme, for any k > 1 we can define
gk : Σw+k−1 → [0, w − 1] as gk(ω) = f(ω[0, w]). That is, gk is defined from the function f by
ignoring the last k−1 characters in a window. The functions gk define proper selection functions
for local schemes with parameter w and k, and because exactly the same positions are selected,
the density of gk is equal to the density of f . In the following sections, unless noted otherwise,
we use forward and local schemes to denote forward and local selection schemes.

17



Density. Because a local scheme on string S may pick the same location in two different win-
dows, the number of selected positions is usually less than |S| − w + 1. The specific density
of a scheme is defined as the number of distinct selected positions divided by |S| − w + 1 (see
Figure 2.1). The expected density, or simply the density, of a scheme is the expected density on
an infinitely long random sequence. Alternatively, the density is computed exactly by computing
the specific density on any de Bruijn sequence of order ≥ 2w − 1. In other words, a de Bruijn
sequence of large enough order “looks like” a random infinite sequence with respect to a local
scheme (see [73] and Section 2.2).

2.1.1 Overview of Theoretical Results
The density of a local scheme is in the range [1/w, 1], as 1/w corresponds to selecting exactly
one position per window, and 1 corresponds to selecting every position. Therefore, the density
goes from a low value with a constant number of positions per window (density is O(1/w),
which goes to 0 when w gets large), to a constant value (density is Ω(1)) where the number of
positions per window is proportional to w. When the minimizers and winnowing schemes were
introduced in Roberts et al. [95] and Roberts et al. [96], both papers used a simple probabilistic
model to estimate the expected density to 2/(w + 1), or about 2 positions per window. Under
this model, this estimate is within a constant factor of the optimal, it is O(1/w).

Unfortunately, this simple model properly accounts for the minimizers behavior only when
k and w are small. For large k —i.e., k ≫ w— it is possible to create almost optimal mini-
mizers scheme with density ∼ 1/w. More problematically, for large w —i.e., w ≫ k— and
for all minimizer schemes the density becomes constant (Ω(1)) [74]. In other words, minimizers
schemes cannot be optimal or within a constant factor of optimal for large w, and the estimate of
2/(w + 1) is very inaccurate in this regime.

This motivates the study of forward schemes and local schemes. It is known that there exists
forward schemes with density of O(1/

√
w) [74] (this is for a selection scheme, and from our

previous argument it works for arbitrary values of k). This density is not within a constant factor
of the optimal density but at least shows that forward and local schemes do not have constant
density like minimizers schemes for large w and that they can have much lower density.

Connection between UHS and selection schemes. In the study of selection schemes, as for
minimizers schemes, universal hitting sets play a central role. We describe the link between
selection schemes and UHS, and show that the existence of a selection scheme with low density
implies the existence of a UHS with small relative size.
Theorem 1. Given a local scheme f on w-mers with density df , we can construct a (df , w) −
UHS on (2w − 1)-mers. If f is a forward scheme, we can construct a (df , w) − UHS on
(w + 1)-mers.

Almost-optimal relative size UHS for linear path length. Conversely, because of their link
to forward and local selection schemes, we are interested in universal hitting sets with remain-
ing path length O(w). Necessarily, a universal hitting hits any infinitely long sequences. On
de Bruijn graphs, a set hitting every infinitely long sequences is a decycling set: a set that
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intersects with every cycle in the graph. In particular, a decycling set must contain an el-
ement in each of the cycles obtained by the rotation of the w-mers (e.g., cycle of the type
001 → 010 → 100 → 001). The number of these rotation cycles is known as the “necklace
number” Nσ,w = 1

n

∑
d|w φ(d)σ

w/d = O(σw/w) [100], where φ(d) is the Euler’s totient func-
tion.

Consequently, the relative size of a UHS, which need to contain at least one element from
each of these cycles, is lower-bounded by O(1/w). The smallest previously known UHS with
O(w) remaining path length has a relative size of O(

√
w/w) [74]. We construct a smaller uni-

versal hitting set with relative size O(ln(w)/w):
Theorem 2. For every sufficiently largew, there is a forward scheme with density ofO(ln(w)/w)
and a corresponding (O(ln(w)/w), w)-UHS.

This will be improved to O(1/w) later in Section 2.7.

Remaining path length bounds for the Mykkeltveit sets. Mykkeltveit [82] gave an explicit
construction for a decycling set with exactly one element from each of the rotation cycles, and
thereby proved a long standing conjecture [100] that the minimal size of decycling sets is equal
to the necklace number. Under the UHS framework, it is natural to ask what the remaining path
length for Mykkeltveit sets is. Given that the de Bruijn graph is Hamiltonian, there exists paths
of length exponential in w: the Hamiltonian tours have σw vertices. Nevertheless, we show that
the remaining path length for Mykkeltveit sets is upper- and lower-bounded by polynomials of
w:
Theorem 3. For sufficiently large w, the Mykkeltveit set is a (Nσ,w/σ

w, g(w))-UHS, having the
same size as minimal decycling sets, while g(w) = O(w3) and g(w) > cw2 for some constant c.

The proof will be presented in Section 2.5 and Section 2.6.

Asymptotically Optimal Minimizers. We prove that to have asymptotically optimal minimiz-
ers (i.e., minimizers with density of O(1/w)), the value k (for the k-mers) must be sufficiently
large compared to the length w of the windows, and that this condition is necessary and suffi-
cient. To be more precise, we treat k as a function of w, and study the density as w grows to
infinity. We show that the lexicographic minimizers are asymptotically optimal provided that k
is large enough. Formally:
Theorem 4. For k ≥ logσ(w)− c with constant c, the lexicographic minimizer achieves density
of O(1/w). Otherwise, no minimizer can achieve density of O(1/w).

This result may be surprising as in practice the lexicographic minimizers have high density
([73, 96] and see our discussion). It also has the effect of improving Theorem 2 fromO(ln(w)/w)
to O(1/w), because lexicographical minimizers are also forward schemes. One interpretation of
Theorem 4 is that asymptotically, all minimizers behave the same regarding density.

Density of Random Minimizers. The constant hidden in the big-O notation of Theorem 4
may also be too large for practical use. When k is slightly larger than what’s in Theorem 4, we
can guarantee a density of 2/(w + 1) + o(1/w):
Theorem 5. For k > (3+ ϵ) logσ(w+1), the expected density of a random minimizer is 2/(w+
1) + o(1/w).
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Interestingly, this leads to the following result for universal hitting sets which might be of
independent interest:
Lemma 1. For sufficiently large k and for arbitrary w, there exists an efficient randomized
algorithm to generate a (2+o(1))-approximation of a minimum-size UHS over k-mers with path
length w.

2.2 UHS from Selection Schemes

2.2.1 Contexts and Densities of Selection Schemes
We derive another way of calculating densities of selection schemes based on the idea of contexts.

Recall a local scheme is defined as a function f : Σw → [0, w − 1]. For any sequence S
and scheme f , the set of selected locations are {f(S[i, w]) + i} and the density of f on the
sequence is the number of selected locations divided by |S| − w + 1. Counting the number
of distinct selected locations is the same as counting the number of w-mers S[i, w] such that f
picks a new location from all previous w-mers. f can pick identical locations on two w-mers
only if they overlap, so intuitively, we only need to look back (w − 1) windows to check if the
position is already picked. Formally, f picks a new position in window S[i, w] if and only if
f(S[i, w]) + i ̸= f(S[i− d, w]) + (i− d) for all 1 ≤ d ≤ w − 1.

For a location i in sequence S, the context at this location is defined as ci = S[i − w +
1, 2w − 1], a (2w − 1)-mer whose last w-mer starts at i. Whether f picks a new position in
S[i, w] is entirely determined by its context, as the conditions only involve w-mers as far back as
S[i− w + 1, w], which are included in the context. This means that instead of counting selected
positions in S, we can count the contexts c satisfying f(c[w − 1, w]) + w − 1 ̸= f(c[j, w]) + j
for all 0 ≤ j ≤ w − 2, which are the contexts such that f on the last w-mer of c picks a new
location. We denote by Cf ⊂ Σ2w−1 the set of contexts that satisfy this condition.
Definition 1. For given w and local selection scheme f : Σw → [0, w − 1], Cf = {c ∈ Σ2w−1 |
∀0 ≤ i ≤ w − 2, f(c[w − 1, w]) + (w − 1) ̸= f(c[i, w]) + i} is a subset of Σ2w−1.

The expected density of f is computed as the number of selected positions over the length of
the sequence for a random sequence, as the sequence becomes infinitely long. For a sufficiently
long random sequence (|S| ≫ w), the distribution of its contexts converges to a uniform random
distribution over (2w−1)-mers. Because the distribution of these contexts is exactly equal to the
uniform distribution on a circular de Bruijn S sequence of order at least 2w−1, we can calculate
the expected density of f as the density of f on S, or as |Cf |/σ2w−1.

2.2.2 Charged Contexts are Universal Hitting Sets
The set Cf over (2w − 1)-mers is the UHS needed for Theorem 1.
Lemma 2. Cf is a UHS with remaining path length of at most w − 1.

Proof. By contradiction, assume there is a path of length w in the de Bruijn graph of order
(2w − 1), say {c0, c1, · · · , cw−1}, that avoids C. We construct the sequence S ′ corresponding to
the path: S ′ ∈ Σ3w−2 such that S ′[i, 2w − 1] = ci.
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Since cw−1 /∈ C and S ′ includes cw−1, it means f on the last w-mer of cw−1 (which is S ′[2w−
2, w]) picks a location that has been picked before on S ′. The coordinate l of this selection in S ′

satisfies l ≥ 2w− 2. As 0 ≤ f(x) ≤ w− 1, the first w-mer S ′[m,w] in S ′ such that f picks S ′[l]
(that is,m+f(S ′[m,w]) = l) satisfiesm ≥ w−1. The context cm−w+1 = S ′[m−(w−1), 2w−1]
then satisfies that a new location l is picked when f is applied to its last w-mer, and by definition
cm−w+1 ∈ C, contradiction.

This result is a direct consequence of how C is defined. We can also prove this lemma in a
more brute force way as follows:

Proof. (Alternative Proof for Lemma 2.) Assume there exists a path {c0, c1, · · · , cw−1} in the
de Bruijn graph of order 2w − 1 that avoids C. As cw−1 /∈ C, there exists some indices v such
that f(cw−1[w − 1, w]) + (w − 1) = f(cw−1[v, w]) + v. Let i be the smallest v satisfying this
property.

As ci /∈ C, there exists some indices j such that f(ci[w− 1, w]) + (w− 1) = f(ci[j, w]) + j.
Now, note that ci[w − 1, w] = cw−1[i, w], so they have the same value of f . These two terms are
underlined below:

f(cw−1[w − 1, w]) + (w − 1) = f(cw−1[i, w]) + i

f(ci[w − 1, w]) + (w − 1) = f(ci[j, w]) + j

2(w − 1)− i− j = f(ci[j, w])− f(cw−1[w − 1, w]) ≤ w − 1

i+ j − w + 1 ≥ 0

Let t = i + j − w + 1. Since i, j ∈ [0, w − 2], t = i + j − w + 1 < w − 1, so it is a valid
index between 0 and w − 2. We now note that:

f(cw−1[w − 1, w]) + (w − 1) = f(cw−1[i, w]) + i

= f(ci[w − 1, w]) + (w − 1) + i− w + 1

= f(ci[j, w]) + j + i− w + 1

= f(cw−1[t, w]) + t

Since j < w− 1, we have t < i, contradicting with the fact that i is the smallest index satisfying
f(cw−1[w − 1, w]) + (w − 1) = f(cw−1[v, w]) + v.

When f is a forward scheme, to determine if a new location is picked in a window, looking
back one window is sufficient. This is because if we do not pick a new location, we have to pick
the same location as in last window. This means context with two w-mers, or as a (w + 1)-mer,
is sufficient, and our other arguments involving contexts still hold. Combining the pieces, we
prove the following theorem:
Theorem 1. Given a local scheme f on w-mers with density df , we can construct a (df , w) −
UHS on (2w − 1)-mers. If f is a forward scheme, we can construct a (df , w) − UHS on
(w + 1)-mers.
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2.3 Forbidden Word Depathing Set

2.3.1 Construction and Path Length

In this section, we construct a set that is a (O(ln(w)/w), w)− UHS.
Definition 2 (Forbidden Word UHS). Let d = ⌊logσ(w/ ln(w))⌋ − 1. Define Fσ,w as the set
of w-mers that satisfies either of the following clauses: (1) 0d is the prefix of x (2) 0d is not a
substring of x.

We assume that w is sufficiently large such that d ≥ 1.
Lemma 3. The longest remaining path in the de Bruijn graph of order w after removing Fσ,w is
w − d.

Proof. Let {x0, x1, · · · , xw−d} be a path of length w−d+1 in the de Bruijn graph. If x0 does not
have a substring equal to 0d, it is in Fσ,w. Otherwise, let c be the index such that x0[c, d] = 0d.
Since c ≤ w − d, xc[0, d] = 0d and xc is in Fσ,w.

On the other hand, let S = 1w−d0d1w−d−1 ∈ Σ2w−d−1 and xi = S[i, w] for 0 ≤ i < w − d.
None of {xi} is in Fσ,w, meaning there is a path of length w − d in the remaining graph.

Lemma 4. The relative size of the set ofw-mers satisfying clause 1 of Definition 2 isO(ln(w)/w).

Proof. The number of w-mer satisfying clause 1 is σw−d = O(ln(w)σw/w).

For the rest of this section, we focus on counting w-mers satisfying clause 2 in Definition 2,
that is, the number ofw-mers not containing 0d as this is the last part required for characterization
of the forbidden word set.

2.3.2 Number of w-mers not Containing Consecutive Zeroes

We construct a finite state machine (FSM) that recognizes 0d as follows. The FSM consists of
d+1 states labeled “0” to “d”, where “0” is the initial state and “d” is the terminal state. The state
“i” with 0 ≤ i ≤ d−1 means that the last i characters were 0 and d− i more zeroes are expected
to match 0d. The terminal state “d” means that we have seen a substring of d consecutive zeroes.
If the machine is at non-terminal state “i” and receives the character 0, it moves to state “i+ 1”,
otherwise it moves to state “0”; once the machine reaches state “d”, it remains in that state
forever. See Figure 2.3.2 for an example.

Now, assume we feed a random w-mer to the finite state machine. The probability that the
machine does not reach state “d” for the input w-mer is the relative size of the set of w-mer
satisfying clause 2 of Definition 2. Denote pk ∈ Rd such that pk(j) is the probability of feeding
a random k-mer to the machine and ending up in state “j”, for 0 ≤ j < d (note that the vector
does not contain the probability for the terminal state “d”). The answer to our problem is then
∥pw∥1 =

∑d−1
i=0 pw(i), that is, the sum of the probabilities of ending at a non-terminal state.

Define µ = 1/σ. Given that a randomly chosen w-mer is fed into the FSM, i.e., each base is
chosen independently and uniformly from Σ, the probabilities of transition in the FSM are: “i”
→ “i + 1” with probability µ, “i”→ “0” with probability 1 − µ. The probability matrix to not
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Figure 2.2: Construction of the finite state machine that recognizes 0d. Different color indicates
edge with different transition probability. State 0 is the initial state and state d is the terminal
state.

recognize 0d is a d× d matrix, as we discard the row and column associated with terminal state
“d”:

Ad =


1− µ 1− µ . . . 1− µ 1− µ
µ 0 . . . 0 0
0 µ . . . 0 0
...

... . . . ...
...

0 0 . . . µ 0


d×d

=

[
(1− µ)1T

d−1 1− µ
µId−1 0d−1

]

Starting with p0 = (1, 0, . . . , 0) ∈ Rd as initially no sequence has been parsed and the
machine is at state “0” with probability 1, we can compute the probability vector pw as pw =
Adpw−1 = Aw

d p0.

2.3.3 Bounding 1-norm of the State Vector

We start by deriving the characteristic polynomial pAd
(λ) of Ad and its set of roots (which are

the eigenvalues of Ad):
Lemma 5.

pAd
(λ) = det(Ad − λI) =

{
(−1)d λd+1−λd−µd+1+µd

λ−µ
λ ̸= µ

(−µ)d−1((1− µ)d− µ) λ = µ

Proof. The characteristic polynomial of Ad satisfies the following recursive formula, obtained
by expanding the determinant over the first column and using the linearity of the determinant:

det(Ad − λId) =

∣∣∣∣∣∣∣∣∣∣∣

1− µ− λ 1− µ 1− µ · · · 1− µ
µ −λ 0 · · · 0
0 µ −λ · · · 0
...

...
... . . . ...

0 0 0 · · · −λ

∣∣∣∣∣∣∣∣∣∣∣
d×d

=(1− λ)(−λ)d−1 − µpAd−1
(λ).

For d = 1, we have pA1(λ) = 1 − µ − λ. Assuming λ ̸= µ for now, we repeatedly expand
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the recursive formula to obtain a closed form formula for pAd
(λ):

pAd
(λ) = (1− λ)

[
(−λ)d−1 + (−µ)1(−λ)d−2 + · · ·+ (−µ)d−2(−λ)1 + (−µ)d−1

]
+ (−µ)d (∗)

= (−1)d
[
(λ− 1)

λd − µd

λ− µ
+ µd

]
= (−1)dλ

d+1 − λd − µd+1 + µd

λ− µ

The value for the characteristic polynomial when λ = µ can be derived by plugging λ = µ in the
line marked with (∗) to obtain pAd

(λ) = (1− µ)dµd−1 + (−µ)d.

Now we fix d and focus on the polynomial fd(λ) = λd+1 − λd − µd+1 + µd. Since this is a
polynomial of degree d + 1, it has d + 1 roots. fd and pAd

have the same roots except µ, which
is a root of fd but not of pAd

.
Lemma 6. For sufficiently large d, fd(λ) has a real root λ0 satisfying 1− µd < λ0 < 1− µd+1.

Proof. We show fd has opposite signs on the lower and upper bound of this inequality for suffi-
ciently large d.

fd(1− µd) = (1− µd)d+1 − (1− µd)d − µd+1 + µd

= 1− (d+ 1)µd +O(µ2d)− 1 + dµd −O(µ2d)− µd+1 + µd

= −µd+1 +O(µ2d) < 0

fd(1− µd+1) = (1− µd+1)d+1 − (1− µd+1)d − µd+1 + µd

= 1− (d+ 1)µd+1 + C(d+ 1, 2)µ2d+2 +O(µ3d+6)

− 1 + dµd+1 − C(d, 2)µ2d+2 −O(µ3d+6)− µd+1 + µd

= −2µd+1 + µd + dµ2d+2 +O(µ3d+6) > 0

For the last line, if σ = 2 the first two terms cancel out and dµ2d+2 becomes dominant and
positive, otherwise µd = σµd+1 > 2µd+1. Since fd is polynomial, fd is continuous and thus has
a root between 1− µd and 1− µd+1.

Lemma 7. Let s = µ/λ0. ν0 = (1, s, s2, . . . , sd−1) is the right eigenvector of Ad corresponding
to eigenvalue λ0, and ∥ν0∥1 < 3 for sufficiently large d.

Proof. For the first part, we need to verify Adν0 = λ0ν0. For indices 1 ≤ i < d, (Adν0)i =
µ(ν0)i−1 = µsi−1 = λ0s

i = (λ0ν0)i. For the first element in the vector, we have:

(Adν0)0 − (λ0ν0)0 = (1− µ)(1 + s+ · · ·+ sd−1)− λ0

=
(1− µ)(sd − 1)− λ0(s− 1)

s− 1

=
λd0(µ

d − λd0 − µd+1 + λd+1
0 )

s− 1

=
λd0fd(λ0)

s− 1
= 0.
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This verifies Adν0 = λ0ν0. For the second part, note that for sufficiently large d we have λ0 >
1 − µd > 0.9 and since µ ≤ 0.5, we have s = µ/λ0 < 2/3. Every element of ν0 is positive, so
∥ν0∥1 =

∑d−1
i=0 s

i <
∑∞

i=0 s
i = 1/(1− s) < 3.

Lemma 8. ∥pw∥1 = ∥Aw
d p0∥1 = O(1/w).

Proof. Let η0 = ν0 − p0 = (0, s, s2, . . . , sd−1), where s = µ/λ0 from last lemma. Because λ0 >
0, the elements of η0 and Ad are all nonnegative, then the elements of Aw

d η0 and λ0η0 are also
nonnegative. Now, recall that d = ⌊logσ(w/ ln(w))⌋ − 1, which implies that µd+1 ≥ ln(w)/w.

∥pw∥1 = ∥Aw
d p0∥1

= ∥Aw
d (ν0 − η0)∥1

= ∥λw0 ν0 − Aw
d η0∥1 (ν0 is a eigenvector of Ad)

≤ λw0 ∥ν0∥1 (nonnegative elements)

< 3(1− µd+1)w (by Lemma 6 & 7)
≤ 3(1− ln(w)/w)w (by definition of d)
≤ 3 exp(− ln(w)) (1− x ≤ e−x)
= O(1/w).

These lemmas imply that the relative size for the set Fσ,w is dominated by the w-mers satis-
fying clause 1 of Definition 2 and Fσ,w is of relative size O(ln(w)/w). This completes the proof
that Fσ,w is a (O(ln(w)/w), w)− UHS.

2.4 The Mykkeltveit Set and Complex Embeddings

2.4.1 The Modified Mykkeltveit Embedding
In this section, we construct the Mykkeltveit setMσ,w and prove some important properties of
the set. We start with the definition of the Mykkeltveit embedding [82] of the de Bruijn graph.
Definition 3 (Modified Mykkeltveit Embedding). For a w-mer x, its embedding in the complex
plane is defined as P (x) =

∑w−1
i=0 xir

i+1
w , where rw is a wth root of unity: rw = e2πi/w.

Intuitively, the position of a w-mer x is defined as the following center of mass. The w roots
of unity form a circle in the complex plane, and a weight equal to the value of the base xi is set
at the root ri+1

w . The position of x is the center of mass of these w points and associated weights.
Originally, Mykkeltveit defined the embedding with weight riw [82]. This extra factor of rw in
our modified embedding rotates the coordinate and is instrumental for the upcoming analyses.

Define the successor function Sa(x) = x1x2 · · ·xw−1a, where a ∈ Σ. The successor function
can be used to obtain all the successors of x (that x has an outgoing edge pointing to) in the
de Bruijn graph. A pure rotation of x is the particular successorR(x) = Sx0(x), i.e., the sequence
of R(x) is a left rotation of x.

We focus on a particular kind of cycle in the de Bruijn graph. A pure cycle in the de Bruijn
graph, also known as conjugacy class is the sequence of w-mers obtained by repeated rotation:
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Figure 2.3: Mykkeltveit embedding and Weight-in embedding of order 5 on binary alphabet.
(a) Mykkeltveit embedding of the de Bruijn graph of order 5 on the binary alphabet. The nodes
of a conjugacy class have the same color and form a circle (there is more than one class per
circle). The pure rotations are represented by the red edges. A non-pure rotation Sa(x) is a
red edge followed by a horizontal shift (blue edge). The set of nodes circled in gray is the
Mykkeltveit set. (b) Weight-in embedding of the same graph. Multiple w-mers map to the same
position in this embedding and each circle represent a conjugacy class. The gray dots on the
horizontal axis are the w centers of rotations and the vertical gray lines going through the centers
separate the space in sub-regions of interest.

(x,R(x), R2(x), . . .). Each pure cycle consists of w distinct w-mers, unless x0x1 · · ·xw−1 is
periodic, and in this case the size of the cycle is equal to its shortest period.

The embeddings from pure rotations satisfy a curious property:
Lemma 9 (Rotations and Embeddings). P (R(x)) on the complex plane is P (x) rotated clock-
wise around origin by 2π/w. P (Sa(x)) is P (R(x)) shifted by δ = a − x0 on the real part, with
the imaginary part unchanged.

Proof. By Definition 3 and the the definition of successor function Sa(x):

P (Sa(x)) =
∑w−1

i=0 (Sa(x))ir
i+1
w

=
∑w−2

i=0 xi+1r
i+1
w + arw−1+1

w

= r−1
w

∑w−1
i=0 xir

i+1
w + (a− x0)

= r−1
w P (x) + δ

Note that for pure rotations δ = 0, and r−1
w P (x) is exactly P (x) rotated clockwise by 2π/w.

The range for δ is [−σ + 1, σ − 1]. In particular, δ can be negative. In a pure cycle, either
all w-mer satisfy P (x) = 0, or they lie equidistant on a circle centered at origin. Figure 2.3(a)
shows the embeddings and pure cycles of 5-mers. It is known that we can partition the set of all
w-mers into Nσ,k disjoint pure cycles. This means any decycling set that breaks every cycle of
the de Bruijn graph will be at least this large. We now construct our proposed depathing set with
this idea in mind.
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2.4.2 Constructing the Mykkeltveit Set
Definition 4 (Mykkeltveit Set). We construct the Mykkeltveit set Mσ,w as follows. Consider
each conjugacy class, we will pick one w-mer from each of them by the following rule:

1. If every w-mer in the class embeds to the origin, pick an arbitrary one.
2. If there is one w-mer x in the class such that Re(P (x)) < 0 and Im(P (x)) = 0 (on the

negative real axis), pick that one.
3. Otherwise, pick the unique w-mer x such that Im(P (x)) < 0 and Im(P (R(x))) > 0.

Intuitively, this is the w-mer in the cycle right below the negative real axis.
This set breaks every pure cycle in the de Bruijn graph by its construction, with an interesting

property:
Lemma 10. Let {xi} be a path on the de Bruijn graph that avoids Mσ,w. If Im(P (xi)) ≤ 0,
then for all j ≥ i, Im(P (xj)) ≤ 0.

Proof. It suffices to show that in the remaining de Bruijn graph after removingMσ,w, there are
no edges x → y such that Im(P (x)) ≤ 0 and Im(P (y)) > 0. The edge x → y means that
y = Sa(x) for some a. By Lemma 9, Im(P (R(x))) = Im(P (Sa(x))) = Im(P (y)) > 0.

