
Reinforcement Learning for Robotic Liquid Handler
Planning
Mohsen Ferdosi #

Carnegie Mellon University,
School of Computer Science
Computational Biology Department

Yuejun Ge #

Carnegie Mellon University,
School of Computer Science
Computational Biology Department

Carl Kingsford #

Carnegie Mellon University,
School of Computer Science
Computational Biology Department

Abstract
Robotic liquid handlers play a crucial role in automating laboratory tasks such as sample preparation,
high-throughput screening, and assay development. Manually designing protocols takes significant
effort, and can result in inefficient protocols and involve human error. We investigates the application
of reinforcement learning to automate the protocol design process resulting in reduced human labor
and further automation in liquid handling. We develop a reinforcement learning agent that can
automatically output the step-by-step protocol based on the initial state of the deck, reagent types
and volumes, and the desired state of the reagents after the protocol is finished. We show that
finding the optimal protocol for solving a liquid handler instance is NP-complete, and we present
a reinforcement learning algorithm that can solve the planning problem practically for cases with
a deck of up to 20 × 20 wells and four different types of reagents. We design and implement an
actor-critic approach, and we train our agent using the Impala algorithm. Our findings demonstrate
that reinforcement learning can be used to automatically program liquid handler robotic arms,
enabling more precise and efficient planning for the liquid handler and laboratory automation.

2012 ACM Subject Classification Computing methodologies → Sequential decision making

Keywords and phrases Liquid Handler, Reinforcement Learning, Planning

Acknowledgements This work was supported in part by the US National Science Foundation
[DBI-1937540, III-2232121], the US National Institutes of Health [R01HG012470], the Center for
Machine Learning and Health at Carnegie Mellon University through a fellowship to M.F. and by
the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program.
We thank Guillaume Marçais for helpful comments on the manuscript and Haotian Teng and Sam
Powers for valuable discussions. Conflict of Interest: C.K. is a co-founder of Ocean Genomics, Inc.

1 Introduction

A robotic liquid handler is a laboratory instrument that is used to dispense precise amounts
of liquids into a variety of containers, such as micro-plates, test tubes, and vials. It auto-
mates liquid handling tasks, enabling scientists to process large numbers of samples quickly
and accurately. Robotic liquid handlers consist of several components, including a robotic
arm that moves the liquid handling tool (e.g. pipette) to the appropriate location, a liquid
dispensing system (e.g. syringe or positive displacement pump) that accurately dispenses
the liquid, and software that controls the entire process. These instruments are commonly
used in a range of applications, including drug discovery, genomics, proteomics, and clinical

mailto:mferdosi@cs.cmu.edu
mailto:yuejung@andrew.cmu.edu
mailto:carlk@cs.cmu.edu

2 Reinforcement Learning for Robotic Liquid Handler Planning

diagnostics, where accuracy, precision, and throughput are essential for obtaining reliable
and reproducible results [7]. Even though there is a wide range of laboratory equipment
and chemicals, diverse preferences in laboratory configurations, as well as variations in the
selection of target organisms and research inquiries, there is a fundamental problem common
to all protocols in a way that can be generalized to the planning task for liquid handling [2].

In laboratory practices that involve large-scale liquid handling, establishing reliable and
consistent protocols is crucial for generating credible data. Robotic liquid handling techniques
have played a significant role in accomplishing this objective in medical laboratories. The
success of high-throughput PCR screening for SARS-CoV-2, capable of processing millions
of samples weekly, is a testament to this [14]. Robotic liquid handling is used for many
applications such as protein folding analyses [1], high-throughput processing for selected
reaction monitoring assays [17], and in many clinical diagnostics [9], including microbiome
screening [10].

There has been to date no analysis of the computational complexity of the planning
problem for the liquid handlers. We therefore propose a formal view of the problem with
theoretical complexity analysis that shows the problem is NP-complete, as one would expect.
This motivates and justifies the development of heuristics for the problem. In order to obtain
reliable and reproducible results from experiments while minimizing the cost of human labor
in process, there is a clear need for a robust and scalable planning algorithm for liquid
handling robots. Roboliq [15] proposed a software pipeline to transform high-level protocols
designed by researchers to low-level robot instructions. SynBiopython [16] proposed an
open-source Python package aiming to standardize some of the tools used in automated
laboratories. ESCALATE [11] proposed a framework that enables writing machine-readable
protocols with hybrid human-robot operations that enable the recording of data and optim-
ization of experiments. Aquarium [13] offers visual programming in a way that protocols are
represented graphically as blocks that can be assembled to build executable protocols.

All these methods still rely on researchers to design and conduct protocols. Approaches
such as ESCALATE and Roboliq require human-intervention for protocol optimization.
Automatically designing and finding optimized protocols for liquid handlers will play a
significant role in lab automation. We provide the first practical way of automatically finding
low-cost liquid handler protocols, significantly reducing the need for human intervention.

Reinforcement learning is a machine learning paradigm that involves learning a policy
to make decisions through interaction with an environment. Reinforcement learning has
been used for solving combinatorial optimization problems in order to replace using hand-
crafted heuristics [8]. By integrating reinforcement learning algorithms into the planning
of liquid handler robots, we aim to automate the protocol design of the liquid handler to
address common challenges and limitations associated with traditional robotic systems in
liquid handling, such as inefficient protocols, human error in protocol design or the high
computational cost of planning of the robot. Our results show that it is possible to fully
automate the protocol design for the liquid handler in many practical cases. We train
reinforcement learning models based on the actor-critic paradigm and using the Impala
(Importance Weighted Actor-Learner Architecture) framework [4]. Our trained model solves
the vast majority of inputs for cases with a deck of up to 20 × 20 wells and four different
types of reagents. Traditional planning algorithms are computationally intractable for many

M. Ferdosi, Y. Ge, and C. Kingsford 3

of these instances due to the super-exponential nature of the problem in terms of the number
of possible actions in each step. We also show that the trained model is robust to different
problem settings.