• If we have Im(P (x)) < 0, by clause 3 of Definition 4, x ∈Mσ,w.
• If we have Im(P (x)) = 0 and Re(P (x)) < 0, by clause 2 of Definition 4, we have
x ∈Mσ,w.

• If we have Im(P (x)) = Re(P (x)) = 0, we would have Im(P (y)) = Im(P (R(x))) = 0, a
contradiction.

• If we have Im(P (x)) = 0 and Re(P (x)) > 0, P (x) lies on positive half of the real axis,
so rotating it clockwise by 2π/w degrees we would have Im(P (y)) = Im(P (R(x))) < 0,
a contradiction.

This enumeration covers all cases.

2.5 Upper Bounding the Remaining Path Length in Mykkeltveit
Sets

In this section, we show the remaining path after removingMσ,w isO(w3) long. This polynomial
bound is a stark contrast to the number of remaining vertices after removing the Mykkeltveit set
—i.e., (σw − Nσ,w) ∼ (1 − 1

w
)σw, which is exponential in w. Our main argument involves

embedding a w-mer to point in the complex plane, similar to Mykkeltveit’s construction.

2.5.1 From w-mers to Embeddings
In this section, we formulate a relaxation that converts paths of w-mers to trajectories in a geo-
metric space. Precisely, we model Sa in Lemma 9 as a rotation operating on a complex embed-
ding with attached weights, where the weights restrict possible moves.

Formally, given a pair (z, t) where z is a complex number and t an integer, define the fam-
ily of operations Zδ(z, t) = (r−1

w z + δ, t + δ). When z = P (x) is the position of a w-mer
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x, t = W (x) =
∑w−1

i=0 xi is its weight, and when 0 ≤ δ + x0 < σ, Zδ(P (x),W (x)) =
(P (Sδ+x0(x)),W (Sδ+x0(x))). This means Zδ is equivalent to finding the position and weight
of the successor Sδ+x0 .

We are now looking for the length of the longest path by repeated application of Zδ that
satisfies 0 ≤ t ≤ Wmax, where Wmax = (σ− 1)w is the maximum weight of any w-mer. This is a
relaxation of the original problem of finding a longest path as some choices of δ and some pairs
(z, t) on these paths may not correspond to actual transitions or w-mers in the de Bruijn graph
(when δ + x0 is negative or greater than σ − 1, then it is not a valid transition). In some sense,
the pair (z, t) is a loose representation of a w-mer where the precise sequence of the w-mer is
ignored and only its weight is considered. On the other hand, every valid path in the de Bruijn
graph corresponds to a path in this relaxation, and an upper-bound on the relaxed problem is an
upper-bound of the original problem.

2.5.2 Weight-in Embedding and Relaxation
The weight-in embedding maps the pair x = (z, w) to the complex plane. This transforms the
original longest remaining path problem into a geometric problem of bounding the length in the
complex plane under some operation Sδ.
Definition 5 (Weight-In Embedding). The weight-in embedding of x = (z, t) is Q(x) = z − t.
Accordingly, for a w-mer x, its embedding is Q(x) = Q(P (x),W (x)) = P (x)−W (x).

The Zδ operations in this embedding correspond to a rotation, and, maybe surprisingly, this
rotation is independent of the value δ.
Lemma 11. Let x = (z, t). For all δ, the point Q(Zδ(x)) is the point Q(x) rotated clockwise
2π/w around the point (−t, 0).

Proof. By definition of weight-in embedding and the operation Zδ:

Q(Zδ(z, t)) = r−1
w z + δ − (t+ δ) = r−1

w (Q(z, t) + t)− t

In the complex plane, the rotation formula around center c and of angle θ is c + eiθ(z − c).
Therefore, the operations Zδ is a rotation around c = (−t, 0) of angle θ = −2π/w.

Figure 2.3(b) shows the weight-in embedding of a de Bruijn graph. The set Cσ,w = {(−j, 0) |
0 ≤ j ≤ Wmax} is the set of all the possible center of rotations, and is shown by large gray dots on
Figure 2.3(b). Because all the w-mer in a given conjugacy class have the same weight, say t0, the
conjugacy classes form a circle around a particular center (−t0, 0). The image after application
of Sδ is independent of the parameter δ, but dependent on the weight t of the underlying pair
(z, t).

Multiple pairs of x = (z, t) can share the same weight-in embedding Q(x). As seen in
Figure 2.3(b), every node belongs to two circles with different centers, meaning there are two
embeddings with same Q(x) but different t.

Lemma 10 naturally divides any path in the de Bruijn graph avoidingMσ,w into two parts, the
first part in with Im(P (x)) > 0, and the second part with Im(P (x)) ≤ 0. Thanks to the symmetry
of the problems, we focus on the upper halfplane, defined as the region with Im(P (x)) ≥ 0. With
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the weight-in embedding, as long as the path is contained in the upper halfplane, it is always
traveling to the right (towards large real value) or staying unmoved, as stated below:
Lemma 12 (Monotonicity of Re(Q(·))). Assume Q(x) and Q(Zδ(x)) are both in the upper half-
plane. IfQ(x) does not coincide with its associated rotation center (−t, 0), then Re(Q(Zδ(x))) >
Re(Q(x)), otherwise Q(Zδ(x)) = Q(x).

Proof. The operation is a clockwise rotation where the rotation center is on the x-axis and the
two points are on the non-negative halfplane. Necessarily, the real part increased, unless the
point is on the fix point of the rotation (which is when Q(x) = (−t, 0)).

We further relax the problem by allowing rotations from any of the centers in Cσ,w, not just
from some (−t, 0) corresponding to the weight in the weight-in embedding. Lemma 12 still
applies in this case and the points in the upper-halfplane move from left to right. We are now left
with a purely geometric problem involving no w-mers or weights to track:

What is the longest path {zi} possible where zi+1 is obtained from zi by a rotation
of 2π/w clockwise around a center from Cσ,w, while staying in the upper halfplane
at all times (Im(zi) ≥ 0,∀i)?

We now break the problem into smaller stages as the weight-in embedding pass through
rotation centers, defined as Cσ,w = {(−j, 0) | 0 ≤ j ≤ Wmax}, the set of points that Q(x) could
possibly rotate around regardless of t. As there are Wmax + 1 rotation centers and the maximum
Re(Q(x)) = Re(P (x)) for any w-mer is also Wmax, we define 2Wmax subregions, two between
any adjacent pair. Formally:
Definition 6 (Half Subregions). A subregion is defined as the area [−j,−j + 0.5) × [0,Wmax]
called a left subregion or [−j + 0.5,−j + 1) × [0,Wmax] called a right subregion, for 0 < j ≤
Wmax.

We now define the problem of finding longest path, localized to one left subregion, as follows:
Definition 7 (Longest Local Trajectory Problem). Define the feasible region (0, 0.5)× [0,Wmax],
and relaxed rotation centers C ′ = {(j, 0) | −Wmax ≤ j ≤ Wmax}. A feasible trajectory is a list of
points {zi} such that each point is in the feasible region, and zi can be obtained by rotating zi−1

around c ∈ C ′ clockwise by 2π/w degrees. The solution is the longest feasible trajectory.
Again, note that this new definition is a purely geometric problem involving no w-mers and

no weights W (x) to track. zi might stagnate if it coincides with one of the rotation centers, so
we do not allow Re(zi) = −j in this geometric problem. Still, it suffices to solve this simpler
problem, as indicated by the following lemma, which will be proved in the next subsection.
Lemma 13. For fixed w and σ, if the solution to the problem in Definition 7 is L, the longest path
in the de Bruijn graph avoidingMσ,w is upper bounded by 4WmaxL+O(w2) = O(wL+ w2).

2.5.3 Tightness of Local Trajectory Problem
In this section, we prove Lemma 13 by resolving every difference between Definition 7 and
the original problem of finding longest path avoiding Mσ,w. We start from the other type of
subregions.
Lemma 14. For any 0 ≤ j < Wmax, any path in the de Bruijn graph avoidingMσ,w has at most
2L+ 2 steps satisfying Q(x) ∈ (−j − 1,−j)× [0,Wmax].
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Proof. As the defined region does not contain a rotation center, every move strictly increases
Re(Q(x)). We similarly define the left and right subregion as the region with Re(Q(x)) <
−j−0.5 and Re(Q(x)) > −j−0.5. There is at most one move that goes from the left subregion
to the right one, or two moves if there is one w-mer with Re(Q(x)) = −j − 0.5, and all other
moves are contained within either subregion.

For the left subregion, the longest path within it is upper bounded by L. Intuitively, we only
need to shift the coordinate to coincide with Definition 7. Formally, let {zi} be the weight-in
embedding of any path strictly within the left subregion. Then {zi +(j+1)} becomes a feasible
trajectory under Definition 7, as all points are within the feasible region (0, 0.5)× [0,Wmax], and
each center of rotation, which after shift is (−W (x) + (j + 1), 0) ∈ C ′ as 0 ≤ j < W (x).

For the right subregion, we have the same conclusion using a mirroring argument. To see this,
again let {zi} be the weight-in embedding of any path strictly within second subregion. Then
{j − z−i} (z−i is the ith element in z counted backwards, and z̄ is the conjugate of z) becomes a
feasible trajectory. This is because all points are in the feasible region (0, 0.5) × [0,Wmax], and
assuming zi+1 is zi rotated 2π/w clockwise around (−t, 0), we know j − zi is j − zi+1 rotated
2π/w clockwise around (t− j, 0) ∈ C ′.

Next, we bound the path length outside any subregions.
Lemma 15. Any path in the de Bruijn graph satisfying Re(Q(x)) > 0 and Im(Q(x)) ≥ 0 has at
most w/4 steps.

Proof. We let θ denote the polar angle of Q(x). As Q(x) is in first quadrant, 0 ≤ θ < π/2. Next,
observe that every rotation around the origin decreases θ by 2π/w, and every rotation not around
origin but some (−i, 0) with i > 0 will decrease θ by a greater amount. This means the path is
at most w/4 steps long, because in w/4 steps θ would have decreased by at least π/2, leading to
a contradiction.

We can similarly bound the path length left of all regions by looking at the polar angle of
Q(x) when origin is at (−Wmax, 0), which leads to the following lemma:
Lemma 16. Any path in the de Bruijn graph satisfying Re(Q(x)) < −Wmax and Im(Q(x)) ≥ 0
has at most w/4 steps.

We are now prove the bound over the entire upper halfplane by bounding path length on the
boundaries of subregions.
Lemma 17. Any path in the de Bruijn graph satisfying Im(Q(x)) ≥ 0 has at most 2WmaxL +
O(w2) steps.

Proof. We again start by taking {zi} to be the weight-in embedding of any path within the upper
halfplane. We categorize {zi} using their real coordinates.

• If Re(zi) < −Wmax or Re(zi) > 0, by previous two lemmas, we know there are at most
w/2 of them.

• Else, if Re(zi) is not an integer, it falls in one of the regions defined by Lemma 14. As
there are Wmax regions total under that definition, and the point can never re-enter a region,
the point belongs to a path contained within the region of at most 2L+ 2 length, and there
are at most Wmax(2L+ 2) points in this category.
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• The last category is when Re(zi) is an integer. If ci satisfies Im(zi) > 0, it will be the
only one with this real coordinate as Re(zi+1) > Re(zi). Otherwise, ci coincides with one
of rotation centers (−j, 0). It could stay at the same location by doing a rotation around
itself, which corresponds to a pure rotation of a w-mer when that w-mer embeds to origin.
By construction ofMσ,w (clause 1 of Definition 4), there can only be w − 1 consecutive
moves this way, so at mostw elements in {zi} have this real coordinate. There areWmax+1
possible real coordinates, and each one of them might contain w points, so total number of
points in this category is (Wmax + 1)w.

Summing up between these three categories, we get a bound of 2WmaxL + (Wmax + 1)w +
w/2 = 2WmaxL+O(w2) for the length of a path in the upper-half plane.

Finally, we look at the path in the lower halfplane with the concept of w-mer complements:
Definition 8 (Complements of w-mer). For a ∈ Σ, its complement is defined as ā = σ − a. For
a w-mer x, its complement x̄ is the w-mer x0x1 · · ·xw−1. The following property holds:

• For any x, P (x) = −P (x̄).
• For any x and a, P (Sa(x)) = −P (Sā(x̄)).
• If there is an edge x → y in the de Bruijn graph, there is also an edge x̄ → ȳ in the

de Bruijn graph.
Lemma 18. Any path in the de Bruijn graph satisfying Im(Q(x)) ≤ 0 has at most 2WmaxL +
O(w2) steps.

Proof. For any path satisfying the condition, the path formed by taking complement of every
w-mer is a path satisfying Im(Q(x)) ≥ 0. By Lemma 17, the length is also upper bounded by
2WmaxL+O(w2).

We are now ready to prove the original statement as follows:
Lemma 13. For fixed w and σ, if the solution to the problem in Definition 7 is L, the longest path
in the de Bruijn graph avoidingMσ,w is upper bounded by 4WmaxL+O(w2) = O(wL+ w2).

Proof. As seen in Lemma 10, we can bound the path length in two parts. For the first part with
Im(P (x)) > 0, the length is upper bounded by 2WmaxL + O(w2) because we prove a strictly
stronger statement in Lemma 17 by also allowing points with Im(P (x)) = 0. For the second part
with Im(P (x)) ≤ 0, we also proved a strictly stronger statement in Lemma 18 by also allowing
points inMσ,w. The path length for the original problem is upper bounded by the sum of two
upper bounds, which is 4WmaxL+O(w2).

2.5.4 Backtracking, Heights and Local Potentials
In this section, we prove L = O(w2). We will frequently switch between polar and Cartesian
coordinates in this section and Section 2.6. For simplicity, let r(z) and ϕ(z) denote the radius
and the polar angle of z written in polar coordinate.
Lemma 19. Any feasible trajectory within the region (0, d] × [0,Wmax] for d ≤ 0.5 is at most
O(dw3) long.
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Proof. The key observation is that if a rotation is not around the origin, Re(Q(x)) increases by
Ω(1/w2).

To see this, assume (d, θ) is the polar coordinate of Re(Q(x)) with respect to the rotation
center. The polar coordinate for Re(Q(Sa(x))) is then (d, θ − 2π/w). We note that d ≥ 0.5 as
Q(x) satisfies 0 < Re(Q(x)) < 0.5 and is at least 0.5 away from any other rotation centers. The
difference in real coordinate is d(cos(θ − 2π/w) − cos(θ)) = 2d sin(θ − π/w) sin(π/w). Now,
we require θ ∈ [0, π] and θ− 2π/w ∈ [0, π], so sin(θ− π/w) ≥ sin(π/w) and the whole term is
lower bounded by 2d sin2(π/w) = Ω(d/w2) = Ω(1/w2).

OnlyO(dw2) rotations not around origin is possible in the defined region, otherwise Re(Q(x))
would increase by Ω(dw2)Ω(1/w2) = Ω(d) already. Between two rotations not around the ori-
gin, only w/2 rotations around the origin can happen, or the point would have rotated π de-
grees and can’t stay in the upper halfplane. This means the possible number of pure rotations is
O(dw3), which is also the asymptotic upper bound of path length.

This lemma is sufficient to prove L = O(w3) and a total number of steps of O(w4). It does
not solve the whole problem. We can however set d = 10/w and the above argument shows that
the trajectory within the region (0, 10/w] × [0,Wmax] is only O(w2) long. Thus, we now focus
on the trajectory in the region (10/w, 0.5)× [0,Wmax], which we denote asR for the rest of this
section.

We aim to prove L = O(w2) by proving the near-optimality of a greedy approach: The
sequence of rotation such that zi only rotate around (1, 0) when necessary and otherwise rotate
around (0, 0). Intuitively, if zi is rotated from further rotation centers, it will move a greater
distance towards Re(zi) = 0.5. For trajectories that include moves that deviate from the greedy
trajectory, we want to show we can always backtrack to the move, make corrections and yield a
longer trajectory. We now introduce the tools to formalize this idea.

Recall the formula z ← c + r−1
w (z − c) for rotating z around c clockwise by 2π/w degrees.

Note that this is a linear function of c, so if we change c by (1, 0), z will change by u = 1− r−1
w .

In other words, if z′ is the result from rotating z around some centers, to change the rotation
centers retroactively, we can simply move z′ by a multiple of u. This leads to the following
definition.
Definition 9 (Equivalence Classes and Heights). Let u = 1− r−1

w and recallR = (10/w, 0.5)×
[0,Wmax]. For any point z ∈ R, its equivalent set is defined as S(z) = {z + ju | j ∈ Z, Im(z +
ju) > 0}. The point with smallest j in the set is called representative of the set, which we denote
as s(z). The height of a point is defined as the nonnegative integer j such that s(z) = z − ju,
which is zero if and only if z is a representative itself.

Now we can define the potential function. Loosely speaking, this potential function measures
how many steps are left in the trajectory if we strictly follow the greedy approach, backtracking
one step if necessary.
Definition 10 (Local Potential Function). Let P (z) = −wr/π+ϕ, assuming z = (r, ϕ) in polar
coordinate. The potential function of a point is E(z) = P (s(z)), where s(z) is the representative
of z.

For z ∈ R, it is not guaranteed the representative s(z) is in the same region. However, we
have the following lemma:
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Lemma 20. If z ∈ R, z′ is obtained by rotating z one step according to the longest trajectory
problem, then as long as z′ ∈ R, s(z′) ∈ R.

Proof. By definition of the representative, Im(s(z′)) ≥ 0. Also by definition of the equivalent
set, s(z′) is also obtained by rotating z by some points on the real axis, clockwise by 2π/w
degrees. As we have shown before, such move is guaranteed to increase Re(z), so Re(s(z′)) >
Re(z) > 10/w. To show s(z′) ∈ R, we only need Re(s(z′)) < 0.5 and Im(s(z′)) ≤ Wmax.
However, since Re(s(z′)) ≤ Re(s(z)) and Im(s(z′)) ≤ Im(s(z)), s(z′) /∈ R would imply
z′ /∈ R.

This means after one rotation in R, or the first step in the trajectory, s(z) is guaranteed to be
in the same region and would stay in the region unless z′ is already out of the region, indicating
end of trajectory. For the rest of our proofs, we assume s(z) ∈ R for the whole trajectory.

Our goal from now on is to prove that E(z) reduces by some amount each rotation. Assume
a rotation brings z to z′. Note that if we only care about E(z), the rotation center is irrelevant
as s(z′) is the same, so we can assume every move is a rotation around origin and z′ = r−1

w z,
possibly followed by a shift in multiples of u (which does not change s(z′)).

If z and z′ are both of height 0, s(z) = z, s(z′) = z′ and if z = (r, ϕ) in polar coordinate,
z′ = (r, ϕ − 2π/w). This means E(z) − E(z′) = 2π/w and the potential drops by 2π/w, a
constant value. If they are both of height j, s(z) = z − ju, s(z′) = z′ − ju, and it is no longer
clear how much ϕ changes other than that it decreases a bit. However, z′ is further toward the
origin, and as we prove below, the change in r is enough for our proofs. We prove a stronger
lemma:
Lemma 21. If z′ = e−iθz is z rotated clockwise by θ ≤ 2π/w degrees, and they are of the same
height j ≥ 1, then E(z)− E(z′) ≥ 1.9θ.

Proof. We note that the z′0 = z′ − ju and z0 = z − ju are the representatives of z′ and z, and
ϕ(z′0) < ϕ(z0). Let r′ = e−iθ.

|z′0| = |z′ − ju|
= |r′z − ju|
= |r′(z0 + ju)− ju|
= |r′z0 + j(r′ − 1)u|
= |z0 + jr′−1(r′ − 1)u|

We let y = r′−1(r′−1)u. Written in polar coordinate, r′−1 = (1, θ), (r′−1) = (2 sin(θ/2), 3π/2−
θ/2), u = (2 sin(π/w), π/2 − π/w), so y = (4 sin(θ/2) sin(π/w), θ/2 − π/w). Since 0 < θ ≤
2π/w, the polar angle of y is between 0 and −π/w, which becomes 0 as w grows, meaning y is
almost parallel to real axis.

We next bound the polar angle of z0. Since z0 is in first quadrant, ϕ(z0) ≥ 0. Next, since
z0 ∈ R and it is a representative, Re(z0) ≥ 10/w and Im(z0) ≤ sin(π/w) (otherwise, z0− t still
satisfies Im(·) ≥ 0 and would be the representative instead). For sufficiently large w, we have
Im(z0) ≤ 3/w and tan(ϕ(z0)) = Im(z0)/Re(z0) ≤ 0.3, which yields ϕ(z0) ≤ 0.291.
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Let the angle between z0 and y be ψ, we have |ψ| ≤ (ϕ(z0) + 2π/w). For large enough w,
|ψ| ≤ 0.3 and cos(ψ) ≥ 0.955. Apply the rule of cosines on vector additions:

|z′0|2 = |z0 + jy|2

= |z0|2 + j2|y|2 + 2j cos(ψ)|z0||y|
≥ (z0 + 0.955j|y|)2

So r(z′0) − r(z0) ≥ 0.955j|y| = 3.82j sin(π/w) sin(θ/2) ≥ 1.9πθ/w for large enough w.
We now plug this back to the formula for potential energy:

E(z)− E(z′) = P (z0)− P (z′0)
= −w(r(z0)− r(z′0))/π + (ϕ(z0)− ϕ(z′0))
≥ w(1.9πθ/w)/π

= 1.9θ

This finishes the proof.

Plugging in θ = 2π/w, we have the following:

Lemma 22. If z′ = r−1
w z with same height h > 0, E(z)− E(z′) ≥ 3.8π/w for sufficiently large

w.

The last case is when z and z′ are of different height. We need to account for the sudden
change of height during rotation. Intuitively, changing height from j + 1 to j while making a
small movement costs 2π/w potential, as follows:

Lemma 23. For sufficiently large w and a real number 10/w < d < 0.5, we have P (d + u) −
P (d) = −2π/w +O(1/w2).

Proof. We will calculate the difference in ϕ and r separately. Recall that d = Ω(1/w). For now,
we let u = a + bi, that is, a = 2 sin2(π/w), b = 2 sin(π/w) cos(π/w) = sin(2π/w). For ϕ, we
have:

ϕ(d+ u)− ϕ(d) =arctan(b/(d+ a))

=arctan((2π/w +O(w−3))/(d+O(w−2)))

=arctan(2π/dw +O(w−2)) d = Ω(w−1)

=2π/dw +O(w−2) arctan(x) = x+O(x−3)
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For r, we have:

r(d+ u)− r(d) =
√

(d+ a)2 + b2 − d
=
√
d2 + (a+ b)2 + 2ad− d

=
√
d2 + 4 sin2(π/w)(1 + d)− d

=
4 sin2(π/w)(1 + d)√

d2 + 4 sin2(π/w)(1 + d) + d

=
4π2(1 + d)/w2 +O(w−4)

2d+O(w−2)
sin2(x) = x2 +O(x4) = O(x2)

=
2π2(1 + d)

dw2
+O(w−3) d = Ω(1/w), 1/(d+O(w−2)) = 1/d+O(w−1)

Merging the two terms we have:

P (d+ u)− P (d) = −w(r(d+ u)− r(d))/π + ϕ(d+ u)− ϕ(d)
= −(2π/w)− (2π/dw) + (2π/dw) +O(w−2)

= −2π/w +O(w−2)

This finishes the proof.

Combining previous two lemmas, we can analyze the potential drop for all possible moves
and prove the upper bound.
Lemma 24. If z′ = r−1

w z with different height, E(z)− E(z′) ≥ 3.9π/w for sufficiently large w.

Proof. First of all, the height will only decrease since z′ is generated by rotating z around origin
in the first quadrant, and Im(z′) < Im(z). For now, assume the height of z is h and height of z′

is h − 1. We consider the movement of s(z) while rotating from z to z′. There exists one point
z′′ on the arc from z to z′ such that from z to z′′ the height of the point is h, and from z′′ to z′ the
height is h− 1. We can now divide the movement into three parts:

E(z)− E(z′) = (E(z)− E(z′′)) + (E(z′′)− E(z′′ + δ)) + (E(z′′ + δ)− E(z′))

where δ is an infinitesimal value such that height of z′′ is h and height of z′′ + δ is h − 1. The
first and last term correspond to the rotation process with constant height. If the height is 0, the
change in potential is exactly the degree rotated. Otherwise, as shown in Lemma 21, the change
in potential is at least 1.9 times degree rotated. Since the total rotated degrees is 2π/w, these two
terms add up to at least 2π/w. The second term corresponds to the change of height as described
in Lemma 23, and for sufficiently large w, it is at least 1.9π/w. Adding both terms up, we get
3.9π/w as desired. We can use the same technique if the height drops more than 1 and yield at
least the same bounds.

Lemma 25. L = O(w2) as in Definition 7.
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Proof. We can divide the trajectory into two parts. The trajectory in the region (0, 10/w) ×
[0,Wmax] isO(w2) long as seen in Lemma 19. The potential function E(z) has a maximum value
of π/2 and minimum value ofO(w). The minimum holds because r(s(z)) =

√
Re(s(z))2 + Im(s(z))2

is upper bounded by a constant for Re(s(z)) < 0.5 and Im(s(z)) < 1/w (otherwise s(z)−ju for
j > 0 would be the representative). As shown in previous lemmas, each move decreases E(z)
by Ω(1/w), so at most O(w2) steps are possible in the region (10/w, 0.5)× [0,Wmax].

With Lemma 13, we concludeMσ,w is a UHS with remaining path length O(w3).

2.6 Lower Bounding the Remaining Path Length in Mykkeltveit
Sets

We provide here a constructive proof of the existence of a Ω(w2)-long path in the de Bruijn
graph after removingMσ,w. Since all w-mers inMσ,w satisfy Im(P (x)) ≤ 0, a path satisfying
Im(P (x)) > 0 at every step is guaranteed to avoidMσ,w and our construction will satisfy this
criteria. It suffices to prove the theorem for binary alphabet as the path constructed will also be a
valid path in a graph with larger alphabet. We present the constructions for even w first, then for
odd w.

2.6.1 k-mers as Shift Registers

We need an alternative view of w-mers in this section, thinking them as shift registers. Imagine
a paper ring with w slots, labelled tag 0 to tag w − 1 with content y = y0y1 · · · yw−1, and a
pointer initially at 0. The w-mer from the ring is yjyj+1 · · · yw−1y0 · · · yj−1 = y[j, w− j] · y[0, j],
assuming pointer is at tag j. A pure rotation R(x) on the ring is simply moving the pointer one
base forward, and an impure one Sa(x) is to write a to yj before moving the pointer forward.

2.6.2 Construction and Verification for Even Window Length

First we assume w is even and let w = 2m. We create ⌈w/8⌉ ordered quadruples of tags taken
modulo w: Qj = {a − j, a + j, b − j, b + j} where j ∈ [1, ⌈w/8⌉], a = m − 1, and b =
w − 1. In each quadruple Qj , the set of associated root of unity ri+1

w for the 4 tags are of form
{−e−iθ,−eiθ, e−iθ, eiθ}, adding up to 0. Consequently, changing yk for each k in Qj from 1 to 0
does not change the resulting embedding. The strategy consists of creating “pseudo-loops”: start
from a w-mer, rotate it a certain number of times and switch the bit of the w-mer corresponding
to the index in a quadruple to 0 to return to almost the starting position (the same position in the
plane but a different w-mer with lower weight).

We now describe the strategy in more detail. The initial w-mer x is all ones but xw−1 set
to zero, with paper ring content y = x and pointer at tag 0. The resulting w-mer satisfies
P (x) = −1. The sequence of operations is as follows. First, do a pure rotation on x. Then,
for each quadruple Qj from j = 1 to j = ⌈w/8⌉, we perform the following actions on x: pure
rotations until the pointer is at tag a− j, impure rotation S0, pure rotations until the pointer is at
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Stage P (y) Composition P (y) Polar Coordinate Starting Phase Ending Phase

Rotation to Tag r1 −1 (1, π) π − θ θ
Rotation to Tag r2 −1− v1 (2 sin(θ/2), 3π/2− θ/2) (π + θ)/2 (π − 3θ)/2
Rotation to Tag r3 −1− v1 − v2 (2 cos(θ)− 1, 0) π − θ θ
Rotation to Tag r4 −1− v1 − v2 − v3 (2 sin(θ/2), π/2 + θ/2) (π + 3θ)/2 (π − θ)/2
End of round −1 (1, π) π − θ − 2π/w

Table 2.1: Absolute embedding and polar angle of P (x) throughout a round in the constructive
proof for lower bounding path length of Mykkeltveit sets.

tag a+ j, impure rotation S0, pure rotations until pointer is at tag b− j, impure rotation S0, pure
rotations until pointer is at tag b+ j, impure rotation S0.

Each round involves exactly w + 1 rotations since the last step is to an impure rotation S0 at
tag b + j which increases by one between quadruple Qj and Qj+1. The total length of the path
over all Qi is at least cw2 for some constant c. Figure 2.4 shows an example of quadruples and a
generated long path that fits in the upper halfplane.

The following lemma implies the created path avoids the Mykkeltveit set.
Lemma 26. The sequence generated from the algorithm satisfies Im(P (x)) > 0 at every step.

Proof. We define the absolute embedding as P (y) on the paper ring model. This embedding does
not change during pure rotations, and if P (y) = (r, ϕ) in polar coordinate, the real embedding is
r−j
w P (y) or (r, ϕ− 2πj/w) in polar coordinate with pointer at tag j.

For each quadruple, we let vi = rri+1
w denote the weight in the absolute embedding for tag

ri, where 1 ≤ i ≤ 4. We also let θ be the polar angle of v4. As seen before, the absolute
embeddings are v1 = −e−iθ, v2 = −eiθ, v3 = e−iθ, v4 = eiθ, and the corresponding polar angles
are ϕ(v1) = π − θ, ϕ(v2) = π + θ, ϕ(v3) = 2π − θ, ϕ(v4) = θ.

We now compute the change of P (y), the absolute embedding, and polar angle of P (x) (we
use the phrase “phase” for it) throughout a round as in the following table:

Since θ increases by 2π/w each round, the ending condition for one round matches the start-
ing condition for next round. Before the first round (as we do one pure rotation before first
quadruple in the sequence of rotations), the polar angle is at π − 2π/w, which matches the
starting condition for round 1 with θ = 2π/w.

As long as θ < π/3 (or in our constructions i < w/6), during all rotations the polar angle
stays between 0 and π, meaning it stays strictly above the real line and thus avoidsMσ,w.

2.6.3 Construction and Verification for Odd Window Length
We focus on a particular portion of the path from last section with the property that all w-mers in
the path are well above the real axis. We also define the set of critical embeddings for a round as
the set of embeddings right before or after an impure rotation (or a write in the tape model). For
a quadruple, given θ, the absolute embedding (defined in the proof of Lemma 26) and the polar
angle of all critical embeddings can be read from the table above.
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(a)

(b)

Figure 2.4: Overview for constructive proof of lower path length bounds of Mykkeltveit sets.
(a) For w = 40, each set of 4 arrows of the same color represent a quadruple set of root of
unity. There are a total of 5 sets. They were crafted so that the 4 vector in each set cancel out.
(b) The path generated by these quadruple sets. The top circle of radius 1 is traveled many times
(between tags r1 and r2 in each quadruple), as after setting the 4 bits to 0, the w-mer has the same
norm as the starting point.
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Lemma 27. For sufficiently large w = 2m, the movement sequences defined above from j =
w/20 to j = w/10 satisfies Im(P (x)) > 0.05 at every step.

Proof. Note that the choice of j means θ is between 2π/10 and 2π/20. As pure rotations are
arcs over upper halfplane, Im(P (x)) is the lowest at the endpoints of pure rotation, or as we
defined above, the critical embeddings. However, at these points, the shortest embedding is
2 sin(θ/2) > 0.3, and the smallest polar angle is θ with sin(θ) > 0.3. We then have Im(P (x)) =
r(P (x)) sin(ϕ(P (x))) > 0.3× 0.3 > 0.05.

Now let w = 2m+1 and again assume binary alphabet σ = 2. Let a0 = m− 1, a1 = m, b =
w − 1 = 2m. The corresponding roots of unity (weights for tags in the absolute embedding)
are rb+1

w = 1 for b, and ra0+1
w and ra1+1

w are the roots of unity directly above and below the
vector −1. The starting w-mer is full 1 except a0, a1 and b set to zero. The resulting absolute
embedding is on the real axis with value 2 cos(π/w)− 1 = −1+4 sin2(π/2w) = −1+O(w−2).
We now construct a sequence of quadruples such that at the end of every quadruple the absolute
embedding is still on the real axis with value close to −1.

We let j range from w/20 to w/10 as described before, but increment it by 2 every step.
Definition 11 (Imperfect Quadruples). For each j, we construct two candidate quadruples:
Q+

j = {a0 − j, a1 + j, b − j, b + j}, Q−
j = {a0 − j + 1, a1 + j − 1, b − j, b + j}. Both

quadruples satisfy that sum of their corresponding roots of unity is on real axis, which we denote
as q+j and q−j . We have |qj| = 2(cos(θ + π/w)− cos(θ)) = O(1/w) where θ is either 2πj/w or
2πj/w + π/w, and are of opposite sign: q+j > 0, q−j < 0.

We define lj to be the embedding by setting all bases in quadruples {Qk | k ≤ j} to zero from
the initial w-mer. Our construction of the imperfect quadruples ensures lj is a real number.

We decide the imperfect quadruple to use depending on the sign of lj−2 +1. If lj−2 is smaller
than −1, we pick Q−

j and we have lj = lj−2 − q−j . Otherwise, we pick Q+
j and we have lj =

lj−2−q+j . In both cases, we assured |lj+1| ≤ max(|qj|, |lj−2+1|), which isO(1/w) by induction
on j.

The sequence of rotations is defined in exactly the same way as before. The analyses are
similar, as there are between w + 1 and w + 3 moves every round and O(w2) total steps, no two
quadruples share tags, and we finish the proof with the following lemma:
Lemma 28. For every round of moves using imperfect quadruples, the embedding satisfies
Im(P (x)) > 0 at all times.

Proof. Similar to our previous argument, we only need to show Im(P (x)) > 0 at the critical
embeddings. We start by constructing the following (perfect) quadruple for 2w-mers: Q′

j =
{w − 1 − 2j, w − 1 + 2j, 2w − 1 − 2j, 2w − 1 + 2j}. As seen in last lemma, the sequence
generated by this quadruple satisfies Im(P (x)) > 0.05 at all times, so it also holds at the critical
embeddings. We can also map the tags in Q±

j onto 2w-mers by keeping the corresponding
roots of unity the same: Q

′+
j = {w − 2 − 2j, w + 2j, 2w − 1 − 2j, 2w − 1 + 2j} and Q

′−
j =

{w − 2j, w − 2 + 2j, 2w − 1− 2j, 2w − 1 + 2j}.
Now we fix one embedding in the critical set. For example, at the end of writing 0 to tag r3,

the absolute embedding is−1− v1− v2− v3 = −1+ v4 and the polar angle is (π+3θ)/2 for the
perfect quadruple. We will prove that for the imperfect quadruple, the embedding at this moment
is similar.

39



The absolute embedding is a combination of v0 (which is −1 for the perfect quadruple, and
lj−2 = −1 + O(1/w) for the imperfect one) and {vi}s. v3 and v4 are the same for the two
quadruples, while v1 and v2 are off by π/w degrees, translating to O(1/w) distance on the com-
plex plane. This means the absolute embedding differs by O(1/w).

The polar angle relative to the absolute embedding is simply one of the ϕ(vi), which is off by
at most π/w. This corresponds to an extra π/w rotation in either direction, and since the length
of the embedding is O(1), it moves by O(1/w) on top of the previous argument.

Combining both arguments, we show that if z is the embedding for the perfect quadruple
at this moment, the embedding for the imperfect quadruple z′ satisfies |z′ − z| = O(1/w).
However, Im(z) > 0.05, so Im(z′) > 0 holds for sufficiently large w. This proof works for all
critical embeddings, and since Im(z′) is the lowest at critical embeddings, Im(z′) > 0 also holds
for the whole round.

2.7 Lexicographical and Random Minimizers

2.7.1 Preliminary

We first recall the following definition, now limited to minimizers only:
Definition 12 (Contexts and Charged Contexts). A “context” of S is a substring of length (w+k),
or equivalently, two overlapping windows. The minimizer is applied to both the first and last
windows, and a context is “charged” if different positions are picked.

The idea for charged contexts is to attribute picked k-mers to the window that first picked it (it
is charged for picking a new k-mer). To determine if a window is actually picking a new k-mer,
it is sufficient to look back exactly one window due to the fact that minimizers pick k-mers in a
forward manner, and the context is the union of the two windows necessary to determine whether
this happens. This means counting picked k-mers in a string is equivalent to counting charged
contexts (in other words, only charged contexts contribute to the density). Consequently, the
(non-specific) density of a minimizer equals the probability that a context drawn from uniform
distribution over Σw+k is a charged one.

We denote by W = Σw+k−1 the set of all possible windows and C = Σw+k the set of all
contexts. The following lemma gives a slightly stronger condition on the positions of selected
k-mers in a charged context. A similar lemma was proved by Schleimer et al. [103] and a proof
is given here for clarity.
Lemma 29. For a minimizer, a context is charged if and only if the minimizer picks either the
first k-mer of the first window or last k-mer in the last window.

Proof. On one hand, if the minimizer picks either the first or the last k-mer in the context, it
cannot be picked in both windows. On the other hand, if the minimizer does not pick either
the first or the last k-mer, it will pick the same k-mer in both windows. Assuming otherwise,
both picked k-mers are in both window, so this means one of them is not minimal, leading to a
contradiction.

We also define the concept of density factor. This concept is very useful for comparison.
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Definition 13 (Density Factor). The density factor of a minimizer is its density multiplied by
(w + 1). Intuitively, this is the expected number of selected locations in a random context.

2.7.2 Lexicographical Minimizers are Asymptotically Optimal
Culminating with Theorem 4, we first prove that to have asymptotically optimal minimizers (i.e.,
minimizers with density of O(1/w)), the value k (for the k-mers) must be sufficiently large com-
pared to the length w of the windows, and that this condition is necessary and sufficient. Again,
to be more precise, we treat k as a function of w, and study the density as w grows to infinity.
Next, we prove a density bound for random minimizers (which are by default asymptotically op-
timal), and its implications for an efficient algorithm for constant-factor optimal universal hitting
set approximation.

Minimizers with Exceedingly Small k

If k is exceedingly small, in the sense that k does not even grow as fast as the logarithm of w
—i.e., logσ(w) − k → ∞ as w grows— no minimizer will obtain density O(1/w). To see this,
for any order O, let y be the smallest of all k-mers. Any context starting with y is charged, and
the proportion of such context is σ−k. The density calculated from these contexts only is already
> Θ(1/w), as wσ−k = σlogσ(w)−k →∞.

For this reason, in the following we are only interested in the case where k is large enough.
That is, there exists a fixed constant c such that k ≥ logσ(w)− c for all sufficiently large w.

Lexicographic Minimizers with Specific k

We first prove the special case that the lexicographic minimizer achieves O(1/w) density with
parameter k = ⌊logσ(w/2)⌋ − 2. Recall W = Σk+w−1 is the set of all windows, and C = Σk+w

is the set of all contexts. Let z ∈ W be a window, f(z) : W → {0, 1, . . . , w − 1} be the
minimizer function, and C ⊂ C be the set of charged contexts for this minimizer. Let W+ =
{z ∈ W | f(z) = 0} be the set of windows where the minimizer picks the first k-mer, and
similarly W− = {z ∈ W | f(z) = w − 1}. By Lemma 29, we know |C| ≤ σ(|W+|+ |W−|).

We now use the notion # to denote any nonzero character of Σ, and 0d to denote d consecutive
zeroes. Let A+

∗ be the set of windows whose first k-mer is 0k, and for 1 ≤ i ≤ k, let A+
i = {z ∈

W | z = 0i−1# · · · , f(z) = 0}, that is, the set of windows that starts with exactly i−1 zeros and
have the minimizer function pick the first k-mer. All A+

i and A+
∗ are mutually disjoint. Since the

minimizer always pick 0k at the start of the window, we have W+ = A+
∗ ∪

⋃k
i=1A

+
i .

Lemma 30. For 1 ≤ i ≤ k, A+
i ⊆ B+

i , where B+
i = {z ∈ W | z = 0i−1#st, |s| = w − 1, |t| =

k − i, 0i /∈ s}, that is, the set of windows that starts with 0i−1# and does not contain 0i in the
next w − 1 bases.

Proof. We need to show that if a window z starts with 0i−1# and is not in B+
i , f(z) ̸= 0. As

z /∈ B+
i , there is a stretch of 0i in z before the last k − i characters. This means there is a k-mer

of form 0i · · · in z, and since the first k-mer is of form 0i−1# · · · , the minimizer will never pick
the first k-mer.
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Earlier in Section 2.3.2 of this dissertation, we proved the following:
Lemma 31. The probability that a random string of length ℓ does not contain 0d anywhere is at
most 3(1− 1/σd+1)ℓ.

Setting ℓ = w − 1 and d = i and noting there are σk−i choices for t in Bi, we know
|B+

i | ≤ 3σw+k−i(1− 1/σi+1)w−1 for every i. This is sufficient to prove the following:
Lemma 32. |W+| = O(σw).

Proof. Let bi = 3σw+k−i(1 − 1/σi+1)w−1, combined with the fact that |A+
∗ | = σw−1, we know

|W+| ≤ σw−1 +
∑k

i=1 bi. It remains to bound the summation term.
We next prove bi > 2bi−1 for 2 ≤ i ≤ k:

bi/bi−1 =
3σw+k−i(1− 1/σi+1)w−1

3σw+k−i+1(1− 1/σi)w−1

=
1

σ

(
1 +

σ − 1

σi+1 − σ

)w−1

>
1

σ

(
1 +

w − 1

σi+1 − σ

)
>

w

σi+2

Note that we also use the fact (1 + x)t > 1 + xt and σ − 1 ≥ 1 in the last line. The right-hand
side is minimum when i = k. By our choice of k, σk+2 < w/2, so the term is lower bounded by
2.

This implies
∑k

i=1 bi < 2bk, and since bk = O(σw), we have |W+| = O(σw).

The bound for |W−| is computed similarly. It is different from W+ as in case of ties for the
minimal k-mer, the leftmost one is picked. Hence, we define W ‡ as the set of windows such
that the last k-mer is one of the minimal k-mers in the window. We have W− ⊆ W ‡, as the last
k-mer needs to be the minimal, with no ties, for the minimizer to pick it.

Similarly, we define A−
∗ as the set of windows that ends with 0k. For 1 ≤ i ≤ k, we define

A−
i = {z ∈ W ‡ | z = s0i−1#t, |s| = w − 1, |t| = k − i}. This is the set of windows whose

last k-mer starts with 0k−1# while satisfying the condition for W ‡. Again, A−
∗ and all A−

i are
mutually disjoint, and we haveW ‡ = A−

∗ ∪
⋃k

i=1A
−
i . There is an analogous lemma for bounding

|A−
i |:

Lemma 33. For 1 ≤ i ≤ k, A−
i ⊆ B−

i , where B−
i = {z ∈ W | z = s0i−1#t, |s| = w − 1, |t| =

k − i, 0i /∈ s}.

Proof. We need to show that if a window ends with a k-mer of form 0i−1#t and contains 0i

before last k-mer, it is not in W ‡. In that case the window contains a k-mer of form 0i · · · , which
is strictly smaller than the last k-mer of the form 0i−1# · · · , violating the condition of W ‡.

Note that B+
i and B−

i have highly similar expressions. In fact, we can simply bound the size
of B−

i by bi (defined in the proof of Lemma 32) using the identical argument. This immediately
means we have the exactly same bound for |W ‡| and |W+|, as A−

∗ also has the same size as A+
∗ .

Theorem 6. The lexicographic minimizer with k0 = ⌊logσ(w/2)⌋ − 2 has density O(1/w).

Proof. We have |C| ≤ σ(|W+| + |W−|) ≤ σ(|W+| + |W ‡|) = O(σw), and the density is
|C|/σw+k0 = O(σ−k0) = O(1/w).
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Lexicographic Minimizers with All Values of k

Next, we extend this result to show that this bound holds for all k as long as k > logσ(w)− c for
some constant c. As k0 < logσ w, the following lemmas establishes our claim for small k:
Lemma 34. The lexicographic minimizer with k = k0−c for constant c ≥ 0 has densityO(1/w).

Proof. We define W ′+ and W ′− in the same way for this new minimizer with parameter k. We
also call the new minimizer as k-minimizer, and the minimizer in Theorem 6 as k0-minimizer.

We now claim |W ′+| ≤ |W+|. This is because given a window in W ′+, we can always
append 0c before the start of the window to get a window (for the k0-minimizer) in W+. Assume
otherwise, we let z0 = 0c . . . be the k0-mer at the start of the extended window and z1 be the
k0-mer picked by the k0-minimizer. This requires z1 to also have form of 0c · · · , and that the k-
mer after 0c is strictly smaller than the last k-mer of z0. However, if this is the case, the original
window will not be in W ′+ as the first k-mer is not minimal.

Similarly, we claim |W ′−| ≤ |W−| as given a window in W ′− we can append 0c after the end
of the window to get a window in W−. Assume otherwise, we let z0 = · · · 0c be the last k0-mer
at the end of the extended window and z1 be the k0-mer picked by the k0-minimizer. Since z0
ends with 0c and z1 is smaller or equal to z0, the k-prefix of z1 must be smaller or equal to the
k-prefix of z0. This means the original window will not be in W ′− as there is a k-mer that is
smaller or equal to the last k-mer.

Therefore |W ′+| = O(σw) and |W ′−| = O(σw), and the density is σ(|W ′+|+|W ′−|)/σw+k =
O(σ−k) = O(1/w).

The following lemma establishes our claim for large k:
Lemma 35. The lexicographic minimizer with k > k0 has density O(1/w).

Proof. We define W ′+ and W ′− in the same way for this new minimizer, and again call the new
minimizer the k-minimizer.

We first claim |W ′+| ≤ σk−k0|W+|. This is because given a window in W ′+, we can remove
the last k − k0 bases to get a window in W+. To see this, we only need to show for the shorter
window, the first k0-mer is less than or equal to every other k0-mer. Since the original window
is in W ′+, the first k-mer in the original window is less than or equal to every other k-mer. This
means the k0-long prefix of the first k-mer is also less or equal to the k0-long prefix of every other
k-mer in the original window, which is exactly the condition for the short window in W+. For
every window x in W+, there are σk−k0 windows in Σw+k−1 that x is a prefix of, which means
|W ′+| ≤ σk−k0|W+|.

We now claim |W ′−| ≤ σk−k0 |W ‡|. Similarly, given a window in W ′−, we can again remove
the last k − k0 bases to get a window in W ‡. As the original window is in W ′−, the last k-mer
in the original window is less than every other k-mer. This means the k0-long prefix of the last
k-mer is less or equal to the k0-long prefix of every other k-mer in the original window. (Note
that if a k-mer is less than another, their prefix can be equal.) The k0-long prefixes of k-mers
in the original window are exactly the k0-mers of the shorter window, so the short window is in
W ‡. With a similar argument, we have |W−| ≤ σk−k0|W ‡|.

43



These two facts combined means we can calculate the density of the new minimizer as fol-
lows:

σ(|W ′+|+ |W ′−|)/σw+k ≤ σk−k0+1(|W+|+ |W ‡|)/σw+k

= (|W+|+ |W ‡|)/σw+k0−1

= O(σ−k0) = O(1/w).

Combining everything we know, we have the following theorem.
Theorem 4. For k ≥ logσ(w)− c with constant c, the lexicographic minimizer achieves density
of O(1/w). Otherwise, no minimizer can achieve density of O(1/w).

2.7.3 Density Bounds for Random Minimizers

In Schleimer et al. [103], it was estimated the expected density of random minimizers is 2/(w+1)
with several assumptions on the string (which do not strictly hold in practice), and our main
theorem (Theorem 5) achieves the same result up to o(1/w) with a single explicit hypothesis
between w and k. In this section, we prove the main theorem.

In the estimation of the expected density for random minimizers, there are two sources of
randomness: (1) the order O on the k-mers is selected at random among all the permutations
of Σk and (2) the input string is a very long random string with each character chosen IID. The
key tool to this part is the following lemma to control the number of “bad cases” when a window
contains two or more identical k-mers. Chikhi et al. [21] proved a similar statement to Lemma 36
with slightly different methods.
Lemma 36. For any ϵ > 0, if k > (3 + ϵ) logσ w, the probability that a random window of w
k-mers contains two identical k-mers is o(1/w).

Proof. We start with deriving the probability that two k-mers in fixed locations i and j are iden-
tical in a random window. Without loss of generality, we assume i < j. If j − i ≥ k, the two
k-mers do not share bases, so given they are both random k-mers independent of each other, the
probability is σ−k = 1/w3+ϵ = o(1/w3).

Otherwise, the two k-mers intersect. We let d = j − i, and mi to denote ith k-mer of the
window. We use x to denote the substring from the start of mi to the end of mj with length
k + d (or equivalently, the union of mi and mj). If mi = mj , the nth character of mi is equal
to the nth character of mj , meaning xn = xn+d for all 0 ≤ n < k. This further means x is a
repeating sequence of period d, so x is uniquely determined by its first d characters and there
are σd possible configurations of x. The probability a random x satisfies mi = mj is then
σd/σk+d = σ−k = o(1/w3), which is also the probability of mi = mj for a random window.

The event that the window contains two identical k-mers is the union of events of form
mi = mj for i < j, and each of these events happens with probability o(1/w3). Since there are
Θ(w2) events, by the union bound, the probability that any of them happens is upper bounded by
o(1/w).

We are now ready to prove the following.
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Theorem 5. For k > (3+ ϵ) logσ(w+1), the expected density of a random minimizer is 2/(w+
1) + o(1/w).

Proof. Given a context c ∈ Σw+k, we use I(c) to denote the event that c has two identical k-mers.
As c has (w + 1) k-mers, by Lemma 36, Pc(I(c)) = o(1/w) assuming c is a random context.

Recall that a random minimizer means the orderO is randomized, and C is the set of charged
contexts. For any context c that does not have duplicate k-mers, we claim PO(c ∈ C) = 2/(w +
1). This is because given all k-mers in c are distinct, under the randomness ofO, each k-mer has
probability of exactly 1/(w + 1) to be the minimal. By Lemma 29, c ∈ C if and only if the first
or the last k-mer is the minimal, and as these two events are mutually exclusive, the probability
of either happening is 2/(w + 1). The expected density of the random minimizer then follows:

Pc,O(c ∈ C) = P (I(c))P (c ∈ C | I(c)) + P (I(c))P (c ∈ C | I(c))
≤ P (I(c)) + P (c ∈ C | I(c))
= o(1/w) + 2/(w + 1).

Approximately Optimal Universal Hitting Sets

One interesting implication of Theorem 5 is on construction and approximation of compact UHS.
In Section 2.2, we proved a connection between UHS and forward schemes. We restate it with
minimizers, as follows.
Theorem 7. For any minimizer (w, k,O), the set of charged contexts C over a de Bruijn sequence
of order w + k is a UHS over (w + k)-mers with path length w, and with relative size identical
to the density of the minimizer.

This theorem, combined with the density bound derived last section, allows efficient con-
struction of an approximately optimal UHS. We say an algorithm for constructing UHS is effi-
cient if it runs in poly(w, k)σw+k time, as the output length of such algorithms is already at least
σw+k.
Lemma 1. For sufficiently large k and for arbitrary w, there exists an efficient randomized
algorithm to generate a (2+o(1))-approximation of a minimum-size UHS over k-mers with path
length w.

This is also the first known efficient algorithm to achieve constant approximation ratio, as
previous algorithms [24, 28, 85] use path cover heuristics with approximation ratio dependent on
w and k. We prove this by discussing the case with k > w and k < w separately. In the first case,
the best UHS has its relative size lower bounded by the decycling set, and in the second case, a
stronger bound of 1/w is available. The following two Lemmas give an efficient construction of
a universal hitting set with bounded size in two cases: when w is large compared to k, and when
it is small.
Lemma 37. For sufficiently large k and w > k − (3 + ϵ) logσ(k + 1), there exists a UHS of
relative size 2/k + o(1/k) with path length w. This is a 2 + o(1) approximation of the minimum
size UHS.

Proof. We pick k′ = (3+ ϵ) logσ(k+1) (ignoring rounding for simplicity), and let w′ = k− k′.
By our setup, w ≥ w′, and k′ = o(k) (implying w′ = k − o(k)). By Theorem 5, the charged
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context set of a random minimizer (w′, k′,O′) has relative size 2/w′ + o(1/w′) = 2/k+ o(1/k).
By Theorem 7, the charged context set is a UHS over k-mers with path length w. This finishes
the first part of the proof.

For the second part, by construction of the Mykkeltveit sets the minimum size UHS, regard-
less of path length, will have relative size at least 1/k − o(1/k). As our proposed UHS has
relative size 2/k + o(1/k), it is a 2 + o(1) approximation of the minimum size UHS.

Lemma 38. For sufficiently large k and w ≤ k − (3 + ϵ) logσ(k + 1), there exists a UHS of
relative size 2/w + o(1/w) with path length w. This is a 2 + o(1) approximation of the best
possible UHS.

Proof. We pick w′ = w and k′ = k − w. By our setup, k′ ≥ (3 + ϵ) logσ(w
′ + 1) as w < k. By

the identical argument as seen in the last lemma, we obtain a UHS over k-mers with path length
w and relative size 2/w + o(1/w).

For the second part, note that the minimal relative size of a UHS with path length w is
1/w as it need to hit every one of every w k-mer on the de Bruijn sequence of order k, where
every k-mer appears exactly once. As our set has relative size 2/w + o(1/w), it is a 2 + o(1)
approximation.

These two lemmas combined give us the desired proof for Lemma 1.
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Chapter 3

Low-Density, Sequence-Blind Minimizer
Sketches

In this chapter, we develop a minimizer sketch (or rather, a distribution of minimizer sketches)
with expected density strictly below 2/(w + 1) + o(1/w), the random minimizer density bound.
The construction works as long asw < xk for some constant x. One other method exists to create
minimizers with density below 2/(w + 1) [74], but it requires w ≪ k, a much more restrictive
condition.

The name “Miniception” is shorthand for “Minimizer Inception”, a reference to its construc-
tion that uses a smaller minimizer to construct a larger minimizer (the 2010 movie Inception set
the stage at dreams within dreams, thus the reference). In the estimation of the expected density
of Miniception minimizers, there are multiple sources of randomness: the choice of orders in
the small and in the large minimizers, and the chosen context. The construction and the proof of
Miniception uses these sources of randomness to ensure its good performance on average.

In this chapter, when the context is clear, we use minimizers as a shorthand to minimizer
sketches. A version of the contents in this chapter (alongside with Section 2.7) was published in
ISMB 2020 [128].

3.1 Notation
For the sake of clarity, we re-introduce the concepts we will use in this chapter, specializing to
minimizers when appropriate.

In the following, Σ = {0, 1, . . . , σ − 1} is an alphabet (mapped to integers) of size σ and we
assume that σ ≥ 2 and is fixed. If S ∈ Σ∗ is a string, we use |S| to denote the length of S.
Definition 14 (Minimizer and Windows). A “minimizer” is characterized by (w, k,O) where w
and k are integers andO is a complete order of Σk. A “window” is a string of length (w+k−1),
consisting of exactly w overlapping k-mers. Given a window as input, the minimizer outputs the
location of the smallest k-mer according to O, breaking ties by preferring leftmost k-mer.

When O is the dictionary order, it is called a lexicographic minimizer. A minimizer created
by randomly choosing a permutation of Σk uniformly over all possible permutations is called a
random minimizer. See Figure 3.1 for another illustration of these and the following concepts.
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Figure 3.1: Another illustration of minimizer sketches, and charged windows. The string S is
broken into k-mers. In each window (w consecutive k-mers) the position of the lowest (smallest
according to O) k-mer is selected. The gray context (2 consecutive windows) is an example of
a charged window because the first and second window selected different positions. There are a
total of 3 charged contexts in this example.

Definition 15 (Density). Given a string S ∈ Σ∗ and a minimizer, a position in S is selected if the
minimizer picks the k-mer at that position in any window of w consecutive k-mers. The specific
density of a minimizer on S is the number of selected positions divided by the total number of
k-mers in S. The density of a minimizer is the expected specific density on a sufficiently long
random string.

Note that the density is calculated by expectation over random strings, and is independent
from S.

For the ease of comparison, we will also use the concept of contexts and density factors:
Definition 16 (Contexts and Charged Contexts). A “context” of S is a substring of length (w+k),
or equivalently, two overlapping windows. The minimizer is applied to both the first and last
windows, and a context is “charged” if different positions are picked.
Definition 17 (Density Factor). The density factor of a minimizer is its density multiplied by
(w + 1). Intuitively, this is the expected number of selected locations in a random context.

The idea for charged contexts is to attribute a chosen k-mer to the window that first picked it
(in other words, the window is charged for picking a new k-mer). To determine if a window is
actually picking a new k-mer, it is sufficient to look back exactly one window due to the fact that
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minimizers pick k-mers in a forward manner, and the context is the union of the two windows
necessary to determine whether this happens. This means counting picked k-mers in a string is
equivalent to counting charged contexts (in other words, only charged contexts contribute to the
density). Consequently, the (non-specific) density of a minimizer equals the probability that a
context drawn from uniform distribution over Σw+k is a charged one.

We denote by W = Σw+k−1 the set of all possible windows and C = Σw+k the set of all
contexts. The following lemma gives a slightly stronger condition on the positions of selected
k-mers in a charged context. We have proved the following in the last chapter:
Lemma 29. For a minimizer, a context is charged if and only if the minimizer picks either the
first k-mer of the first window or last k-mer in the last window.

As discussed last chapter, universal hitting sets (UHS) [85] are central to the analysis of
minimizers [28, 73, 74], and we need to re-introduce them.
Definition 18 (Universal Hitting Sets). Assume U ⊆ Σk. If U intersects with everyw consecutive
k-mers (or equivalently, the set of k-mers in every S ∈ Ww,k), it is a UHS over k-mers with path
length w and relative size |U |/σk.

We have discussed Mykkeltveit sets as minimal decycling sets before. In this chapter, we are
not using the Mykkeltveit sets, however we will need to know its size for comparison purposes.
Lemma 39 (Minimal Decycling Sets). ([82]) Any UHS over k-mers has relative size at least
1/k − o(1/k).

3.2 Constructing the Miniception

3.2.1 A Tale of Two UHS

UHS are connected to minimizers in two ways. The first connection, via the charged context set
of a minimizer, is described in Section 2.2 and further explored in Section 2.7. The second and
more known connection is via the idea of compatible minimizers. Detailed proof of the following
properties are available in Marçais et al. [73, 74].
Definition 19 (Compatibility). A minimizer (w, k,O) is said to be compatible with a UHS U , if
the path length of U is at most w and for any m ∈ U,m′ /∈ U , m < m′ under O.

Construction of compatible minimizers from a universal hitting set can be done in many ways.
A deterministic way is to start from an existing ordering of k-mers (such as the lexicographical
one). From here, construct a compatible minimizer by first ordering k-mers within the UHS
using the known ordering, then ordering the rest arbitrarily.
Lemma 40 (Properties of Compatible Minimizers). If a minimizer is compatible with a UHS,
(1) any k-mer outside the UHS will never be picked by the minimizer, and (2) the relative size of
the UHS is an upper bound to the density of the minimizer.

The Miniception is a way of constructing minimizers that uses the UHS in both ways. As-
sume we have a minimizer (w0, k0,O0). By Theorem 7, its charged context set C0 is a UHS
over (w0 + k0)-mers with path length w0. According to Definition 19, we construct a minimizer
(w, k,O) that is compatible with C0, where k = w0 + k0, w ≥ w0 and any k-mer in C0 is less
than any k-mer outside C0 according to O.
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Figure 3.2: An example of running the Miniception in a window. The k0-mers and (w0+1)-mers
are displayed by their order inO andO0, where the minimal elements appear at the top. We take
O0 to be lexicographic order for simplicity, andO is a random order. The idea of sorting k0-mers
will be important in deriving the theoretical guarantees of the Miniception.

We assume that the smaller minimizer (w0, k0,O0) is a random minimizer, and that the larger
minimizer (w, k,O) is a random compatible minimizer (meaning the order of k-mers within C0
is random in O). The Miniception is formally defined as follows:
Definition 20 (The Miniception). Given parameters w, k and k0, set w0 = k− k0. The Minicep-
tion is a minimizer with parameters w and k constructed as follows:

• A random minimizer (w0, k0,O0) called the “seed” is generated.
• The set of charged contexts C0 ⊂ Σk is calculated from the seed minimizer (note that
k = w0 + k0, so the set of charged contexts are in fact set of k-mers).

• the orderO of the resulting minimizer is constructed by generating a random order within
C0 and having every other k-mer compare larger than any k-mers in C0.

By Lemma 40, the order within k-mers outside C0 does not matter in constructing O. In the
following sections, we will prove the following theorem:
Theorem 8. With w = w0 + 1, k = w0 + k0 and k0 > (3 + ϵ) logσ(2w0 + 2), the density of the
Miniception is upper bounded by 1.67/w + o(1/w).

As k = w0 + k0, for large values of w0, we can take for example k0 = 4 logσ w0, meaning
w ≈ k in these cases. This makes the Miniception the only known construction with guaranteed
density < 2/(w + 1) + o(1/w) and with practical parameters.

Figure 3.2 provides an example of the Miniception. As a side note, the following theorem
also constructs a universal hitting set from a minimizer, but is not relevant for our discussion.
Theorem 9. Given a minimizer (w, k,O), let S be the de Bruijn sequence of order w + k. The
set of k-mers selected by the minimizer over S is a universal hitting set, whose relative size is
lower bounded by the density of underlying minimizer.

3.2.2 Implementing the Miniception

The Miniception can be implemented efficiently in practice, assuming efficient access to a ran-
dom hash. Assuming that a random order is computed with a hash function in O(k) time for a
k-mer, determining the set of picked k-mers in a string S in takes O(k|S|) time. This is as fast
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as a random minimizer. In particular, there is no need to precompute the set C0. In this section,
we provide details of the implementation.

The implementation takes a sequence S as input (as well as other parameters specifying the
minimizer), and returns the list of picked locations. We will derive a linear time implementation,
meaning the algorithm runs in time O(k|S|) as it takes O(k) time just to process and compare
k-mers. We will discuss our algorithms based on the assumption that a k-mer fits in a word
(This means k ≤ 32 for 64-bit systems), Value of k beyond this limit is rare in practice, and our
algorithm also easily adapts to general values of k if needed.

While the Miniception is defined with multiple sources randomness, implementing it means
sticking to one “instantiation”, and the orders O0 and O are fixed. We will assume the alphabet
is {0, 1, 2, 3} so a k-mer can be written as an integer in [4k]. We assume O(k0) time access to
O0 as a function f0 : [4k0 ] → R, such that x0 < x1 in O0 if and only if f0(x0) < f0(x1), and
similarly a function f : [4k] → R for some order function that agrees with O when restricted to
C0, meaning both f0 and f can simply be a random hash function.

From the construction of the Miniception, we can recover C0 from O0. In most cases, this
means we only need to store a small minimizer to implement the Miniception on the fly. In
comparison, existing methods with precomputed UHS requires storage of the whole set.

Implementation of minimizers usually use monotone queues for linear time complexity, un-
der the same assumption that k-mers fit into words. The monotone queue is a special kind of
deque that ensures the item in the queue are both in non-decreasing order and are inserted recent
enough (within last T time slot where T is a fixed parameter, for example). Such data structures
allow solving the problem of finding minimum element in every T -long window in input linear
time, which is exactly the problem of identifying picked k-mers for a given sequence, as the
chosen locations are simply locations that are minimal in a w-long window. We will provide
pseudocode for implementing monotone queues later this section.

As the Miniception consists of two minimizers, we use two monotone queues, one imple-
menting the seed minimizer and one implementing the actual minimizer that identifies picked
locations. As we only care whether a context is charged for the seed minimizer, the first mono-
tone queue has expiry time w0 + 1 (meaning elements inserted into the monotone queue w0 + 1
time slots ago will be removed). The second monotone queue is implemented as in a normal
minimizer.

We provide a pseudocode for implementing the monotone queue in Algorithm 3.2.2. For
simplicity, we will ignore the warmup part (before the first full window). As described before,
monotone queues can be considered as deques with an extra parameter T (expiry time) and
additional operations.

With the monotone queue, we can implement the Miniception in Algorithm 3.2.2. As men-
tioned before, we assume each k-mer can be held in a word.
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Algorithm 1 The Monotone Queue with Expiry Time T
procedure INITIALIZE(l)

Allocate a deque with max capacity l
end procedure
procedure SETTIME(t) ▷ this procedure removes expired items

while queue is not empty do
x′, t′ ← front of queue
if t′ ≤ t− T then

Pop x′, t′ from queue
else

return
end if

end while
end procedure
procedure INSERT(x, t) ▷ input is (item, time) pair

Set current time to t
while queue is not empty do

x′, t′ ← end of queue
if x < x′ then ▷ minimizers prefer leftmost k-mers

Pop x′, t′ from queue
else

break
end if

end while
Append x, t to the end of queue

end procedure
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Algorithm 2 The Miniception
procedure MINICEPTIONPICKS(S)

Q0 = MONOQUEUE(w0 + 1) ▷ w0 + 1 is the window length
Q = MONOQUEUE(w)
for i = (w + k − 1) to |S| do ▷ Setups ignored for clarity

m0 ← (m0 × 4 + S[i]) mod 4k0 ▷ Latest k0-mer
m← (m× 4 + S[i]) mod 4k ▷ Latest k-mer
Q0.INSERT(f0(m0), i)
t← time of Q0[0] ▷ for current minimum k0-mer in window
if (t = i) or (t = (i− w0)) then

Q.INSERT(f(m), i) ▷ latest k-mer is in C0
else

Q.SETTIME(i) ▷ remove out-of-window k-mer
end if
p← time of Q[0] ▷ this is the end of picked k-mer in window
Pick p− (k − 1) if not picked already

end for
end procedure

3.3 Analyzing the Miniception

3.3.1 The Permutation Argument
We now focus on the setup outlined in Theorem 8. Our goal is to measure the density of the
Miniception, which is equivalent to measuring the expected portion of charged contexts, that
is, P (c ∈ C). There are three sources of randomness here: (1) the randomness of the seed
minimizer, (2) the randomness of the order within C0 (which we will refer to as the randomness
of O), and (3) the randomness of the context.

A context of the Miniception is a (w+k) = (2w0+k0+1)-mer, which contains (2w0+2) k0-
mers. By our choice of k0 and Lemma 36, the probability that the context contains two identical
k0-mers is o(1/w0) = o(1/w) (as w = w0 + 1). Similar to our reasoning in proving Theorem 5,
let I0 denote the event of duplicate k0-mers in a Miniception context:

P (c ∈ C) = P (I0(c))P (c ∈ C | I0(c)) + P (I0(c))P (c ∈ C | I0(c))
≤ P (I0(c)) + P (c ∈ C | I0(c))
= o(1/w) + P (c ∈ C | I0(c)).

This means we only need to consider contexts without duplicate k0-mers, which would incur
only o(1/w) error in density. Recall the way we determine whether a k-mer is in C0: we check
if it is a charged context of the seed minimizer, which involves only comparisons between its
constituent k0-mers. This means given a context of the Miniception, we can determine if each of
its k-mer is in the UHS C0 only using the order between all k0-mers. We use O(c) to denote the
order of k0-mers within c according toO0. Conditioned on any cwith I0(c), over the randomness
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of O0, the order of the k0-mers inside c now follows a random permutation of (2w0 + 2) = 2w,
which we denote asR(2).

Next, we consider fixing both c and O0 (the only randomness is in O), and calculate proba-
bility that the context is charged. Note that fixing c and O0 means fixed O(c), and fixed set of
k-mers in C0. The order of the k-mers is still random due to randomness in O. For simplicity, if
a k-mer is in C0, we call it a UHS k-mer. A boundary UHS k-mer is a UHS k-mer that is either
the first or the last k-mer in the context c.
Lemma 41. Assume a fixed context c with no duplicate k0-mers and a fixedO0. Denote mboundary

as the number of boundary UHS k-mers (mboundary ∈ {0, 1, 2}) and let mtotal be the number of
total UHS k-mers in the context. The probability that the context is charged, over the randomness
of O, is mboundary/mtotal.

Proof. We first note that mtotal ≥ 1 for any context and any O0, due to C0 being a UHS over
k-mers with path length w0 ≤ w, so the expression is always valid. Furthermore, there are also
no duplicate k-mers as k > k0. As O is random, every UHS k-mer in the window has equal
probability to be the minimal k-mer. The context is charged if one of the boundary UHS k-mers
is chosen in this process, and the probability is 1/mtotal for each boundary UHS k-mer, so the
total probability is mboundary/mtotal.

This proof holds for every c and O0 satisfying I0. In this case, both mboundary and mtotal are
only dependent onO(c). This means we can write the probability of charged context conditioned
on I0 with a single source of randomness, as follows:

P (c ∈ C) ≤ Pc,O0,O(c ∈ C | I0(c)) + o(1/w)

= Ec,O0(mboundary/mtotal) + o(1/w)

= EO(c)∼R(2)(mboundary/mtotal) + o(1/w)

Next, we use E0 to denote the event that the first k-mer in the context is a UHS k-mer, and
E1 to denote the event for the last k-mer. These two events are also only dependent on O(c).
We then have mboundary = 1(E0) + 1(E1), where 1(A) evaluates to 1 is event A happens and 0
otherwise. By linearity of expectation, we have the following:

P (c ∈ C) = EO(c)∼R(2)(mboundary/mtotal) + o(1/w)

= EO(c)∼R(2)((1(E0) + 1(E1)/mtotal) + o(1/w)

= EO(c)∼R(2)(1/mtotal | E0)P (E0) + EO(c)∼R(2)(1/mtotal | E1)P (E1) + o(1/w)

As the E0 and E1 are symmetric, it suffices to solve one term. We have P (E0) = 2/w,
because E0 is true if and only if the minimal k0-mer in the first k-mer is either the first or the last
one, and there are w k0-mers in a k-mer. The only term left is EO(c)∼R(2)(1/mtotal | E0).

In the next two sections, we will upper bound this last term, which in turn bounds P (c ∈ C). It
helps to understand why this argument achieves a bound better than a purely random minimizer,
even though the Miniception looks very randomized. The context contains two UHS k-mers
on average, because the relative size of C0 is 2/w + o(1/w), so it may appear the expectation
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Figure 3.3: Setup for derivation of Pn(x) with n ≥ 1 and 1 ≤ x ≤ 2. The text denotes the
relative length of the corresponding substrings. If the minimal k0-mer fall into the middle region
(left panel), there are zero UHS k-mers in the sequence. Otherwise (right panel), there is at least
one UHS k-mer with possibility for more from the substring.

term is close to 0.5, which leads to a density bound of 2/w + o(1/w), identical to a random
minimizer. However, conditioned on E0, the context provably contains at least one other UHS
k-mer, and with strictly positive chance contains two or more other UHS k-mers, which brings
the expectation down strictly below 0.5.

3.3.2 Deriving the Unconditional Distribution of UHS k-mer Counts

In this section, we bound the quantity EO(c)∼R(2)(1/mtotal | E0) by deriving the distribution of
mtotal, where O(c) is sampled fromR(2) conditioned on E0. We emphasize that at this point the
actual k0-mers are not important and only their order matters. It is beneficial to view the sequence
simply as the order O(c). To prepare for the derivation, we will first derive the distribution of
mtotal assuming O(c) ∼ R(2) without extra conditions.

We are interested in the asymptotic bound, meaning w → ∞, so we use the following nota-
tion.
Definition 21. Let R(x) denote the distribution of random order of xw elements. (This is con-
sistent with previous definition of R(2), as a context contains 2w k0-mers.) The relative length
of a sequence is defined by its number of k0-mers divided by w.
Definition 22. Given a sequence of relative length x, where the order of its constituent k0-mers
followsR(x), Pn(x) denotes the probability that the sequence contains exactly n UHS k-mers.

As a context is a sequence of relative length 2, we are interested in the value of Pn(x) for
x ≤ 2 using recurrence.

To start, we fix x, the relative length of the sequence, and iterate over the location of the
minimal k0-mer and let its location be tw where 0 ≤ t ≤ x. There are two kinds of UHS k-mers
for this sequence. The first kind contains the minimal k0-mer of the sequence, and there can be
at most two of them: one starting with that k0-mer and one ending with that k0-mer. The second
kind does not contain the minimal k0-mer, so it is either to the left of the minimal k0-mer or to
the right of the minimal k0-mer, in the sense that it does not contain the minimal k0-mer in full.
Precisely, it is from the substring that contains exactly the set of k0-mers left to the minimal k0-
mer, or from the substring that contains exactly the set of k0-mers right to the minimal k0-mer:
these two substrings have an overlap of k0 − 2 bases but do not share any k0-mer, and neither
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contain the minimal k0-mer. We refer to these sequences as the left substring and right substring
for conciseness.

This divides the problem of finding n UHS k-mers into two subproblems: finding UHS k-
mers left of location tw, and finding UHS k-mers right of location tw. If we sample an order
from R(x), conditioned on the minimal k0-mer on location tw, the order of the k0-mers left of
the minimal k0-mer follows R(t), and similarly R(x − t) for the k0-mers right of the minimal
k0-mer. As we assume w → ∞, we ignore that two substrings combined have one less k0-mer.
We will show later in Section 3.3.6 that such simplification introduces a negligible error. This
means the subproblems have an identical structure to the original problem.

We are now ready to write down the recurrence relations for Pn(x), starting with the boundary
conditions for both x and n. For x < 1, corresponding to a sequence with relative length less
than 1, it contains no k-mer so with probability 1 the sequence contains no UHS k-mer. This
means P0(x) = 1 and Pn(x) = 0 for n ≥ 1. We next derive the value of P0(x), that is, the
probability the sequence contains no UHS k-mer for 1 ≤ x ≤ 2. Define the middle region as
the set of k0-mer locations that are at most w − 2 k0-mers away from both the first and the last
k0-mer. The whole sequence contains no UHS k-mer if and only if the minimal k0-mer falls
within the middle region, as only in this case every k-mer contains the minimal k0-mer but none
have it at the boundary. The relative length of the middle region is 2− x, as we assume w →∞
(see Figure 3.3). As the order of k0-mers follows R(x), every k0-mer has equal probability to
be the minimal and it is in the middle region with probability (2 − x)/x = 2/x − 1, meaning
P0(x) = 2/x− 1.

Now, we handle the general case where 1 ≤ x ≤ 2 and n ≥ 1 (as seen in Figure 3.3). We
define the middle region in an identical way as in previous paragraph, whose relative length is
again 2 − x. If the minimal k0-mer is in the middle region, the sequence has exactly zero UHS
k-mers. Otherwise, by symmetry we assume it is to the left of the middle region (that is, at least
w−1 k0-mers away from the last k0-mer in the sequence), with location tw where 0 ≤ t < x−1.
The sequence now always has one UHS k-mer, that is the k-mer starting with the minimal k0-
mer, and all other (n − 1) UHS k-mers come from the substring right to the minimal k0-mer.
The substring has relative length x− t, and as argued above, the probability of observing exactly
(n− 1) UHS k-mers from the substring is Pn−1(x− t). Averaging over t, we have the following:

Pn(x) =
2

x

∫ x−1

0

Pn−1(x− t)dt, n ≥ 1, 1 ≤ x ≤ 2

Given P0(x) = 2/x − 1, we can solve for the next few Pn for 1 ≤ x ≤ 2 (we will show
the results for analytical integration later in this section). Recall our goal is to upper bound
EO(c)∼R(2)(1/mtotal | E0). For this purpose, Pn(x) is not sufficient as the expectation is condi-
tioned on E0. We next derive an analogue to Pn(x), but conditional on E0.

3.3.3 Deriving the Conditional Distribution of UHS k-mer Counts
We now define the events E+

0 and E−
0 . E+

0 is the event that the first k-mer of the Miniception
context is a UHS k-mer, because inside the first k-mer the minimal k0-mer is at the front. Simi-
larly, E−

0 is the event where the first k-mer is a UHS k-mer, because the last k0-mer in the first
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k-mer is minimal. These events are mutually exclusive and have equal probability of 1/w, so
P (E+

0 | E0) = P (E−
0 | E0) = 1/2.

Definition 23 (Restricted Distribution). R+(x) for x ≥ 1 is the distribution of random permu-
tations of xw elements, conditioned on the event that the first element is minimum among first w
elements. Similarly,R−(x) for x ≥ 1 is the distribution of random permutations of xw elements,
conditioned on the event that the last element is minimum among first w elements.

We now have the following:

EO(c)∼R(2)(1/mtotal | E0)

= E(1/mtotal | E+
0 )P (E

+
0 | E0) + E(1/mtotal | E−

0 )P (E
−
0 | E0)

= (EO(c)∼R+(2)(1/mtotal) + EO(c)∼R−(2)(1/mtotal))/2

Based on this, we defineQ+
n (x) to be the probability that a sequence of relative length xw, where

the order of k0-mers inside the sequence follows R+(x), contains exactly n UHS k-mers. Our
goal now is to determine Q+

n (x) for x ≤ 2, which also bounds EO(c)∼R+(2)(1/mtotal).
The general idea of divide-and-conquer stays the same in deriving a recurrence for Q+

n (x).
It is however trickier to apply this idea with a conditional distribution. We solve this issue by
defining the following:
Definition 24 (Restricted Sampling). With fixed x andw, the restricted sampling process samples
a permutation of length xw, then swap the minimum element in the first w element with the first
element.
Lemma 42. Denote the distribution generated by the restricted sampling process as S+(x), then
S+(x) = R+(x).

Proof. We prove the two distributions are identical in two parts. First, we show they have the
same support (generate the same set of permutations). Any permutations sampled from S+(x)
satisfies E+

0 by the swapping process, and any permutation satisfying E+
0 can be sampled from

S+(x) as it can simply be the initial distribution and unchanged by the swapping process. Sec-
ond, given R+(x) is a uniform distribution over permutations satisfying E+

0 , we only need to
prove for any two permutation satisfying E+

0 they are generated by S+(x) with the same prob-
ability. This is true because every permutation satisfying E+

0 has exactly w preimages in the
swapping process.

As the distributions are the same, we redefine Q+
n (x) with S+(x). The boundary condition

for Q+(x) is Q+
0 (x) = 0 for all x, because the first k-mer is guaranteed to be a UHS k-mer (note

that Q+
n (x) is defined only with x ≥ 1).

For n ≥ 1 and x ≤ 2, from the process of restricted sampling, we know with probability
1/x the minimal k0-mer in the sequence is the first k0-mer overall. In this case, the first k-mer
is the only UHS k-mer that contains the minimal k0-mer, and all other UHS k-mers come from
the substring without the first k0-mer whose relative length is still x as we assume w → ∞. We
claim the following:
Lemma 43. Given an order of k0-mers sampled from S+(x), conditioned on the first k0-mer
being overall minimal, the k0-mer order excluding the first k0-mer follows the unrestricted dis-
tributionR(x).
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1 x-1 1 x-1

Location of minimal k0-mer

UHS k-mers with min. k0-mer Subseq. for more UHS k-mers

Sequence of first k-mer

Figure 3.4: Setup for derivation of Q+
n (x) with n ≥ 1 and 1 ≤ x ≤ 2. The text denotes the

relative length of the corresponding substrings. If the minimal k0-mer is in the first k-mer, it
will be the first k0-mer overall due to the restricted sampling process. In this case, there is one
guaranteed UHS k-mer and possibility more in the substring without first k0-mer. Otherwise, the
analysis is similar to the derivation of Pn(x).

Proof. Our goal is to prove the two distributions are equal, and we will use the same two-step
process. First, every permutation can be generated by both processes. Second, as proved before,
S+(x) generates each eligible permutation with identical probability, and this holds for the con-
ditional distribution as each permutation has exactly one preimage. This means it is the same
distribution asR(x) where each permutation is also generated with the same probability.

This lemma means the probability of observing (n − 1) UHS k-mers outside the first k0-
mer is Pn−1(x). Otherwise, we use the same argument as before by setting the location of the
minimal k0-mer to be tw, where 1 ≤ t ≤ x. Only one UHS k-mer contains the minimal k0-
mer with probability 1 (if x = 2, t = 2 happens with probability 0), and all other UHS k-mers
come from the substring to the left of the minimal k0-mer. By a similar argument, the order of
k0-mers within the left substring follows S+(t). These arguments are also shown in Figure 3.4.
Averaging over t, we have the following recurrence for Q+

n (x), valid for 1 < x ≤ 2 and n ≥ 1:

Q+
n (x) =

1

x

(
Pn−1(x) +

∫ x

1

Q+
n−1(t)dt

)
.

Replacing R+(x) with R−(x), we can similarly define and derive the recurrence for Q−
n (x)

given 1 ≤ x ≤ 2. The process is highly symmetric to the previous case for Q+
n (x). To start with,

we similarly define the restricted sampling process (where we swap the minimal element in the
first w elements with the wth element instead). We define Q−

n (x) to denote the same quantity as
Q+

n (x), except the order is now sampled from the new restricted sampling process S−(x). The
derivation of Q−

n (x) is identical when the minimal k0-mer in the sequence is not the wth one.
With probability 1/x, the minimal k0-mer will be the wth one. In this case, if x < 2, again only
one UHS k-mers will contain the minimal k0-mer, but with x = 2 two k-mers will contain it
(with x = 2, the k0-mer is in the middle of the sequence, with at least w − 1 k0-mers away from
each end). All other UHS k-mers now come from the substring right to the minimal k0-mer,
whose relative length is now x − 1, and similar to our previous argument, the order within the
substring followsR(x− 1). This yields the following recurrence:
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Q−
n (x) =

1

x
(Pn−1(x− 1) +

∫ x

1

Q−
n−1(t)dt), n ≥ 1, x < 2

Q−
n (x) =

1

x
(Pn−2(x− 1) +

∫ x

1

Q−
n−1(t)dt), n ≥ 1, x = 2

Similar to Pn(x), we can derive the analytical solution to these integrals. Here, we perform
symbolic integration and show the results for n ≤ 6.

P0(x) = 2/x− 1

P1(x) = −2 + 4 ln(x)/x+ 2/x

P2(x) = −4 + 4 ln2(x)/x+ 4 ln(x)/x+ 4/x

P3(x) = −8 + 8 ln3(x)/3x+ 4 ln2(x)/x+ 8 ln(x)/x+ 8/x

P4(x) = −16 + 4 ln(x)4/3x+ 8 ln(x)3/3x+ 8 ln(x)2/x+ 16 ln(x)/x+ 16/x

P5(x) = −32 + 8 ln(x)5/15x+ 4 ln(x)4/3x+ 16 ln3(x)/3x+ 16 ln2(x)/x+ 32 ln(x)/x+ 32/x

P6(x) = −64 + 8 ln(x)6/45x+ 8 ln5(x)/15x+ 8 ln4(x)/3x+ 32 ln3(x)/3x+ 32 ln2(x)/x

+ 64 ln(x)/x+ 64/x

Q+
0 (x) = 0

Q+
1 (x) = 2/x2 − 1/x

Q+
2 (x) = ln(x)(4/x2 − 1/x)

Q+
3 (x) = ln2(x)(4/x2 − 1/2x)

Q+
4 (x) = ln3(x)(8/3x2 − 1/6x)

Q+
5 (x) = ln4(x)(4/3x2 − 1/24x)

Q+
6 (x) = ln5(x)(8/15x2 − 1/120x)

Q−
0 (x) = 0

Q−
1 (x) =

{
1/x x < 2

0 x = 2

Q−
2 (x) =

{
ln(x)/x x < 2

(1 + ln(x))/x x = 2

Q−
3 (x) = ln2(x)/2x

Q−
4 (x) = ln3(x)/6x

Q−
5 (x) = ln4(x)/24x

Q−
6 (x) = ln5(x)/120x
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Using the definition of Q+
n (x), we now bound EO(c)∼R+(2)(1/mtotal) by truncating the distri-

bution’s tail, as follows (omitting the condition for clarity):

E(1/mtotal) =
∞∑
i=1

Q+
i (2)/i

≤
n∑

i=1

Q+
i (2)/i+

(
1−

n∑
i=1

Q+
i (2)

)
/(n+ 1)

We can derive a similar formula for the symmetric term EO(c)∼R−(2)(1/mtotal). For both Q+

and Q−, at n = 6 the tail probability 1 −
∑n

i=1Qi(2) < 0.01, so we bound both terms using
n = 6, resulting in the following:

EO(c)∼R(2)(1/mtotal | E0) = (EO(c)∼R+(2)(1/mtotal) + EO(c)∼R−(2)(1/mtotal))/2

< 0.417

Finally, we bound the density of the Miniception, now also using the symmetry conditions
(omitting the condition O(c) ∼ R(2) for clarity):

P (c ∈ C) = E(mboundary/mtotal) + o(1/w)

≤ E(1/mtotal | E0)P (E0) + E(1/mtotal | E1)P (E1) + o(1/w)

= 4E(1/mtotal | E0)/w + o(1/w)

< 1.67/w + o(1/w)

3.3.4 Density Bounds for Other Configurations
We can derive the recurrence for Pn(x), Q+

n (x) and Q−
n (x) for x > 2, corresponding to the

scenario where w ≈ (x− 1)k > k. By similar techniques, with suitably chosen n, we can upper
bound the density of the Miniception from the values of Q+

i (x) and Q−
i (x) with i ≤ n. The

resulting bound has form of D(x)/w+o(1/w), where D(x) is the density factor bound. We then
have the following theorem:
Theorem 10. With x ≥ 2, w = (x− 1)(w0 +1), k = w0 + k0 and k0 > (3+ ϵ) logσ(x(w0 +1)),
the expected density of the Miniception is upper bounded by D(x)/w+ o(1/w). (In other words,
in the last section we showed that D(2) ≈ 1.67.)

For the rest of this section, we derive D(x). Note that as w = w0 + 1 no longer holds, the
relative length of a sequence is defined as the number of k0-mers in the sequence divided by
w0+1, andR(x) is now a random permutation of x(w0+1) elements. Definition for S±(x) and
the desired quantities change accordingly.

We will follow the same general argument as before, by iterating over the location of minimal
k0-mer within the sequence as t(w0 + 1) for 0 ≤ t ≤ x, and discuss the different scenarios. The
extra consideration comes from the fact that now it is possible that both left and right substrings
produce UHS k-mers, so we also need to iterate over the number of UHS k-mers from one
substring. We will define the convolution operator to represent this iteration process:

[A(s) ∗B(t)]n =
n∑

m=0

Am(s)Bn−m(t)
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We start with the derivation of Pn(x) for x > 2. For n = 0 and x > 2, Pn(x) = 0 as wherever
the minimal k0-mer is, there will be one UHS k-mer containing it. For the rest, we define the
middle region as the subregion that is at least w0 k0-mers away from both the first and the last
k0-mer in the sequence. Its relative length is x − 2. If the minimal k0-mer falls in this region,
two UHS k-mers (recall a k-mer consists of (w0 + 1) k0-mers) will contain the k0-mer and both
substrings split by the minimal k0-mer may contain more UHS k-mers. If the minimal k0-mer
falls outside this region, the analysis is identical to the previous case. This yields the following
recurrence:

Pn(x) =
1

x
(2

∫ 1

0

Pn−1(x− t)dt+
∫ x−1

1

n−2∑
m=0

Pm(t)Pn−2−m(x− t)dt)

=
1

x
(2

∫ 1

0

Pn−1(x− t)dt+
∫ x−1

1

[P (t) ∗ P (x− t)]n−2dt)

For Q+
n (x), we similarly define the middle region. If the minimal k0-mer before swapping pro-

cess falls to the left of the middle region (with probability 1/x), it falls within the first k-mer and
its order is swapped with the first k0-mer. The probability of observing n−1 UHS k-mers outside
the first k0-mer is the same Pn−1(x). If the minimal k0-mer is to the right of the middle region,
one UHS k-mer contains this k0-mer and all other UHS k-mers comes from the left substring,
following S+(x−1). If the minimal k0-mer is in the middle region, two UHS k-mers contain the
k0-mer and both substrings may contain more UHS k-mers, with the order in the left substring
conditioned on S+(t) and the order in the right substring conditioned on R(x − t). This yields
the following recurrence:

Q+
n (x) =

1

x
(Pn−1(x) +

∫ x−1

1

[Q+(t) ∗ P (x− t)]n−2dt+
∫ x

x−1

Q+
n−1(t)dt)

The derivation for Q−
n (x) is extremely similar to that of Q+

n (x). Note that now x ≥ 2, two UHS
k-mers are guaranteed when the minimal k0-mer is the wth one.

Q−
n (x) =

1

x
(Pn−2(x− 1) +

∫ x−1

1

[Q−(t) ∗ P (x− t)]n−2dt+
∫ x

x−1

Q−
n−1(t)dt)

Following the methods of truncating distributions outlined in the main text, noting that now
P (E+

0 ) = P (E−
0 ) = 1/(w0 +1) = (x− 1)/w, we can calculate density factor bound as follows:

Mi = (Q+
i (x) +Q−

i (x))/2

D(x) = 4(x− 1)(
n∑

i=1

Mi/i+ (1−
n∑

i=1

Mi)/(n+ 1))

assuming the integrals are derived up to nUHS k-mers. The final density bound will beD(x)/w+
o(1/w), as promised at the beginning of this section.
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3.3.5 Approximate Calculation of Density for Other Configurations

AsD(x) represents the density of the Miniception when w ≈ (x−1)k, with k →∞, it is natural
to approximate D(x) by selecting a large value of k and calculate the density of the Miniception
with w = (x − 1)k. Here, we make the assumption that all k0-mers in the string are unique
and k0 ≪ k, so we simply take k0 = 1, w = (x − 1)k and assume the order of the k0-mers in
the context follows R(x). As we will show later (Section 3.3.6), the final density bound will be
off by O(1/k) compared to the integrals, so by choosing k to be large enough we can ensure
the derived bound is close to the integral bound, which again by Section 3.3.6 approximates the
behavior of the Miniception for arbitrary large values of k.

Now, let P [l, n] be the probability that given permutation of l k0-mers, there are exactly n
UHS k-mers. Recall a k-mer is a UHS k-mer if its first or last k0-mer is the smallest in the
substring, which is of length k now. We again enumerate over the location of the smallest k0-mer
in permutation, and denote this value i. Each specific location is the minimum with probability
1/l. If i ≥ k − 1, the k-mer that ends at i (meaning its last k0-mer is this one) is a UHS k-mer.
By symmetry, if i ≤ l − k, the k-mer starting at i is a UHS k-mer. The rest of UHS k-mers will
come from the two substrings, obtained by removing the ith k0-mer from the sequence, and as
before, we need to enumerate the number of UHS k-mers from either substrings. This results in
the following recurrence, where we use fl,n(i) to denote the number of UHS k-mers that need to
come from either substrings:

fl,n(i) = n− 1(i ≥ k − 1)− 1(i ≤ l − k)

P [l, n] =
1

l

l−1∑
i=0

(P [i] ∗ P [l − 1− i])fl,n(i)

Here 1(C) evaluates to 1 if C is true and 0 otherwise. We also use ∗ as the standard convolution
operator: (A ∗B)n =

∑n
i=0A[x, i]B[y, n− i]. With the dynamic programming, we only need to

provide that P [i, 0] = 1, P [i, n] = 0 for i < k and n ≥ 1. We can then calculate the values of
P [l, n] up to l = xk and some preset value of n with the requirement n > 2x.

We can similarly generate the recurrence relationship for Q+[l, n] and Q−[l, n] (derivations
are highly similar and omitted here):

Q+[l, n] =
1

l
(kP [l − 1, n− 1] +

l−1∑
i=k

(Q+[i] ∗ P [l − 1− i])fl,n(i))

Q−[l, n] =
1

l
(kP [l − k, n− 1− 1(l ≥ 2k − 1)] +

l−1∑
i=k

(Q−[i] ∗ P [l − 1− i])fl,n(i))

The approximate density factor bound (we use the density factor bound for numerical stability
and ease of comparison), which we denote as Dk(x), can be calculated as follows using our
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previous argument of truncating the distribution.

M ′
i = (Q+[xk, i] +Q−[xk, i])/2

Dk(x) = 4(x− 1)(
n∑

i=1

M ′
i/i+ (1−

n∑
i=1

M ′
i)/(n+ 1))

The final density bound for the Miniception under this configuration will be Dk(x)/w +
o(1/w), where the o(1/w) term comes from the event that some k0-mers in a context can be
identical.

3.3.6 Bounding the Errors for the Integral Methods
In the derivation for the Miniception, we assume k →∞ and use an integral instead of summa-
tion for derivation of Pn(x) and other quantities. In this section, we show the error introduced by
this method is small enough to not affect the final result asymptotically. Specifically, we show
the following:
Lemma 44. Let D(x) be the density factor bound derived from the integrals, and Dk(x) be the
density factor bound calculated from the dynamic programming with window length (x − 1)k
and k-mer length k (measured in number of k0-mers), assuming all k0-mers are distinct. We
have |D(x)−Dk(x)| = O(nx/k), where n is the largest number of UHS k-mers considered by
both processes.

This lemma serves a dual purpose. It means D(x) is a good approximation to any Dk(x)
up to asymptotically negligible errors, and by calculating Dk(x) for sufficiently large k, we can
estimate D(x) accurately which in turn approximates other Dk(x). In other words, D(x) serves
as a bridge to connect the density factor bound Dk(x) for different values of k, which then bound
the density of the actual minimizer as long as k0 satisfies the condition for Lemma 10. Note that
in derivation of Dk(x) the concept of k0-mers are already abstracted away, and for simplicity we
assume k0 = 1 in that process, meaning every k-mer now consists of k k0-mers.

Recall that we set up the integrals to derive the distribution of mtotal conditioned on first k-
mer being a UHS k-mer. We now assume k0 = 1, meaning k = w0 +1 (as done in Section 3.4.1
when we try to use dynamic programming to approximate D(x)). The context has exactly xk
k0-mers, and each k-mer is of length k. All lengths in the section are measured in k0-mers. As
we have shown before, conditioned on E0, the context will contain at least two UHS k-mers.

We have calculated a general formula for Pn(x) where the final formula contains integrals.
An alternative view of the integral recurrence is that we determine at most n + 1 locations that
contain the minimal k0-mers in a certain substring and calculate the number of UHS k-mers
based on the order and the distance of these locations. For example with x = 2, if the first
location (the minimal k0-mer in the whole context) is on the left half of the context, the second
location is for the minimal k0-mer in the substring right to the first location. If the second location
is in the middle region (See Section 3.3.2 for definition) of that substring, we determined the
number of UHS k-mers (1 in this case) using two locations. If instead, the second location
is not inside the middle region, a third location is determined inside the sub-sub-sequence that
could still generate a UHS k-mer (which for our case is the either the sequence between the
first and second location, or the sequence between second location and the right end), and these
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three locations can collectively determine how many UHS k-mers are in the whole context. This
process continues until no substrings can generate more UHS k-mers, or n+1 UHS k-mers have
been generated. In this process, we claim there are at most n + 2 determined locations. This is
because of the fact that after the first step, each time we need to determine a new location inside a
subsequence, a new UHS k-mer has been determined in the step that splits into this subsequence.
Similarly, when we derive the values ofQ+

n (x) andQ−
n (x), we can take an alternative view where

determine the location of the minimal k0-mer before swapping.
We denote the sequential decision process to determine the number of UHS k-mers, condi-

tioned on E+
0 (corresponding to Q+

n (x)) and E−
0 (corresponding to Q−

n (x)), as m ∼ P+
n (x) and

m ∼ P−
n (x), respectively. Formally:

Pm∼P+(x)(m = i) = Q+
i (x) i ≤ n

Pm∼P+(x)(m = n+ 1) = 1−
n∑

j=1

Q+
j (x) i = n+ 1

And this is symmetric for P−(x). With this definition, we have:

D(x) = 2(x− 1)
(
Em∼P+(x)(1/m) + Em∼P−(x)(1/m)

)
Similarly, we can propose an alternative view of the dynamic programming, where we de-

termine at most n + 1 locations that contains the minimal k0-mers in a certain sequence. The
difference is that in the previous cases, the locations are picked on a real axis [0, x], but now it is
picked from a discrete set of locations in [xk]. We will now argue the two processes are not that
different.

We first establish a mapping M(t) : R → [xk] from real numbers to discrete locations, by
multiplying the real number by k and rounding down. When a real number is sampled uniformly
from [0, x], its mapping will be a uniform distribution over [xk] (that is, 1/xk chance to map into
each location ignoring truncation errors as we assume k → ∞). Now, we consider emulating
the decision process from the dynamic programming (which we denote P+

k (x), for simplicity).
Each time a location is randomly sampled (the location of minimal k0-mer in current substring
of consideration) from P+(x), we emulate one step of P+

k (x) by selecting the mapped discrete
location as the location of the minimal k0-mer. The process continues until the end of decision
process.

We now examine the emulation process in more detail. At each step of the decision process,
we sample the location of the minimal k0-mer in current substring of consideration, before the
swapping process if the substring of consideration is still conditioned on E+

0 or E−
0 . The bound-

ary of the substring is determined by two previous samples (or simply the boundary), which we
denote L and R. The discrete decision process we are emulating will be sampling the location of
the minimal k0-mer in current substring of consideration, which will be the substring fromM(L)
toM(R), including neither ends. It can be seen that we are sampling from a slightly longer range
in the original process. As long as our sampled location T satisfiesM(L) < M(T ) < M(R), the
distribution of M(T ) is uniform over possible selections. If M(T ) = M(L) or M(T ) = M(R)
at any step of the emulation, we call the whole process failed and do not continue. (in other
words, if during the n+2 steps we sampled two locations into the same “bucket” indexed by M ,
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the whole process fails.) The swapping process can be addressed similarly, as in this case L = 0
is guaranteed, and the emulated and original decision process will never disagree on whether the
swap should be triggered.

Assume M(T ) passes this check, meaning it is uniformly sampled from possible locations
between M(L) and M(R). We will now decide on the next step in the process. This includes
two parts: Counting number of UHS k-mers including the minimal k0-mer, and determining if
a substring can still produce more UHS k-mers. Both parts involves two distance checks: If
T − L > 1 in the original decision process, and if M(T )−M(L) ≥ w0 in the discrete decision
process, for checking if the k-mer ending with the minimal k0-mer in this substring constitutes
a valid UHS k-mer. If the original decision process and the emulated decision process will give
different answer to this check, we call the whole process failed and do not continue. For deciding
if the left substring can produce more UHS k-mers, we replace w0 with w0 + 1 (e.g. checking
if M(T )−M(L) ≥ w0 + 1, failing in case of disagreement between the continuous simulation
and discrete sampling) and the analysis is the same. It is also symmetric for the right substring
and checking the k-mer starting with minimal k0-mer.

Now, if a decision process does not fail (by either of the previously defined criteria), we say
it perfectly emulates a discrete decision process. By the way it is defined, the emulated process
randomizes the location of minimal k0-mers correctly, make the same decision as the original
process at every step, and count the same number of UHS k-mers. We now characterize these
“safe decision processes” with the following notation. Let S+

k denote a distribution whose sup-
port is {×, 1, 2, 3, . . . , n + 1} derived from the aforementioned emulation process. × denotes a
failed process, and an integer denotes the number of UHS k-mers determined from the process.
We claim Pm∼S+

k
(m = i) ≤ Pm∼P+(m = i) and Pm∼S+

k
(m = i) ≤ Pm∼P+

k
(m = i) simulta-

neously for all i ∈ {1, 2, 3, . . . , n + 1}. This essentially means that the “safe decision process”
is a conservative estimate to both the continuous and the discrete selection process. If the “bad
cases” are rare, the safe process is a close estimate to both and the two processes are similar.

The first part of the statement can be proved by the definition of the emulation process:
Pm∼S+

k
(m = i) is the probability that the emulation successes and returns i UHS k-mers, which

is never greater than the probability of iUHS k-mers regardless of the emulation outcome (P (A∩
B) ≤ P (A)). The second part is can be proved by viewing the emulation from the perspective
of the discrete process (which we call a reverse emulation, however they are in fact the same
process): At each step of the discrete decision process, we first randomly select the location of
the minimal k0-mer, and randomly choose a real number that maps to this location as its real
coordinate. We then do a failure check by rolling a random number inside [L,R] (from the real
number locations selected in previous steps), and fail the process if the rolled location collide.
Similarly, at each distance check we first get the outcome from discrete locations, then fail the
process if the real number locations disagree with the outcome. In this perspective, we can prove
the second part of the statement in the same way: Pm∼S+

k
(m = i) is the probability that this

reverse emulation successes and returns i UHS k-mers, and is never greater than the probability
of getting i UHS k-mers regardless of the outcome of reverse emulation.

We now bound the probability of failure, that is Pm∼S+
k
(m = ×). As the decision process

consists of n + 2 steps at most, we will bound the probability at each step. At each step, the
interval for random selection has at least relative length of 1 (otherwise no UHS k-mers will be

65



from this section), and there are at least k k0-mers for selection. The key observation here is there
are only 6 ways to fail (colliding with M(L), disagreement on whether left substring contains
more UHS k-mers, disagreement on whether the k-mer ending at smallest k0-mer is valid UHS
k0-mer, and their symmetric counterparts), and for each of them, there is a interval of length
at most 1/k such that the fail event is triggered if and only if the minimal k0-mer is inside the
interval. In other words, the probability to fail at each decision step is at most 6/k = O(1/k),
and the probability of failure at any step is O(n/k).

We now have the tools to bound |D(x) − Dk(x)|, the error we get from the dynamic pro-
gramming process. We first bound the term Em∼P+(x)(1/m). We denote S as the event that the
emulation is successful, and F+(x) as the distribution of UHS k-mer count when the emulation
fails:

Em∼P+(x)(1/m) =
n+1∑
i=1

Pm∼P+(x)(m = i)/i

= P (S)
n+1∑
i=1

Pm∼S+
k (x)(m = i)/i+ P (S̄)

n+1∑
i=1

Pm∼F+(x)(m = i)/i.

And similarly, let F+
k (x) as the distribution of UHS k-mer count when the reverse emulation

fails:

Em∼P+
k (x)(1/m) =

n+1∑
i=1

Pm∼P+
k (x)(m = i)/i

= P (S)
n+1∑
i=1

Pm∼S+
k (x)(m = i)/i+ P (S̄)

n+1∑
i=1

Pm∼F+
k (x)(m = i)/i.

This leads to the following:

|Em∼P+(x)(1/m)− Em∼P+
k (x)(1/m)|

= P (S)|
n+1∑
i=1

(Pm∼F+(x)(m = i)− Pm∼F+
k (x)(m = i))/i|

≤ P (S) = O(n/k).

Substitute this back, we get |D(x)−Dk(x)| = O(nx/k).
We should also point out that the bound is not tight. This is because we overestimate the

difference term
∑n+1

i=1 Pm∼S+
k (x)(m = i)/i by simply upper bounding it by 1. However, for

larger value of k and x, the context is almost guaranteed to have around 2x UHS k-mers, and
the difference here is more on the order of O(1/x2). This means in practice the bound is more
like O(1/k) (considering n = Θ(x) is a reasonable choice) with the possibility of even smaller
(as we do not consider that positive terms and negative terms cancel out each other), which also
explains why we are comfortable to pick k = 2500 in our simulations as shown next section.
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Figure 3.5: Density factor for the Miniception when w ≈ (x − 1)k and k = 2500. The random
minimizer achieves density factor of constant 2 and is plotted for comparison.

3.4 Empirical Evaluation of the Miniception

3.4.1 Asymptotic Performance of the Miniception

We use the dynamic programming formulation described in Section 3.3.5 to calculate the density
factor of the Miniception given w ≈ (x − 1)k, with a large value of k = 2500. As analyzed in
Section 3.3.6 this accurately approximates D(x), which in turn approximates the density factor
of the Miniception with other values of k up to an asymptotically negligible error. Figure 3.5
shows estimated D(x) for 2 ≤ x ≤ 8.

Consistent with Section 3.3, D(2) ≈ 1.67, as x = 2 corresponds to the case w ≈ k. There
is no analytical form for D(x) with x > 2, but this experiment suggests that as x grows, D(x)
increases while staying below 2, the density factor of a random minimizer. That is, as w gets
increasingly larger than k, the Miniception performance regresses to that of a random minimizer.
We conjecture that D(x) = 2 − Ω(1/x) as x grows. (that is, when the windows are x long
measured in relative length, the savings measured in density factor is still more than Θ(1/x).)

3.4.2 Designing Minimizers with Long k-mers

Evaluation Using a Random Sequence

As seen in the implementation of Miniception (Section 3.2.2), the run time of the Miniception
minimizer is the same as a random minimizer. Therefore, it can be used even for large values of
k and w. This contrasts with PASHA ([28]), the most efficient minimizer design algorithm prior
to our work, which only scales up to k = 16.
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Figure 3.6: Comparing density of the Miniception against lexicographic and random minimizers.
Left side: Fixed w = 10, right side: fixed w = 100.
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Figure 3.7: Comparing density of the Miniception against lexicographic and random minimizers.
Left side for smaller value of w, right side for larger values of w, all with k = 31. Note that
PASHA is computationally limited to k ≤ 15 and thus cannot handle these cases.
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We implemented the Miniception and calculated its density by sampling 1 000 000 random
contexts to estimate the probability of a charged context (which is equivalent to estimating the
density as discussed before). The Miniception has a single tunable parameter k0. It is important
to pick an appropriate value of k0: too small value of k0 invalidates the assumption that most
k0-mers are unique in a window, and too large value of k0 increases the value of x. Following
this idea, our recommendation is to set k0 close to k−w if k is larger than w (which corresponds
roughly to x = 2 in our analysis of the Miniception), and a constant multiple of logσ w if w is
larger than k (roughly corresponding to x = w/k+1 in our analysis). A parameter search around
the recommended range is also recommended if performance is a critical concern.

We tune this parameter in our experiments by setting k0 = k −w if k is larger than w + 3. If
this does not hold, we test the scheme with 3 ≤ k0 ≤ 7 and report the best-performing one. We
show the results for Miniception against lexicographic and random minimizers in four setups:
two with fixed w and two with fixed k (Figure 3.6 and Figure 3.7). These parameter ranges
encompass values used by bioinformatics software packages.

The Miniception consistently performs better than the lexicographic and random minimizers
in all tested scenarios. For the setups with fixed w = 10, k is larger than w and the Miniception
achieves density factor of ≈ 1.72 for k ≥ 13. Given that 1/w = 0.1, our bound on the density
factor of 1.67 + o(1/w) holds relatively well for these experiments. The same conclusion holds
for the setup with fixed k = 31 and 5 ≤ w ≤ 20.

For the experiments with w = 100, w is larger than k and we observe the same behavior as
in Section 3.4.1: the performance degrades when k becomes smaller than w. Same conclusion
holds for the setup with fixed k = 31 and 40 ≤ w ≤ 100. Our theory also correctly predicts this
behavior, as the decrease of x ≈ w/k + 1 improves the density bound as seen in Section 3.3.

3.4.3 Comparison with PASHA (Prior SoTA)

Evaluation on Random Sequences (for Density)

We compare the Miniception with PASHA [28], an efficient and highly parallelized algorithm
that constructs small universal hitting sets similar to DOCKS [85]. We downloaded the PASHA
generated UHS from the project website, and implemented the compatible minimizers (Sec-
tion 3.2.1) according to Ekim et al. [28]. Our test consists of two parts. For the first part, we
fix k = 13 and vary w from 20 to 200. For the second part, we fix w = 100 and vary k from
7 to 15. This setup showcases some of the largest minimizers that can be computed by PASHA
(we are unable to parse the UHS file for k = 16 as some of the lines are not exactly 16-mers).
In Figure 3.8, we observe that the Miniception performs better than the random minimizers for
these configurations on a random sequence, but PASHA, even though it is a heuristic without a
density guarantee, overall holds the edge.

Evaluation on hg38

We perform experiments on the hg38 human reference genome sequence, where we observe
similar results with a smaller performance edge for PASHA.
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Figure 3.8: Comparing density of the Miniception against lexicographic, random and PASHA
minimizers. Here, the configurations follow those as done in the PASHA paper, including its
extreme cases.

As observed by Roberts et al. [95, 96], ordering the alphabet by reverse frequency may im-
prove performance of the lexicographic minimizer. For this reason, we use the order C < G <
A < T for all minimizers where lexicographical order is needed. We also consider two strategies
for constructing a compatible minimizer given the UHS from PASHA. The authors suggested a
lexicographic order within the UHS, but we also implement a minimizer where the order within
the UHS is randomized, like the Miniception.

Although PASHA has lower density than Miniception, it is limited to k ≤ 16. Moreover,
computing minimizers with PASHA requires storing in memory a relatively large set of k-mers
(5 to 10 millions mers for k = 13). The Miniception, as we discussed before, does not need to
store any set.
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Figure 3.9: Comparing density of the Miniception against lexicographic and random minimizers
on hg38. We experiment with w = 10 (left) and w = 100 (right).
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Figure 3.10: Density factor comparison on hg38 for Miniception with minimizers derived from
PASHA outputs. Left: experiments with fixed k = 13 and varying w. Right: experiments with
fixed w = 100 and varying k.
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Chapter 4

Low-Density, Sequence-Specific Minimizer
Sketches

In this chapter, we explore optimizing low-density minimizer sketches for sequence-specific sce-
narios (See Section 1.4.2 for more detailed discussion). The idea of constructing sequence
sketches tailored to a specific sequence has been explored before [21, 24, 46], but it remains
less understood than the average case. Random sequences have nice properties that allow for
simplified probabilistic analysis, which are absent when the sequence is given (possibly in an
adversarial way). Consequently, different analytic tools are needed to analyze sequence-specific
minimizers. Previous minimizers designed to have low density in the average case often offer
only modest improvements on sequences of interest such as reference genomes (for example, the
Miniception as introduced in the previous chapter has this property).

The current theory for minimizers with low density in average is tightly linked to the theory
of universal hitting sets (UHS) [52, 74, 85]. As the name suggests, a UHS is a set of k-mers
that “hits” every w-long window of every possible sequence (hence the universality; it is an un-
avoidable set of k-mers). Universal hitting sets of small size generate minimizers with a provable
upper-bound on their density. Universal hitting sets are less useful in the sequence-specific case
as the requirement to hit every window of every sequence is too strong, and UHSs are too large to
provide a meaningful upper-bound on the density in the sequence-specific case. New theoretical
tools are needed to analyze the sequence-specific case.

We set the stage with notations in Section 4.1. In Section 4.2, we focus on the theory side of
sequence-specific minimizer sketches. We will explore several shortcomings of the current uni-
versal hitting sets framework, propose the polar set, and show that the model has many desirable
properties. In Section 4.3, we focus on the practical side of polar set derived minimizer sketches.
We start by designing and analyzing an algorithm to optimize polar sets given a particular input
string, then implement the algorithm and perform thorough comparison with existing algorithms
on a variety of cases in Section 4.4. We finish with Section 4.5, a short discussion about the fact
that polar sets can be extended in many ways, even including universal hitting sets as a special
case while enabling more fine-grained analyses.

A version of this chapter was published in ISMB 2021 [129].
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4.1 Prelimaries and Overview
We redefine some terms that we need to use within this chapter, for self-containment.

The sequence S is a string on the alphabet Σ of size σ = |Σ|. The parameters k and w define
respectively the length of the k-mers and the window size. We assume that S is relatively long
compared to these parameters: |S| ≫ w + k.
Definition 25 (Minimizer and Windows). A minimizer is characterized by (w, k,O) where O is
a complete order of Σk. A window is a sequence of length (w + k − 1) consisting of exactly
w k-mers. Given a window as input, the minimizer outputs the location of the smallest k-mer
according to O, breaking ties by preferring the leftmost k-mer.

The minimizer (w, k,O) is applied to the sequence S by finding the position of the smallest
k-mer in every window of S. Because two consecutive windows in S have a large overlap, the
same k-mer is often selected in these two windows, and hence the minimizer returns a sampling
of positions in the sequence S. The specific density of the minimizer on S is defined as the
number of selected positions divided by the length |S| (In previous chapter we set the divisor as
number of k-mers in S, but for long sequences the difference is negligible).

The density is between 1/w, because at least one k-mer in every window must be picked, and
1, because it is a sampling of the positions of S. Therefore the goal is to find orders O that have
a density as close to 1/w as possible. A minimizer with density 1/w is a perfect minimizer. For
simplicity, when stating the density of a minimizer we ignore any additive term that is o(1/w)
(i.e., asymptotically negligible compared to 1/w).

A random minimizer is defined by choosing at random one of the permutations of all k-mers.
The expected density of a random minimizer over a random string is 2/(w+1) in most cases (see
Section 2.7 for a more rigorous argument). Equivalently, the expected distance between adjacent
selected k-mers is (w + 1)/2. The random minimizers will serve as a baseline against which to
compare.

Defining orders. For practical reasons, we define orders by defining a set U (not necessarily a
universal hitting set) and considering orders that are compatible with U : an orderO is compatible
with U if every element of U compares less than any element not in U under O. That is, only
the smallest elements for O are specified (the elements of U ) and a minimizer using an order
compatible with U will preferentially select the elements of U . There exist many orders that are
compatible with U as the relative order between the elements within U is not specified.

Universal Hitting Sets. A set U is a universal hitting set if for every one of σw+k−1 possible
windows (recall σ is the size of the alphabet), it contains a k-mer from U . In the average case,
minimizers compatible with U have densities upper bounded by |U |/σk, because only k-mers
from the universal hitting set can be selected. The next section provides a more detailed discus-
sion of why this bound provided by universal hitting sets does not always apply for sequence-
specific minimizer analysis, and why universal hitting sets do not specialize well.

Short sequences. On a short random sequence (in a sense made precise by Lemma 49) most k-
mers are unique (i.e., they occur only once in the sequence S). Therefore, it is likely that there is a
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set U of unique k-mers of S that are exactly w bases apart in S, and a minimizer compatible with
U is perfect. Unfortunately most sequences of interest (e.g., reference genomes) are too long,
too repetitive and in general do not satisfy the hypothesis of Lemma 49. For most sequences it is
not possible to find a set of “perfect seeds” of k-mers spaced exactly w apart.

Polar sets. A polar set is a relaxed version of a perfect set: any pair of k-mers m1 and m2 from
a polar set A is always more than w/2 bases apart in S (see the more general Definition 27).
The intuition behind this definition is that for a minimizer compatible with A, any k-mer from
A selected by the minimizer is at distance ≥ (w + 1)/2 from the previous and the next selected
k-mer. Hence, k-mers selected fromA are at least as sparse, and usually more sparse than k-mers
selected using a random minimizer in expectation.

We will also prove a technical lemma, which we actually proved the first time in Lemma 36
back in Section 2.7.3. We do it again for self-containment.
Lemma 45. Given a random sequence and a pair of locations i < j, the probability that the
k-mer starting at i equals the k-mer starting at j is exactly σ−k.

Proof. If j − i ≥ k, the two k-mers do not share bases, so given they are both random k-mers
independent of each other, the probability is σ−k. Otherwise, the two k-mers intersect. We let
d = j − i, and use mi to denote the k-mer starting at location i. We use s to denote the substring
from the start of mi to the end of mj with length k+ d (or equivalently, the union of mi and mj).
If mi = mj , the pth character of mi is equal to the pth character of mj , meaning sp = sp+d for all
0 ≤ p < k. This further means s is a repeating sequence of period d, so s is uniquely determined
by its first d characters and there are σd possible configurations of s. The probability a random s
satisfies mi = mj is then σd/σk+d = σ−k.

4.2 Theory of Sequence-Specific Minimizers and Polar Sets

4.2.1 A Walkthrough of Universal Hitting Set-Based Methods
Universal hitting sets have been an important component in constructing practical minimizers. In
this section, we provide a more formal and technical discussion on universal hitting sets. First, we
formally define UHS and discuss why existing heuristics to construct UHS are not adequate for
sequence-specific minimizer. Then, we discuss the two existing methods to analyze compatible
minimizers of UHSes, and show that these approaches both have issues that make them unfit for
our goal.

Definitions and Inelasticity of UHS

Definition 26 (Universal Hitting Sets). Let U be a set of k-mers. If U intersects with every w
consecutive k-mers, it is a UHS over k-mers with path length w and relative size |U |/σk.

A decycling set is a set of k-mers that intersect with any sufficiently long strings. Any uni-
versal hitting set must be a decycling set, so lower bound on the size of decycling sets applies to
all universal hitting sets.
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Lemma 46 (Minimal Decycling Sets). Any UHS over k-mers with finite path length has relative
size Ω(1/k).

With a universal hitting set, it is guaranteed that any compatible minimizer will only select
k-mers within the UHS on any sequence. Currently, the most popular approach for constructing
efficient minimizers is via construction of a compact universal hitting set, followed by construct-
ing a compatible minimizer. These universal hitting sets are usually constructed by expanding
from a minimal decycling set (MDS). As we have shown in Theorem 3 back in Section 2.5, the
Mykkeltveit MDS [82], the MDS that is predominantly used as the starting point, already covers
all windows of length O(k3). Empirically, with larger value of w only a few k-mers needs to
be added to satisfy the universal hitting condition. As a result, UHSes constructed for different
references look like each other, and the compatible minimizers do not specialize well.

A related concern about using UHSes on specific sequences is on handling of repetitive
k-mers. As we have discussed, repetitive k-mers are prevalent in human reference genome.
Any universal hitting set always contains homomers like AAA · · ·A as it is required to cover
a sequence of all As. This argument also extends to other repetitive k-mers. Such homomers,
or repetitive k-mers, would then be preferred when using compatible minimizers for sequence
sketching. This problem of prioritizing repetitive k-mers is also present in fixed interval sam-
pling. Meanwhile, existing literature [46, 63] suggests it is in fact beneficial to not select these
k-mers for read mapping, while proposing different remedies to this issue. Our proposed meth-
ods also have the effect of avoiding repetitive k-mers, as it is likely some of repetitive k-mer
appears close to another copy of itself, automatically disqualifying for inclusion. (However, if
the priority set is not universal hitting as we will do this section, exclusion from the priority set
does not guarantee that a k-mer will never be selected by a compatible minimizer.)

Analysis via Density Upper Bound

There are two existing ways to analyze the density of compatible minimizers. The first is via the
following lemma, as we have mentioned in the main text:
Lemma 47. If U is a UHS over k-mers, any compatible minimizer has density at most |U |/σk.

This lemma is universally applicable, and it does not depend on the ordering within U . It also
applies to sequence-specific cases, by replacing |U |/σk by the number of UHS k-mer occurrences
divided by number of k-mers in the input sequence. However, this is an upper bound which
becomes non-informative with w > 2k and sufficiently large k. Because any universal hitting
set is at least as large as a minimal decycling set (Lemma 46), and a random (w, k)−minimizer
achieves density of approximately 2/(w+1), Lemma 26 at best tells us the compatible minimizer
is no worse than a random one whenw > 2k. We can reach a similar conclusion for the sequence-
specific case, where k-mers in UHS occur so often that their occurrence does not imply selection
in the majority of cases.

Analysis via Probability of Single UHS Contexts

There is a second approach to analysis of compatible minimizers from universal hitting sets [73].
The key lemma reads as follows (slightly rephrased):
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Lemma 48. If U is a UHS over k-mers, let SP (U) be the probability that a context contains
only one element in U . Under certain assumptions, the expected density of a random minimizer
compatible with U is 2(1− SP (U))/(w + 1).

We now show this lemma depends on assumptions that highly depends on the structure of U .
We start with some notations, slightly different from the original paper. Fix a context, let mi

denote the ith k-mer in the context. We also let zi = 1(mi ∈ U), let H denote the event that the
context is charged, and let Z =

∑w
i=0 zi. Let C(n, k) be the binomial coefficients. The proof

involves the following equation (we only list the first term - there are four analogous terms):

P (H | Z = j) =
C(w − 1, j − 1)

C(w + 1, j)
P (H | Z = j, z0 = 1, zw = 0) + · · ·

which involves a counting argument: Given Z =
∑w

i=0 zi = j, there are C(w + 1, j) different
configurations of z, and C(w − 1, j − 1) of them satisfies z0 = 1 and zw = 0. However,
by invoking this counting argument, it is implicitly assumed that every configuration satisfying∑
zi = j happens with the same probability, as stated (again, we only keep the terms with z0 = 1

and zw = 0 and hide the rest of terms):
Assumption 1. Let P (z) be the probability of generating a random context and observing zi =
1(mi ∈ U). If

∑
zi =

∑
z′i, P (z) = P (z′).

If this is true, we also have P (z | Z = j) = 1/C(w+1, j). We now recover the statement as
follows:

P (H | Z = j, z0 = 1, zw = 0) =
∑

Z=j,z0=1,zw=0

P (H | z)P (z | Z = j, z0 = 1, zw = 0)

=
∑

Z=j,z0=1,zw=0

P (H | z)/C(w, j − 1)

and

P (H | Z = j) =
∑

∑
Z=j

P (H | z)P (z | Z = j)

=
∑

Z=j,z0=1,zw=0

P (H | z)P (z | Z = j) + · · ·

=
∑

Z=j,z0=1,zw=0

P (H | z)/C(w + 1, j) + · · ·

=
C(w − 1, j − 1)

C(w + 1, j)
P (H | Z = j, z0 = 1, zw = 0) + · · ·

The assumption is true in expectation if the UHS itself is a random subset of Σk, which is not the
case as that set also has to satisfy the UHS condition. For a general set U , the probability that
a k-mer is in U is highly dependent on whether the preceding intersecting k-mers are in U , and
the above assumption is likely not valid in most scenarios.

Universal hitting sets may also be constructed in a specific way to enable better analysis of
compatible minimizers, like the Miniception we discuss in last chapter. However, as we have
seen before, analysis for the Miniception does not apply to other universal hitting sets.
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4.2.2 Perfect Sketches: A Case for Sequence-Specific Constructions
A perfect minimizer is a minimizer that achieves density of exactly 1/w (probably up to asymp-
totically negligible terms and rounding error). While the only known examples of perfect mini-
mizers are in the asymptotic case where w ≪ k [74], perfect sequence-specific minimizers exist
with high probability for short sequences. The following lemma is an example of the difference
between optimizing sequence-specific minimizers and non-sequence-specific minimizers.
Lemma 49. If |S| <

√
ϵwσk/2, with at least 1 − ϵ probability, a sequence of length |S| where

each character is uniformly randomly selected has a perfect minimizer.

Proof. The optimal minimizer is constructed with fixed interval sampling. More specifically,
we take every w k-mer in S and denote the resulting k-mer set U , then construct a minimizer
compatible with U . The resulting minimizer is perfect if and only if the k-mers in U only appear
in the selected locations. There are |S|/w selected locations and (1 − 1/w)|S| locations not
selected, and for each pair of selected and not selected locations, the k-mers at these two locations
are identical with probability σ−k from Lemma 45. By union bound, the probability that any k-
mer in U appears outside selected locations is at most |S|2σ−k/w < ϵ, and the sequence has a
perfect minimizer with probability at least 1− ϵ.

4.2.3 Core Concepts for Polar Sets
We now define polar sets, the key component for our proposed methods.
Definition 27 (Polar set). Given sequence S and parameters (w, k, s) with 0 ≤ s < 1/2, a polar
set A of slackness s is a set of k-mers satisfying the following: If two k-mers in S are both in A,
they must be at least (1− s)w bases apart in S. (In other words, if a k-mer in S falls in A, there
will be no other k-mers in A that are (1− s)w bases close.)

This can be viewed as a complementary idea to the universal hitting sets or a relaxed form
of perfect sets. A universal hitting set requires the set to hit every w consecutive k-mers at least
once, while a polar set with s = 0 requires the set to hit every w consecutive k-mers at most
once. A set of perfect seeds, if it exists, is both a polar set with zero slackness and a universal
hitting set. See Figure 4.1 for a more concrete example.

The condition s < 1/2 is critical for our analysis. Specifically, this condition is required to
obtain a lower bound on the specific density of compatible minimizers, not just an upper bound.
Definition 28 (Link energy). Given sequence S, parameters (w, k) and a polar set A, if two
k-mers on S are l ≤ w bases apart and are both in A, the link energy of the pair is defined as
2l/(w+1)− 1 ≥ 0. The total link energy of A is the sum of link energy across all eligible pairs.

Any two k-mers from A in S must be more than w/2 bases apart (remember s < 1/2), so
two k-mers cannot form a link if there is a third k-mer from A between them. With s = 0, the
link energy is fixed to be 2w/(w+1)−1 = 1−2/(w+1) ≈ 1 for each eligible pair, and the total
link energy is approximately the number of pairs that form a link, which in turn is the number of
k-mer pairs in the polar set that are exactly w bases away on S.

In the following sections, we introduce and discuss the backbone of the polar set framework,
which revolves around closer inspection of how a random minimizer works on a specific se-
quence, and drawing contrast between sequence-specific minimizers and non-sequence-specific
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k-mers in UHS 

Polar k-mers 
(slackness s=0)

All windows contain at least one UHS k-mer
Some windows have multiple

All windows contain at most one polar k-mer
Some windows have none

Perfect Seeds All windows contain exactly one seed k-mer

Figure 4.1: Comparing universal hitting sets, perfect seeds (compatible minimizers become per-
fect minimizers) and polar sets. Each block indicates a k-mer, and each segment indicates a
window of length 5 (w = 5). To provide a better contrast with universal hitting sets, we show
polar sets with slackness s = 0 (see Definition 27).
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minimizers. We use the term “non-sequence-specific minimizers” (sequence-blind as in the in-
troduction in a slightly different context) to refer to constructions of minimizer that do not specif-
ically target a certain sequence, but rather aim to minimize density, the expected specific density
on a random string.

Context Energy and Energy Savers

Contexts provide an alternative way to measure the density of a minimizer (See Section 2.7).
These play a central role in the analysis of polar sets.
Definition 29 (Charged Contexts). A context of S is a substring of length (w+k), or equivalently
(w + 1) consecutive k-mers, or equivalently 2 consecutive windows.

A context is charged if the minimizer selects a different k-mer in the first window than in the
second window.

See top left of Figure 4.2 for examples of charged contexts. Intuitively, a charged context
corresponds to the event that a new k-mer is picked, and counting picked k-mers is equivalent to
counting charged contexts.
Lemma 50 (Specific Density by Charged Contexts). For a given sequence S and a minimizer,
the number of selected locations by the minimizer equals the number of charged contexts plus 1.

Given a context c, define E(c) as the probability that c will be charged with a random mini-
mizer (one with a random ordering of k-mers), which we call the energy of c.
Lemma 51. The expected number of picked k-mers in S under a random minimizer is 1+E0(S),
whereE0(S) =

∑
cE(c) is called the initial energy of S and the summation is over every context

of S.
This is proved by combining the linearity of expectation and Lemma 50. This implies that the

total energy of a sequence is directly related to the specific density of random minimizers, which
is number of picked locations in S divided by number of k-mers in S. E(c) admits a simple
formula:
Lemma 52. E(c) = 2/u(c) if the last k-mer in the context is unique, 1/u(c) otherwise, where
u(c) denotes the number of unique k-mers in c.

Proof. Consider an imaginary minimizer with w′ = w + 1 and identical k. The context of a
(w, k)−minimizer is a window of the imaginary minimizer, and it is charged if and only if the
imaginary minimizer picks either the first or the last k-mer. If the imaginary minimizer does not
pick either end, the two constituent windows of the context share the same minimal k-mer, and
the context is not charged.

With a random minimizer, the probability that the first k-mer is picked in the imaginary
window is 1/u(c). The probability that the last k-mer is picked is 1/u(c) if the last k-mer is
unique, 0 otherwise, because the minimizer break ties by preferring the k-mer to the left. The
two events are mutually exclusive, so E(c) is the sum of these two terms.

If all k-mers in a context are unique, E(c) = 2/(w + 1) is guaranteed, which we call the
baseline. If this holds for all windows, a random minimizer will have specific density of 2/(w+
1), similar to applying a random minimizer to a random sequence. As lower u(c) only increases
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E(c), E(c) < 2/(w + 1) only if the last k-mer in c is not unique and there are over (w + 1)/2
unique k-mers in the context.
Definition 30. A context c is called an energy saver if E(c) < 2/(w + 1), and its energy deficit
is defined as 2/(w+1)−E(c). The energy deficit of S, denoted D(S), is the total energy deficit
across all energy savers: D(S) =

∑
c max(0, 2/(w + 1)− E(c)).

In general, the value ofD(S) is very small due to the fact that energy saver contexts satisfying
E(c) < 2/(w + 1) are rare.
Lemma 53. For a random context, the probability that it is an energy saver is at most wσ−k.

Proof. We bound the probability that the last k-mer in a context is not unique. The probability
that the last k-mer equals a specific k-mer in another location is σ−k (Lemma 45). Applying
union bound over w other k-mers (as each context has (w + 1) k-mers) we get the desired
result.

There are examples of sequences where energy saver contexts are abundant. An extreme
scenario is when the sequence S is has a period of w, and has w distinct k-mers. In this case, all
contexts become energy saver contexts. These scenarios are rare in practice.

Similarly, we can define energy spenders and energy surplus as follows:
Definition 31. A context c is called an energy spender if E(c) > 2/(w + 1), and its surplus is
defined as E(c)− 2/(w+1). The energy surplus of S, denoted X(S), is the total energy surplus
across all energy spenders: X(S) =

∑
c max(0, E(c)− 2/(w + 1)).

Contexts with energy surpluses are more common than energy savers, but still fairly rare in a
random sequence with suitable choice of w and k:
Lemma 54. For a random context, the probability that it is an energy spender is at most w(w +
1)σ−k/2.

Proof. A context becomes an energy spender if the last k-mer is unique, and some k-mers ap-
pears twice. We bound the probability that some k-mers in the context appear twice. Any two
k-mers in a given context are identical to each other with probability σ−k (Lemma 45), and we
apply a union bound of size w(w+1)/2 (enumerating over pairs of k-mers) to obtain the desired
result.

4.2.4 Main Theorem for Polar Set
With the proper tools, we now state the main theorem of the Polar Sets.
Theorem 11. Given a sequence S and a polar set A on S, let E0(S) be the initial energy of
S, D(S) be the total energy deficit, X(S) be the total energy surplus, and L(S,A) be the total
link energy from the polar set. The number of selected k-mers over S for a random minimizer
compatible with A is at most 1 + E0(S) +D(S) − L(S,A), and at least 1 + E0(S) −X(S) −
L(S,A).

Proof. We first prove the upper bound part. We start by elevating the energy of every energy
saver context to the baseline 2/(w + 1). By definition, this increases the total energy of S by
D(S), so number of selected k-mers is now upper bounded by 1 + E0(S) + D(S). Formally,∑
E(x) ≤ 1 + E0(S) +D(S).
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A context has two windows.

always charged

never charged

Contexts without polar k-mers

(Singleton: 2 contexts charged, 6 covered, L=0)

Charged if different k-mer 
selected in these windows.

Not charged otherwise.

minimizer selection

A B C

2 3 4

could be charged

(Linked Polar k-mers: 2+2=4 contexts charged, 13 covered, L=1/3)

Contexts with polar k-mers 

as random minimizer

1
2 out of 4 is charged.

ex. A<B<C → (2, 4)}

Figure 4.2: Examples for our argument for the polar set density bound with w = 5. Left top:
Legend for a context, and when it is charged. Right top: Case for a singleton polar k-mer
without links. In this case, L(S,A) = 0. Bottom: Case for three linked polar k-mers. Whatever
the ordering between the three polar k-mers, two of the four contexts marked in blue will be
charged. The link energy L(S,A) = 1/3: A and B are l = 3 bases away with no energy, B and
C are l = 4 bases away with energy 2l/(w + 1)− 1 = 1/3.
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Consider the minimizer compatible with A, with arbitrary ordering within A and random
ordering outside A. We can still calculate the expected number of selected k-mers by summing
up the probability of every context being charged, which we denote EA(x). Our goal for the rest
of this proof is to show

∑
(E(x)− EA(x)) ≥ L(S,A).

If a context does not contain a k-mer fromA, E(x) = EA(x). Thus, we only need to consider
the contexts that contain at least a k-mer from A, which are split into continious segments by the
set of contexts not containing k-mers from A.

If a segment only contains one k-mer from A, there are exactly (w + 1) contexts in this
segment (see Figure 4.2, upper right for an example). As each context now has energy at least
2/(w + 1), the total energy from (w + 1) contexts is at least 2. However,

∑
EA(x) across

these contexts is exactly 2, as exactly two contexts will be always charged (the first and last in
the segment), and every other context will never be charged. This means such segments can
be ignored in the upper bound analysis, as it can only decrease the total energy:

∑
(E(x) −

EA(x)) ≥ 0.
We now focus on the segments with more than one k-mer from A (see Figure 4.2, bottom for

an example). Let n be the number of contexts from this segment, we have
∑
E(x) ≥ 2n/(w+1)

because we have assumed E(x) ≥ 2/(w + 1) for every context. We next count the number of
charged contexts, which is

∑
EA(x). Because every two k-mers in A are more than w/2 bases

apart, for every k-mer m in A, there is a window such that m is the only polar k-mer, and will be
selected. Recall a context is charged if and only if a new k-mer is selected in its latter window.
Given that each of the d k-mers in A is selected, this corresponds to d charged contexts in the
segment. However, there is an extra charged context: The last context c in the segment, of which
the last k-mer in A is the first k-mer of c. In the second window of c, a new k-mer outside A will
be selected because being at the end of the segment, there are no more k-mers in A to choose
from. Let d be the number of k-mers in A in this segment, we conclude that

∑
EA(x) = d + 1

regardless of the ordering, and
∑

(E(x)− EA(x)) ≥ 2n/(w + 1)− d− 1.
Next, we calculate the total link energy. Recall the link energy is defined as 2l/(w + 1) −

1 for two polar k-mers l ≤ w bases away. The total link energy is thus 2(
∑
l)/(w + 1) −

(
∑

1), summed across all k-mer links. The latter term is simply counting number of links,
which resolves to d− 1. The earlier term is summing up distance between adjacent k-mers in A.
As this is a segment where every two adjacent k-mers have a link,

∑
l is the distance from the

first k-mer in A to the last k-mer in A. There are n contexts in the segment. The first k-mer in A
is the last k-mer in the first context, and the last k-mer in A is the first k-mer in the last context.
The first context and the last context are n− 1 bases away. The first k-mer and the last k-mer in
a context are w bases away. Thus, we have

∑
l = n− 1− w.

Finally, we have the following, using S ′ to denote the sequence that contains the contexts in
a segment:

L(S ′, A) =
∑

(2l/(w + 1)− 1)

= 2(n− w − 1)/(w + 1)− (d− 1)

= 2n/(w + 1)− d− 1

≤
∑

(E(x)− EA(x)).
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The summation is over each context in the segment. This inequality holds for every segment,
and thus we have: ∑

EA(x) =
∑

E(x) +
∑

(EA(x)− E(x))

≤ 1 + E0(S) +D(S)− L(S,A).

The lower bound uses a symmetric argument as we first upper bound the energy of each
context by the baseline 2/(w + 1). This decreases total energy by X(S) and total expected
number of selected k-mers is lower bounded by 1+E0(S)−X(S). The identical argument (with
signs flipped) will lead to the final lower bound

∑
EA(x) ≥ 1 +E0(S)−X(S)− L(S,A).

As 1+E0(S) is the expected number of selected k-mers with a completely random minimizer,
we can provably outperform random minimizers if L(S,A) > D(S). For a ballpark estimate,
we assume S is a random sequence, and assume the slackness parameter s = 0 in construction
of the polar set. In this setup, each link has exactly 1 − 2/(w + 1) ≈ 1 energy. As seen
in Lemma 53, a context is an energy saver with probability wσ−k, and its deficit is at most
2/(w + 1)− 1/w ≈ 1/w, meaning D(S) ≈ σ−k|S|. This further means we need the number of
links to be at least σ−k|S| to provably beat a random minimizer. On the other hand, ignoring the
effect of D(S), in order to beat the specific density of a random minimizer by ϵ/(w + 1), total
link energy of ϵ|S|/(w + 1) is needed. Assuming no slackness, this means the number of links
need to be at least ϵ|S|/(w − 1). Intuitively, ϵ portion of the sequence needs to be covered by
links between close enough k-mers in polar set.

A proper polar set requires s < 1/2 for the main theorem to hold. When s ≥ 1/2, only the
upper bound part of the theorem holds with an alternative definition of link energy, which we
will discuss later in this chapter.

4.2.5 Abstraction and Hardness of Optimization
The link energy formulation of polar sets allows us to cast the problem in graph theoretical
framework. Consider an undirected, weighted graph where every unique k-mer is a vertex. An
edge connects two k-mers with the following conditions: If these two k-mers ever appear within
fewer than (1 − s)w bases of each other in S, the weight is −∞. Otherwise, the weight of this
edge is the total link energy by selecting only these two k-mers, which might establish several
links given each k-mer may appear in S multiple times. Additionally, the graph contains self-
loops. The edge weight of the loop is −∞ if the k-mer appears within (1− s)w bases of its own
copy. Otherwise, the weight of the self-loop is the total link energy by selecting only that k-mer.
The problem of finding optimal polar sets becomes the problem of finding an induced subgraph
with maximum weight.

The general maximum induced subgraph problem is well known to be NP-hard via reduction
from max-clique. We now show optimization of polar sets are also NP-hard just like max-clique.
Here, we show a reduction from the problem of maximal independent set to the problem of
optimal polar set, with an alphabet of 3. LetG = (V,E) be the instance for maximal independent
set, and without loss of generality, let |V | = 2d. We use Σ = {X, 0, 1} as the alphabet, and for
the polar set instance, we let w = 2d + 1, k = d and s = 0. This means, we want to find subset
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of d−mers that form many links exactly 2d + 1 bases away, but no two d−mers in the polar set
can be fewer than 2d+ 1 bases from each other. With s = 0, link energy is equivalent to number
of links up to a scaling factor, so we are optimizing number of links that can be formed. We now
construct the query string for polar set, which we divide into three sections.

Disqualification Gadget. Given an arbitrary d−mer z ∈ Σd, we let the disqualification gadget
be the following string:

DQ(z) = X2d+1zXdzX2d+1

With presence of DQ(z), z cannot appear in the polar set, because it appears twice exactly 2d
bases away in the disqualification gadget. The X2d+1 section on both ends of the gadget is to
prevent d-mers within the gadget to form links with adjacent gadgets or sections, as Xd is not in
the polar set.

Disqualification Section. We append a disqualification gadget to the query string for every
d-mer (there are at most 3k = n1.5 of them), except all d-mers containing only 0 and 1.

Vertex Section. For each vertex v inG, let a be its binary representation. We addX2d+1aXd+1aX2d+1

to the query string.

Edge Section. For each edge (u, v) in G, let a, b be the binary representation of the two ends.
We add X2d+1aXdbX2d+1 to the query string.

The final query string is formed by the concatenation of three sections.
Theorem 12. The maximal independent set can be solved by solving the optimal polar set of
aforementioned query string.

Proof. We claim any polar set of the query string corresponds to an independent set V ′ of G,
with |V ′| links. All d-mers in the polar set are those representing vertexes in G, as other d-mers
(those containing X) cannot appear due to the disqualification section. For each d-mer in the
polar set, we get one link from the vertex section of the query string. If (u, v) ∈ E, the two
d-mers representing u and v cannot be selected into the polar set at the same time, because in the
edge section these two d-mers are separated by exactly 2d bases, violating the polar set condition.
On the other hand, all independent sets of G can be represented by a polar set, with total links
|V ′| using the same argument.

We conclude that the optimal polar set of the query string is the representation of a maximal
independent set of G, which proves the statement.

This reduction also suggests hardness of approximately solving optimal polar sets, because
maximal independent sets are known to be hard to approximate (For example, see Bazgan et al.
[5]).
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Final Coverage (Not-Covered k-mers)

Layer 1

Layer 2

Layer 3

Selected and not-covered locations Covered locations

Figure 4.3: Examples of layered polar sets, with three layers. Without layered polar sets, the
k-mers from layer 2 and 3 could not be selected as in the polar set because of self-collision. The
whole sequence is covered in this case (every window contains a polar k-mer from one layer).
Layer 1 is the one with highest priority and our layered heuristics construct it first.

4.3 Optimizing a Polar Set
In this section, we propose a practical extension to polar sets, and formally introduce our heuris-
tics to construct a polar set.

4.3.1 Layered Polar Sets
Assume we have already constructed a polar set A that covers some segments of the reference
sequence. Here, covered means that every window contains a k-mer from the polar set, or equiv-
alently, A acts as a universal hitting set on these segments.

Now, to cover the rest of the reference, we shall extend A so more k-mers become polar k-
mers. It is natural to consider generating a polar set over the uncovered portion of the reference
sequence, then merge this set with A. This however leads to problems. Let A′ be a polar set over
the uncovered portion of the reference sequence. A ∪ A′ might not always be a valid polar set,
because a k-mer m′ ∈ A′ may appear in the already-covered part of the reference sequence, and
appear close to another k-mer m ∈ A, thus violating the polar set condition for A ∪ A′.

On the other hand, the reason we set up the constraint for polar sets is to ensure that k-
mers in the polar set will always be selected by any compatible minimizer. In other words, we
want to ensure we know exactly the set of k-mers that will be selected. The fact that A ∪ A′

is not a polar set means that m′ ∈ A′ might not always be selected by a compatible minimizer.
However, from the perspective of constructing efficient minimizers, we do not need m′ to be
selected everywhere, as in some places the reference sequence is already covered with k-mers in
A (and we know it). By forcing m < m′ for any m ∈ A, we ensure that m′ will only be selected
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outside the segments covered by A.
Applying this argument to all k-mers in A′, we can essentially ignore the sequence segments

already covered by A when constructing A′, as long as m < m′ for any m ∈ A and m′ ∈ A′

is satisfied. This gives a way to progressively construct the layers of polar sets: at each layer
we only need to consider regions of the reference sequence that are not yet covered by previous
layers. Formally:
Definition 32. A layered polar set is a list of sets of k-mers {Ai}, for 1 ≤ i ≤ m. With slackness
s, the layered polar set condition is satisfied if for any k-mer in Aj , for each of its appearance at
location t in the reference sequence, either of the following holds:

• It is at least (1− s)w bases apart from any k-mer in {A1, A2, . . . , Aj}.
• It is covered: There are two k-mers in {A1, A2, . . . , Aj−1} (importantly this does not in-

clude Aj), appearing at location l and h, satisfying l < t < h and h− l ≤ w.
Similarly, a compatible order for {Ai} is an order that places all k-mers from A1 first in

arbitrary order, then those in A2, . . . , then those in Am and finally those not in any of {Ai} in
a random order. The link energy L({Ai}, S) is similarly defined over the pairs of close k-mer
appearances that are not covered. More formally:
Definition 33. For a layered polar set, if two k-mers in the layered polar sets, not necessarily
from the same layer, appear l ≤ w bases apart in S, and neither are covered (as defined in
Definition 32), the link energy between them is 2l/(w + 1)− 1 > 0. L({Ai}, S) is the total link
energy across all pairs.

These definitions of layered polar sets and link energy have two important properties. First,
the link energy is non-decreasing as more layers are added to the set. Second, an almost identical
argument proves the same bounds for layered polar sets as for polar sets in Theorem 11. See
Figure 4.3 for a concrete example of layered polar sets.

4.3.2 Polar Set Heuristic

While more k-mers in the polar set does not always mean higher link energy in theory, larger
polar sets usually provide for higher link energy in practice. Thus, we consider a simple heuristic
to generate a polar set that somewhat attempt to include a lot of k-mers. The core idea is to select
as many k-mers as possible from the set of k-mers that appear exactly w bases away from each
other (that is, the set of k-mers that could form a set of perfect seeds). We cannot select all
of them as it may violate the polar set condition due to some k-mers appearing multiple times.
Because reference sequences are long strings (in the range of billions of bases for mammalian
genomes), we consider algorithms that scale well with the length of the reference sequence,
preferably close to linear.

Fix an offset o ∈ [0, w − 1], we start by listing all locations t such that t = o mod w in
the reference sequence S. We then randomly shuffle the locations, and for each location t in
this random order, add the k-mer at location t to the polar set. When we add a k-mer m to the
polar set, we also locate and remove all k-mers in the polar set that appear fewer than (1 − s)w
bases away from m. Additionally, if a k-mer appears at multiple locations in the list, it is only
added once, when we first encounter that k-mer in the shuffled list. This is to prioritize k-mers
that appear less often; Frequent k-mers are expected to be processed early, because they appear
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many times in the shuffled list, and k-mers that are added early are more likely to be absent in the
final polar set, because they are more likely to be removed due to conflicts with a later-processed
k-mer. Jain et al. [46] has explored a similar idea in building tiered random minimizers using a
biased hash function.

Our algorithm also has a variant, which we call “monotonic”. In the monotonic variant of
the heuristics, for every k-mer m we add to the polar set, we calculate the link energy before
removing conflicting k-mers and adding m, then calculate it again after doing these operations.
(We cover how the link energy is actually calculated in Section 4.3.4.) If the link energy decreases
after these operation, we revert them by removing m and adding back k-mers that conflict with
m. This variant is slower but results in more efficient polar sets.

We filter k-mers before they are considered for addition to polar sets. If a k-mer appears fewer
than (1 − s)w bases away from its own copy (collides with itself) in the reference sequence, it
cannot be in the polar set, and the k-mer is discarded from consideration. We also filter out k-
mers by their frequency in the reference sequence (see Section 4.3.3 for the threshold value), for
practical speedups, as these k-mers will be considered very early in the procedure and is highly
unlikely to present in the final set.

Algorithm 3 shows the pseudocode for the heuristic. As seen in the pseudocode, our imple-
mentation uses a number of data structures not mentioned before. We describe the data structures
in Section 4.3.4, and analyze the time complexity in Section 4.3.5.

Algorithm 3 Pseudocode for Polar Set Heuristics
function POLARSET(S,w, k)

Start with an empty set A← {} and a random offset o
Shuffle list of locations t = o mod w for 0 ≤ t < |S|
for each t in the list and the k-mer mt at location t do

Skip if mt is filtered, or has been processed previously
Obtain list l of occurrences of mt via suffix array
Obtain list of conflicting k-mers via linked blocks
Remove all conflicting k-mers and add mt to the polar set A
For the monotonic variant: revert on the previous line if link energy decreases

end for
return A

end function

4.3.3 Layered Heuristics and Hyperparameters

We construct layered polar sets with a similar algorithm. The properties of layered polar sets
guarantee that new layers cannot decrease the final link energy of the polar set.

We rerun the polar set heuristic multiple times, each time with a new random offset o. Each
round is run with the current layers of polar sets, and the resulting polar set is added as a new
layer. The algorithm for each layer is mostly identical to the single-layer version, with a few
changes.
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• When processing a k-mer, we skip all of its occurrences that are covered by existing layers
of the polar set.

• We skip k-mers at non-covered locations t that are fewer than (1 − s)w bases away from
a k-mer in a previous layer. These k-mers cannot be in the layer without violating the
layered polar set condition.

• At the end of each round, we remove all k-mers selected in the current layer that do not
form a link with any k-mers.

We also gradually increase the threshold of k-mer frequency at each round to prioritize low
frequency k-mers. In our experiments, we use a total of 7 rounds, with last two rounds be-
ing monotonic. The frequency threshold is set at the value to include 85% of locations of the
reference in the first round, gradually increasing to 95% in the last round.

The slackness s is also a tunable parameter, which determines when a pair of k-mers is
considered in collision. A lower value of s ensures the distance between adjacent polar k-mers
are large and have higher link energy for every pair of linked k-mers, but results in smaller
number of k-mers selected, implying fewer links. A higher value of s means larger polar sets
covering more of the reference sequence and more links formed, but adjacent polar k-mers may
be closer to each other resulting in lower energy per link.

In our experiments, we use a fixed slackness s = 0.4 after parameter search. This results in
approximately 20% less efficient links (average link energy compared to theoretical maximum),
but higher total link energy due to inclusion of more links. A more thorough parameter tuning
might suggest a gradually increasing value of s between rounds. We provide pseudocode for the
layered heuristics at Algorithm 4.

Algorithm 4 Pseudocode for Layered Polar Set Heuristics
for each round in the layered heuristics do

Shuffle list of locations t = o mod w for a new offset o
Remove locations covered by previous layers of k-mers
Run the For-Loop in Algorithm 3
Remove all singleton k-mers from current layer
Add all present k-mers as a new layer

end for

4.3.4 Supporting Data Structures
Our heuristics require some data structures to operate efficiently both in theory and in practice.

Suffix Array

In order to quickly index k-mers and obtain the list of occurrences of a k-mer, we precompute
the suffix array [72], the inverse suffix array and the heights table (also known as the LCP array)
of the reference sequence. The inverse suffix array ISA satisfies ISA[SA[i]] = i for all i. The
heights table h[i] is the longest common prefix for suffixes of S starting at SA[i] and SA[i+ 1].
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All can be computed in linear time [49]. This allows us to find the list of T locations that share
the same k-mer as location t, in O(T ) time.

Linked Blocks

The layered polar set property ensures that in any stretch of w/2 bases, at most one k-mer at one
location is selected into any layer of the layered polar sets, excluding covered locations. We use
a data structure called linked blocks to represent the set of these selected locations of k-mers.
Let h = ⌊w/2⌋, we divide the locations in the reference sequence into h-long blocks, and use
an array of length |S|/h to represent these blocks. Each value in the array C[b] is either −1,
meaning there are no selected location within this block spanning location [bh, (b + 1)h), or a
nonnegative integer j, indicating that the k-mer at location bh+ j is selected. With linked blocks
we can do the following operation quickly:
Definition 34. PeekL(x) returns the closest selected location to the left of x, up to w bases. If
there are no selected location to the left of x within w bases, it returns nothing.

PeekL is fast because we only need to query up to three blocks. Adding a location and
removing a location also only involves a single block. Similarly we can define PeekR(x)
returning the closest selected location to the right of x up to w bases. With this data structure, we
can implement many critical operations in the aforementioned heuristics. The step of filtering
k-mers, more specifically determining whether a k-mer collides with itself, is done using this
data structure, in similar fashion to bucket sorting. By maintaining two linked blocks, one for
the current layer and one for all previous layers, we can determine whether a location is covered
by the previous layers, and list collisions on the current layer.

Calculating Link Energy

In the monotonic variant of our heuristics, we need to calculate the total link energy before and
after adding a k-mer. In our implementation, we update the link energy of the polar set as we
add and remove locations to the linked blocks, using the following alternative formula for link
energy:

L({Ai}, S) = 2Acov/(w + 1)− Aele − Aseg.

Here, Acov is the number of contexts that contain a k-mer from the polar set, Aele is the number
of non-covered location of selected k-mers, and Aseg is the number of continuous segments of
windows that contain a k-mer from the polar set. When adding and removing a location to the
linked blocks, the changes to these three values are calculated using linked block primitives in
constant time, so we can update the link energy in constant overhead. As a sanity check, we see
that when adding an isolated k-mer, Acov increases by (w + 1) and the other two values increase
by 1, resulting in a net link energy gain of zero, consistent with the original definition. We can
also compute the link energy of the polar k-mers in bottom part of Figure 4.3 using this formula,
where Acov = 13, Aele = 3 and Aseg = 1, resulting in the total link energy of 1/3.

92



4.3.5 Time Complexity Analysis

We now analyze the time complexity of the layered polar sets heuristic, assuming no monotonic
rounds for now. Let n be the length of the reference sequence, and assume a constant-sized
alphabet. We assume a word of constant size can hold an integer in [0, n], and that accessing
an element in an array of length n takes constant time. These conditions hold for genomes and
64-bit machines. This means the primitive operations on linked blocks take constant time, and
operations involving the suffix array also take constant time.

Consider a worst case scenario: By iterating k-mers that appear exactly w bases away from
each other, we iterated over all k-mers in the reference sequence. Assume a k-mer m occurs T
times in the reference sequence. In filtering phase, we first fetch the list of T locations in O(T )
time using the suffix array, and we want to determine if there are two elements whose difference
is less than (1 − s)w. This can be done using the linked blocks in O(T ) time. In the case of
layered polar sets, we also want to determine if each of the locations is covered by previous
layers, and if it is fewer than (1− s)w bases away from a location in a previous layer. As we use
one linked block for all previous layers, this can be done in O(T ) time. The filtering phase thus
finishes in O(T ) time.

The main algorithm is split into three parts: detecting k-mers that are close to m in the
reference sequence, removing those k-mers from the polar set, and adding m to the polar set.
Detecting and listing k-mers that are close to m takes O(T ) time, as each location reports only
four collisions at most, two to the left and two to the right. Removing a k-mer that occurs T ′

times takes O(T ′) time, but since each k-mer is only added and removed once in one round, this
amortizes toO(T ) time. Addingm to the polar set also takesO(T ) time. The singleton detection
step (removing k-mers forming no links) also takes O(T ) time for checking if m is a singleton.

As each k-mer is only visited once in the main algorithm, and in the worst case scenario every
k-mer in S is visited, we conclude that the layered polar set heuristics runs in

∑
O(T ) = O(n)

time for each layer, and as a special case the (non-layered) polar set heuristics runs in O(n).
In practice, the running time changes widely between different configurations on the same

sequence, due to many factors. The worst case scenario (every k-mer is visited when we visit
the set of k-mers at location t = o mod w) is not satisfied in many configurations, especially
those with large w. In extreme cases when a perfect minimizer exists, a round runs in O(n/w)
time instead. Many practical considerations also affect the runtime of the heuristics, such as the
fact that we resort to a simple sort-and-scan algorithm for detecting self-collisions in the filtering
step due to the time and memory overhead for using an additional linked block. The monotonic
variant of the heuristic can in theory run in O(n2) time per round. The extra complexity comes
from the fact that each k-mer can be added and removed up to O(n) times in a round, whenever
another k-mer is being considered (in the original version, a k-mer is only added and removed
once). However, in our experiments, the monotonic variant is not significantly slower.

4.4 Experimental Results

All the experiments are run using the human reference genome hg38. To facilitate the perfor-
mance comparison across a range of parameter values of w and k, we report the density factor
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Figure 4.4: Energy surplus and deficit for short (w = 10) and for long (w = 100) windows,
computed on the human reference sequence hg38. The difference between the two lines is the
difference between the upper and lower bound of Theorem 11. It is very small and the bounds
are very good estimates in practice.

(See Section 2.7 and Marçais et al. [73]) instead of the density. The density factor is the density
multiplied by (w + 1). Regardless of the value of w, the random minimizer has an expected
density factor of 2 and a perfect minimizer has a density factor of ≈ 1 (1 + 1/w to be exact,
which is close to 1 for large w.)

4.4.1 Energy Deficit and Energy Surplus
First, we calculate the average energy deficit X(S)/|S| and average energy surplus D(S)/|S|.
The results are in Figure 4.4.

The reference genome is more repetitive than a purely random sequence. However, empiri-
cally the energy surplus and deficit are still small, well below 0.01 measured in density factor,
implying a relative error of at most 1% when estimating specific density with link energy. Thus,
when constructing efficient minimizers by (layered) polar sets, using link energy to estimate spe-
cific density is efficient and accurate. For reference, on a random sequence the average energy
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Figure 4.5: Density factor for the proposed methods, for short (left) and long (right) windows,
computed on hg38. The bottom orange dashed line is the theoretical minimum density (perfect
minimizers).

surplus and deficit are below 10−7 in absolute value, for the parameter range in which we are
interested.

4.4.2 Polar Set Main Evaluation: Density Comparison

We next evaluate our proposed algorithms for layered polar sets. We implemented the algorithm
with Python3. Experiments are run in parallel and the longest ones finish within a day on a
Intel(R) Xeon(R) Platinum 8275CL CPU. The peak memory usage stands at 100GB, which
happens at the start when loading the precomputed suffix array using Python pickle.

We compare our results against some other candidates:
• Random Minimizers. Achieves density factor of 2 in theory (Section 2.7) and in practice

(Section 3.4.2 for example).
• Lower Bound. This corresponds to the density factor for perfect minimizers. While our
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theory predicts existence of perfect minimizers matching the lower bound with large value
of k, this rarely happens with practical parameter values.

• Fixed Interval Sampling. Fix a random offset o ∈ [0, w), this method constructs a priority
set by selecting all k-mers at location iw+ o for integer i. The final minimizer is a random
compatible minimizer with the priority set.

• The Miniception (see previous chapter), a practical algorithm that provably achieves lower
density than random minimizers in many scenarios. Its hyperparameter k0 is set to max(5, k−
w) for our experiments (See Section 3.4.2 for brief discussion on hyperparameters).

We do not include existing algorithms for constructing compact universal hitting sets because
these methods do not scale to values of k > 14. Our heuristics work the best when k-mers
do not appear too frequently, or roughly speaking, when σk > |S| where S is the reference
sequence. This choice of parameter is common in bioinformatics analysis. With the sequence at
the size of human reference genome, our heuristics work well starting at k = 15. Additionally,
the Miniception achieves comparable performance with leading UHS-based heuristics, so its
performance also serves as a reasonable proxy.

We consider two scenarios, first with short windows (w = 10) and second with long windows
(w = 100). The results are shown in Figure 4.5. Our experiments indicate that our simple heuris-
tics yield efficient minimizers, greatly outperforming random minimizers and the Miniception,
while maintaining a consistent edge over fixed interval sampling methods, in both short windows
and long windows settings. The improvement is more pronounced when the windows are long,
which arguably is more common in practice.

4.4.3 Detailed Profiling of Polar Set Performance

We perform a number of controlled experiments to better analyze how polar set based minimizer
performs.

Density Factor of Layered Polar Sets by Round

To show that our proposed layered anchor set heuristics is useful, in Figure 4.6 we plot the density
factor after each round of optimization on the human reference genome hg38. All algorithms are
run for a total of 7 rounds, with last two being monotonic rounds. We select 7 to ensure the
resulting sets are not too complicated and can be computed in reasonable amount of time. With
more rounds, many of the results can be further improved.

Experiments on Human Chromosome 1

To show the effect of reference sequence length on the performance of sequence-specific mini-
mizers, in Figure 4.7 we show the performance plot when we build sequence-specific minimizers
for chr1 only. The human chromosome 1 sequence is around 10% of the whole hg38 sequence,
and consistent with our theory, the time and memory spent to run these experiments on chr1 are
around 10% of that for hg38 ones.
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Figure 4.6: Density factor of layered anchor sets after each round of the optimization, corre-
sponding to the experiments shown in Figure 4.5.
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Figure 4.7: Performance of sequence-specific minimizers, optimized and tested on human chro-
mosome 1 instead of whole human genome. The parameters are w = 10 (left) and w = 100
(right).
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Viability of Sequence-Specific Minimizers on Non-target Sequences

To validate that optimization of sequence-specific density does not come at the cost of higher
(non-sequence-specific) density, we generate the sequence-specific minimizers for hg38 refer-
ence genome, then apply these minimizers on a random sequence. Figure 4.8 shows the results.
We expect these to perform close to random minimizers when σk ≫ N where N is the length of
the reference sequence. In these cases, most k-mers in a random sequence is not seen in the refer-
ence sequence, and optimized sequence-specific minimizers behave just like random minimizers
in most cases. More formally:
Lemma 55. If a polar set contains N k-mers satisfying N ≤ ϵσk/(w + 1), minimizers derived
from the polar set satisfies that its density differs from that of a random minimizer by at most ϵ.

Proof. The density of a minimizer equals the probability a random context is charged (see Sec-
tion 2.7 for intuition and proof). If a context does not contain any k-mer from the polar set, the
minimizers derived from the polar set behaves exactly the same as a random minimizer. The
probability that a random k-mer is in the polar set is N/σk. Using a union bound over all k-mers
in a context, the probability that a random context contains a k-mer from the polar set is at most
(w + 1)N/σk ≤ ϵ. In other words, the polar-set-derived minimizer behaves differently from a
random minimizer with probability ϵ, so their density differs at most by the same amount.

The performance for the Miniception is almost identical to that in hg38, and is not shown in
Figure 4.8. The layered polar sets is also arguably more robust at lower values of k, as its density
stays close to that of a random minimizer.

Building Sequence-Specific Minimizers on Random Sequences

To further show that human reference genome is highly repetitive and construction of efficient
sequence-specific minimizers is hard in such setup, we run the algorithms to generate sequence-
specific minimizers on a random sequence of length 230 000 000 , similar to that of chromo-
some 1. Figure 4.9 shows the performance of layered polar sets and fixed interval sampling
method. Compared with Figure 4.7, we observe it is much easier to build efficient minimizers on
a random sequence, and to match the theoretical lower bound, even given the reference sequences
has similar length.

Experiments on Human Centromere

The human reference genome contains highly repetitive regions, the most notorious one being
the centromere. Even assembling the sequence of centromere requires significant collaborative
effort [80]. In this section, we test performance of different minimizers on the complete chrX
sequence, including the newly assembled centromere. These sequence-specific minimizers are
optimized and tested on the chrX sequence. Instead of showing density across different config-
urations of w and k, we fix w = 100 and k = 15 as a representative configuration, and plot the
density of the minimizers along the genomic coordinate. While the density for both layered po-
lar sets and fixed interval sampling methods fluctuates over different regions in the chromosome,
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Figure 4.8: Performance of sequence-specific minimizers on random sequences (optimized on
hg38). The parameters are w = 10 (left) and w = 100 (right). This is different from Figure 4.9,
here the specific density is measured on a unrelated random sequence.
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Figure 4.9: Performance of sequence-specific minimizers, optimized and tested on a
230 000 000−long random sequence. The parameters are w = 10 (left) and w = 100 (right).
This is different from Figure 4.8, here the specific density is measured on the same sequence on
which the minimizers were optimized.
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the most significant spike coincides with the centromere region (shaded in Figure 4.10). Other
configurations of w and k also lead to a similar conclusion.

Intuitively, because k-mers are so repetitive within the centromere, the polar set heuristics
refuse to select k-mers within the region, and the resulting minimizers operate like a random
minimizer over the centromere. We also note that the sketching method used by Winnowmap [46]
in fact selects more k-mers from the centromere region compared to a random minimizer (called
“standard” in the Winnowmap paper), implying higher density. However, the resulting read
mapper performs well over the centromere measured by mapping error rate.
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Figure 4.10: Performance of sequence-specific minimizers on the chrX centromere region. The
parameters arew = 100, k = 15, optimized and tested on the completed chrX sequence including
the centromere region. The X axis is the genomic coordinate, and the shaded region indicate the
centromere of chrX.
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4.5 Generalization of Polar Sets

4.5.1 Non-Sequence-Specific Polar Sets
For the sake of simplicity, in this section we only discuss polar sets with s = 0. The discussion
about s > 0 is highly similar. As we have discussed, the density of a minimizer is the expected
specific density over a random sequence. Equivalently, it equals the specific density on the de
Bruijn sequence of order at least w + k. Therefore, one may construct polar sets on the de
Bruijn sequence of sufficient order, to build non-sequence-specific minimizers. However, this is
impossible with long windows:
Lemma 56. No non-trivial polar set exists when w > k and S is the de Bruijn sequence of order
w + k.

Proof. We simply show no k-mers can be in the set. For every k-mer m, the sequence mm
exists within S, because S is the de Bruijn sequence of order at least 2k. Picking m violates the
condition for polar set because it appears twice with k < w bases apart in S.

Polar sets exist on de Bruijn sequences of order w + k, when w ≤ k. With w = k, these
polar sets become non-overlapping k-mers [59], that is, the set of k-mers where no proper prefix
of a k-mer equals a proper suffix of another k-mer. The problem of finding large set of non-
overlapping k-mers is hard in general, although constructive algorithms exist [9] for constant
factor approximation. With w < k we obtain minimally-overlapping k-mers, a concept that has
also been studied in other contexts [35]. We believe the concept of non-sequence-specific polar
sets is of both practical and theoretical interest.

4.5.2 Improper Polar Sets and UHSes
The alternative formula for link energy, as described in Section 4.3.4, allows us to define the
link energy of any subset of k-mers, not just those satisfying the polar set condition. The main
theorem for polar set still holds, but only the upper bound part. Interestingly, if we plug in a
universal hitting set, we get Acov = n,Aele = |U |, Aseg = 1 and the link energy of 2n/(w + 1)−
|U | − 1, where n is the number of k-mers in the reference sequence and |U | is the total number
of times a k-mer in UHS appear in the reference sequence. Plugging this into the main polar set
theorem, we recover the specific density upper bound |U |/n for universal hitting sets, up to an
error of D(S)/n. In this sense, universal hitting sets can be seen as a specific and extreme case
of an improper polar set.

In general, any set of k-mers can be improper polar sets, which serves as a bridge between
the two extreme definitions: universal hitting sets where the whole sequence needs to be covered
but coverage can be arbitrarily dense, and polar sets where the coverage by k-mers needs to be
sparse everywhere but no sequence is required to be covered at all. Optimizing a “priority set” of
k-mers to construct compatible minimizers in general, using the link energy of an improper polar
set as the guide (similar to what we have done in monotonic variant of the polar set heuristics)
may be an interesting approach worthy of more exploration.
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Chapter 5

Conclusion

5.1 Contributions

In this dissertation, we explore the theory and practice of low-density minimizer sketches, and
made a number of important contributions to the field.

On the theory side, our contributions are:
• We settled the question of asymptotically optimal minimizers, and showed that lexico-

graphical minimizers are asymptotically optimal;
• We calculated the densities of lexicographical and random minimizer sketches under com-

mon conditions;
• Casting Mykkeltveit sets as special cases of universal hitting sets, we upper and lower

bounded their path lengths using novel geometric techniques;
• We provided the first set of structural theorems for local and forward schemes, which are

previously proposed generalizations of minimizers.
These results settle various previously open questions regarding low-density minimizers, and
open many venue for future endeavors.

On the practice side, our contributions are:
• For sequence-blind optimization of low-density minimizer sketches, we propose the Mini-

ception, which is

the first minimizer sketch that achieves provably lower-than-random density for prac-
tical values of w and k;

very efficient and requires minimal overhead to implement;

empirically validated to achieve low density as predicted by theory.
• For sequence-specific optimization of low-density minimizer sketches, we propose the

Polar Sets and their associated heuristics, which are

a complementary framework to existing constructions with Universal Hitting Sets;

accompanied by a clear optimization objective that is provably linked to specific den-
sity (which is our optimization objective), with bounded errors on both sides;
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a framework that can be optimized using simple yet efficient heuristics, with experi-
mental validation

with performance that has been thoroughly profiled in different scenarios for better
understanding of inner workings.

Both methods are still current state-of-the-art for density optimization at least in some configu-
rations of w and k. Further, the ideas presented in the construction and analysis provide routes to
potentially push for future improvements. As minimizer skecthes are essential to many pipelines
in computational genomics, these improvements will provide great benefits to the research area.

5.2 Open Theoretical Questions
While this dissertation has advanced the theory behind universal hitting sets and minimizer
sketches, there are many more open questions on the theoretical front.

5.2.1 Settling Path Length for Minimal Decycling Sets
There is more than one decycling set of minimum size (MDS) for given w. The Mykkeltveit [82]
set is one possible construction, and a construction based on very different ideas is given in
Champarnaud et al. [17]. There are many more possible MDS than these two. Empirically, for
small values ofw, we can exhaustively search all the MDS on the binary alphabet: for 2 ≤ w ≤ 7
the number of MDS is respectively 2, 4, 30, 28, 68 288 and 18 432.

While experiments suggest the longest remaining path in a Mykkeltveit depathing set de-
fined in Mykkeltveit [82] and Section 2.4 (slightly different from the original Mykkeltveit set)
is around Θ(w3), matching our upper bound, we do not know if such bound is tight across all
possible minimal decycling sets. The Champarnaud set seems to have a longer remaining path
than the Mykkeltveit set, although it is unknown if it is within a constant factor, bounded by a
polynomial of w of different degree, or is exponential. More generally, we would like to know
what is the range of possible remaining path lengths as a function of w over the set of all MDSs.

5.2.2 Tighter Connection between UHS and Selection Schemes
In Section 2.2, we showed that universal hitting sets and forward selection schemes are somewhat
convertible to each other:

• Given a (w, k)-UHS with relative size d, the compatible (w, k)-minimizer (which is also a
forward scheme) has density upper bounded by d.

• Given a (w, k)-forward scheme with density d, its charged contexts give a (w,w+k)-UHS
with relative size exactly d.

This conversion, however, is not perfect, because in converting from schemes to UHSes
we need to pay the price of inflating k. If forward schemes are replaced by local schemes,
the charged contexts give a (w, 2w + k)-UHS instead, an even larger price. In general, given a
(w, k)-minimizer with density d (let’s not consider forward schemes for now), there are no known
algorithms that can generate a (w, k)-UHS with relative size upper bounded by d. It should be
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noted that using Theorem 9, we would indeed end up with a (w, k)-UHS, but its relative size
would be lower-bounded by d.

We believe the problem in general is impossible, so one open question is the price of ap-
proximation: Is there a constant factor c > 1 such that given a (w, k)-minimizer with density d,
we can always construct a (w, k)-UHS with relative size cd? As a start, we would have c ≤ 2
trivially, because in Section 2.7.3 we showed that there exists universal constructions that are
(2 + o(1))-approximations to optimal density UHSes.

5.2.3 Low-Density Forward and Local Schemes
The 1/w bound is not the only density lower bound for minimizers. Specifically, Marçais et al.
[74] proved the following lower bound:

1.5 + 1
2w

+max(0,
⌊
k−w
w

⌋
)

w + k
. (5.1)

As w grows compared to k, this implies that the density factor of the minimizers are lower
bounded by a constant up to 1.5. We also observed that performance of minimizers, both the
Miniception and the PASHA compatible ones, regress to that of a random minimizer when w
increases. Unfortunately, this is inherent to minimizers. With a fixed k, as the window size w
grows, the k-mers become increasingly decoupled from each other and the orderingO plays less
of a role in determining the density.

As discussed before, the minimizers are not the only class of methods to sample k-mers
from strings, and local schemes are generalizations of minimizers that are defined by a function
f : Σw+k−1 → {0, 1, · · · , w − 1} with no additional constraints. Local schemes are not limited
by Equation 5.1, and because they are generalizations of minimizers, they will be at least as good
as minimizers for densities. Unpublished experiments via brute force search on small w and k
show that the minimal density for forward and local schemes are lower than that of minimizers.
However, we do not have a non-trivial construction of low-density forward or local schemes
(non-trivial in the sense that it is not also a minimizer). Construction of such objects and finding
use cases for them are interesting directions for future work.

5.2.4 Perfect UHSes and Perfect Selection Schemes
Given w, we can construct the following three universal hitting sets over w-mers:

• The Mykkeltveit set is a UHS with relative size (1 + o(1))/w and path length ≥ w2/100
(Section 2.6).

• We can use the charged contexts of the Miniception to obtain a UHS with relative size
(1.68 + o(1))/w and path length 2w (Section 3.3).

• We can use a random minimizer with suitable w and k, to obtain a UHS with relative size
(2 + o(1))/w and path length w (Section 2.7.3).

This presents a clear tradeoff between relative size and path length, which intuitively makes
sense: As we have more w-mers, the path length we must leave uncovered decreases. It is natural
to question if these relatively simple constructions are the best we can do. More specifically, is it
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Method Path Length Relative Size

Mykkeltveit Set ≥ w2/100 (1 + o(1))/w
Charged Contexts of Miniception 2w (1.68 + o(1))/w
Random Minimizer Construction w (2 + o(1))/w

Optimal UHS w (1 + o(1))/w

Table 5.1: Comparing Our UHS Construction and the Hypothetical Optimal Construction.

possible to obtain a perfect UHS, that is, (w,w)-UHS with relative size (1+o(1))/w? Table 5.2.4
provides a succinct overview of this discussion.

Also, as we have discussed in Section 5.2.2, it is in fact strictly no harder to construct a
(w,w)-minimizer with density (1 + o(1))/w than to construct a perfect UHS, because existence
of a perfect UHS would imply this construction. We can even further relax and only require a
local scheme, however, even this is an open question as discussed in Section 5.2.3 because there
are no non-trivial constructions of local schemes yet.

5.3 Open Practical Questions

While we believe both the Miniception and the Polar Sets are promising methods that can be
used for pipelines in computational genomics, we acknowledge there are a lot of practical issues
to solve. Here we list a number of interesting future avenues for research into the practical use
of minimizers.

5.3.1 Improving Polar Sets

Limitations of Polar Sets

While the concept of polar sets is interesting and leads to improvements in state-of-the-art
sequence-specific minimizer design, we should acknowledge its limitations. First, it cannot be
used in designing sequence-blind minimizers when w > k as we discussed in Section 4.5.1.
(However, one can also argue this means the method is more tailored for sequence-specific min-
imizers.)

Relatedly, the performance of polar sets deteriorates quickly for small k, for longer se-
quences, and for repetitive sequences. This can be seen from our experiments: Performance
improves quickly for larger k and for shorter sequences (Section 4.4.2 and Section 4.4.3). Fur-
ther improvements are observed when we replace chromosome 1 with a pure random sequence
of similar length, where the theoretical minimum is easily reached (Section 4.4.3). This unfortu-
nately means the polar sets algorithm is not yet ready for a certain set of parameters, like those
with k ≤ 10.

Additionally, the current optimization algorithm for polar sets cannot be parallelized, and
thus it runs very slowly for longer sequences, especially when we run the monotonic variant. We
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believe improvements to the polar sets framework and algorithm are possible to resolve these
issues, and our proposed improper polar sets (Section 4.5) can be a good start.

Optimal Polar Sets

With better computing power and more efficient algorithms, it is desirable to compute an optimal
polar set. Thanks to our link energy formulation, the problem of optimal polar set can be formed
with integer linear programming (ILP), each k-mer being a binary variable. For moderately-
sized reference sequences, an optimal polar set can be found. However, no such convenient
formulation exists for layered polar sets, and it is an interesting question whether there is a
tractable optimization problem for minimizers in general.

5.3.2 Lifting the Window Guarantee
As discussed back in Section 1.3.2, the window guarantee is an important reason why minimizers
are so widely used. However, as discussed in the Syncmer paper [26], the window guarantee is
sometimes too strong and limits design space for efficient sequence sketches. In fact, many appli-
cations of minimizers already skip k-mers that are too frequent, such as done in minimap2 [63].
This breaks the window guarantee because repetitive windows have no k-mer selected at all.
Another interesting attempt is done in Winnowmap [46], where the idea of Robust Winnowing,
first proposed in 2004 [103] is revived for read mapping. One side effect of using such robust
winnowing scheme is breaking the window guarantee, however as Jain et al. [46] shows, this
change alongside others bring considerable improvements to read mapping performance. We
believe developing systematic approaches to lift the window guarantee and make the minimizer
method in general more versatile is important.

Approximate UHS

A related potential line of research links back to universal hitting sets: relax the constraints
on universal hitting sets and study approximate UHSes. This is a concept not yet defined in
published work, but for example, a (w, k, p)−UHS can be defined as a set of k-mers such that a
random window of w k-mers has probability at least 1− p to contain a k-mer from the set. Bell
[6] introduces a similar notion in combintorics context. We can similarly define approximate
minimizers that are only required to select a k-mer with probability at least 1−p. Our preliminary
experiments has shown that both Mykkeltveit sets and open syncmers [26] are both better-than-
random approximate UHSes, in the sense that they can hit more windows (lower p) compared
to a random set of k-mers of the same size. (Although, any UHS has p = 0 and are always
better than random.) We believe this concept is interesting from both theoretical and practical
perspective.

5.3.3 Better Implementation of Sketches-by-Optimization
The polar sets can be used wherever universal hitting sets are used, in most cases. Given that
our heuristics for layered polar sets only produce a small number of layers, implementation of
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a compatible minimizer with layered polar sets is not fundamentally different from that with a
universal hitting set. The fixed interval sampling method is very similar to previously proposed
methods [3, 35, 53], where the sketch of a reference sequence is simply the set of k-mers ap-
pearing at locations divisible by w. Polar sets might not be able to directly replace fixed interval
sampling, however it can be readily expanded into a set of seeds that covers the whole reference
sequence.

These approaches are currently relatively underused, compared to more traditional approach
of minimizers like lexicographical, random or slight variants of these. A significant reason for
the unpopularity of UHS-family methods is the fact that using these methods requires looking
up a table of k-mers, be it a set of polar k-mers or universal hitting k-mers, for every k-mer in
the query sequence. In contrast, for a random minimizer implemented using a hash function, no
lookup is required during the sequence sketch generation process. Since these lookup tables are
usually the result of sequence-specific optimization, we say these methods fall into the category
of “sketches-by-optimization”. This contrast leads to interesting tradeoffs in efficiency. For
example, using a polar-set-compatible minimizer generates a more compact sequence sketch,
but might take more computation at query time compared to using a random minimizer, due to
the time spent in loading and querying the set of polar k-mers.

We believe better implementation of k-mer lookup tables and better optimization of sequence
sketches, possibly in a joint manner, will popularize sketches-by-optimization, and this is an
interesting problem to work on in the future. Existing methods already take step towards this
goal. Jain et al. [46] uses a compact lookup table to index frequent k-mers, and Liu et al. [67]
uses a Bloom filter to perform approximate query over fixed interval samples. Techniques like
lock-free k-mer hash [75], k-mer Bloom filters [89] and k-mer bit trees [54] might also further
help the performance.

5.3.4 Tuning window length and k-mer length
Throughout this dissertation, we have not touched the optimization of w and k. Tuning these
parameters is highly application dependent, and in general is beyond the scope of this disserta-
tion. In general, larger w means lower sensitivity, but more efficient for indexing and succinct
for storage. The meaning of k is much more complicated. Larger k could mean lower collision
rate, higher sensitivity, more buckets, larger lookup tables, among other things. But at least from
the density optimization perspective, larger k usually means easier optimization of density. For
extension of our existing work, tuning w and k alongside the ordering could lead to much better
trade-off and performance gain.

5.3.5 Alternative Measurements of Efficiency
Throughout this dissertation our goal has been the optimization of density in either sequence-
blind or sequence-specific scenarios. Lower density leads to smaller sequence sketches (in ex-
pectation), and for many applications this is desirable. However, depending on the way one uses
the sequence sketch, alternative measurements of efficiency may be more desirable (also see dis-
cussion in Edgar [26]). For example, in k-mer counting, minimizers are used to place k-mers into
buckets. In this case, the specific density is less relevant, and we are more concerned about the
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number of buckets, and the load balance between different buckets [73, 83]. For read mapping,
smaller sequence sketches have their advantages, while some may prefer reducing the number of
matches (which are especially troublesome for highly repetitive regions), or reducing the number
of false positive seed matches in general. We believe many of these objectives are correlated with
each other, and we are interested in both further exploring benefits of a small sequence sketch,
and optimization techniques for alternative measurements of efficiency. Some of the alternative
measurements may also come with interesting theoretical questions that can be answered.

5.4 Concluding Remark
Sequence sketching algorithms are indispensable parts of modern computational biology, and
minimizer sketches are one of the most popular sketches for a variety of applications. We believe
the popularity of minimizer sketches will only grow due to its simplicity and versatility, and our
work will serve as important foundations for future method development in the field.
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Compact universal k-mer hitting sets. In Algorithms in Bioinformatics, Lecture Notes
in Computer Science, pages 257–268. Springer, Cham, 2016. ISBN 978-3-319-43680-7
978-3-319-43681-4. doi: 10.1007/978-3-319-43681-4 21. 1.4.3, 1.4.4, 1.5.2, 2.7.3, 3.1,
3.4.3, 4

[86] Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. debgr: an efficient
and near-exact representation of the weighted de bruijn graph. Bioinformatics, 33(14):
i133–i141, 2017. 1.2

[87] Prashant Pandey, Michael A. Bender, Rob Johnson, and Robert Patro. A general-purpose
counting filter: Making every bit count. Proceedings of the 2017 ACM International
Conference on Management of Data, 2017. 1.2

[88] Prashant Pandey, Fatemeh Almodaresi, Michael A Bender, Michael Ferdman, Rob John-
son, and Rob Patro. Mantis: A fast, small, and exact large-scale sequence-search index.
Cell Systems, 7(2):201–207, 2018. 1.2

[89] David Pellow, Darya Filippova, and Carl Kingsford. Improving bloom filter performance
on sequence data using k-mer bloom filters. Journal of Computational Biology, 24(6):
547–557, 2017. 5.3.3
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