2 Formal Problem Statement

A liquid handler consists of a set of small containers (wells) and a robotic arm, called the
head, that can transfer liquids between the wells using a set of specified actions. The liquid
handler starts with an initial state which gives the configuration of the containers at the
beginning of the experiment. The aim is to convert the initial state to the goal state using the
set of specified actions. Here, we add some idealizing assumptions to make the formulation
simpler without losing the generality of the problem:

The state is defined by a 2D field of wells containing mixtures of reagents. Our idealized
handler is designed with a single large “deck”, whereas actual handlers may have multiple
decks. Any complexities arising from multiple plates in real-world situations can be
incorporated into the customized cost function that calculates the protocol cost.
The head is a 2D array of tips. It can be positioned anywhere within the 2D well field,
and its location is represented as an ∆ offset from the top-left corner of the field. For the
most part of this paper, we assume we are working with head size of 1 × 1.

▶ Definition 1. Reagents. There is a finite set of reagents that can be mixed in each well.
We denote them by R = {r1, r2, ..., rK}. The mixture in each well can be represented by a
1 × K vector that shows how much of each reagent is in that well.

▶ Definition 2. Deck. The deck is 2D field of wells containing mixtures of reagents. The
current state of the reagents in each of the wells, along with the position and contents of the
head, gives the current state of the liquid handler.

▶ Definition 3. Head. The head is a smaller 2D field of wells positioned anywhere in the
deck. The position of the head allows for the two actions of aspiration or dispensation on
the wells that are covered by the head. The head can change location within the deck and
this movement has a cost.

▶ Definition 4. Aspiration. Aspiration is the act of transferring some amount of the mixture
from the wells covered by the the head to the tips on the head. This action comes with two
costs. The cost of aspiration is a constant ca plus a movement cost that is the cost to move
the head to the location for the aspiration from its previous location.

▶ Definition 5. Dispensation. Dispensation is the act of transferring some amount of the
mixture from the tips in the head to the wells covered by the the head. This action comes
with two costs. The cost of dispensation is a constant cd plus a movement cost that is the
cost to move the head to the location for the dispensation from its previous location.

▶ Definition 6. Protocol. A protocol is the sequence of actions of aspiration, dispensation,
and moving the head’s location in order to achieve a goal state starting from an initial state.
The cost of a protocol is the sum of the cost for each action in the protocol.

▶ Problem 1. Optimal Liquid Handling. Given an initial state I of the deck (with an empty
head), and the goal state G and the set of parameters ca and cd that determines the cost
of each action as above, and a choice of polynomial-time computable distance metric that
determines the cost to move the head between locations, give a protocol with the minimum
cost that will convert I into the goal state G.

4 Reinforcement Learning for Robotic Liquid Handler Planning

We show that this is an NP-complete problem even in the most restricted case of the
unit-sized head and only one type of reagent. We then develop a practical approach to find
low-cost protocols using reinforcement learning.

2.1 The Optimal Liquid Handling problem is NP-complete.
We show that the Optimal Liquid Handling problem is NP-complete.

▶ Theorem 1. The Optimal Liquid Handling decision problem that asks whether there is a
protocol of cost less than or equal to C is NP-complete.

Proof. Verification of a protocol’s cost can be computed easily in polynomial time. We can
follow the sequence of actions and calculate the total cost to check if it is less than or equal
to C. Hence, the problem is in NP.

We reduce the Traveling Salesman Problem (TSP) to the special case of Optimal Liquid
Handling with the head size of 1 × 1. For this, we need to use the metric TSP where all the
cities are points in R2. The NP-completeness proof in [5] for the Euclidean TSP immediately
implies the NP-completeness of a TSP where all the cities are points in R2 and the distances
are defined in a way that the triangle inequality holds [3]. Figure 1 shows the sequence of
reductions to show that the Optimal Liquid Handling is NP-Complete.

Metric TSP Liquid Handler with
1x1 head Liquid Handler

Figure 1 The order of the reductions from the Euclidean TSP to the Optimal Liquid Handling.

TSP takes a list of n cities C = {c1, c2, ..., cn} in R2 and a budget C as input, and asks
whether there is a tour denoted Gtsp that visits every city exactly once with total cost at
most C. The reduction from TSP to Optimal Liquid Handling is as follows:

Construct an Optimal Liquid Handling instance with a budget C, and the initial state of
n units of reagent on the location of c1 on the deck and the goal configuration of one unit of
reagent in each of the city locations on the deck. The cost of aspiration ca and dispensing cd

are defined to be zero, and the cost of the head movement between the two wells is defined
with the same metric as the distance in the TSP. This way the head needs to visit every
well that represents the city location on the deck at least once to have the reagent in that
location.

▶ Lemma 1. For any sequence of moves of the head of the robotic arm that results in the
tour G0 with cost at most C, there is a tour of Gtsp with cost C∗ ≤ C in TSP where it visits
the same cities in the same order.

Proof. Not every move in the robotic arm’s tour G0 must end up in the cities. The arm can
move freely in the grid before visiting the next city. Let’s say the moves are segmented by
the cities and C = {c1, c2, ..., cn} are the cities that have been visited in G0 in the order of
their visit. We can replace any sequence of moves that happened between cities ci and ci+1

M. Ferdosi, Y. Ge, and C. Kingsford 5

with just a direct move from ci to ci+1 and the cost would not be increased due to triangle
inequality (which holds for any norm). Hence the new Gtsp would have a cost of C∗ ≤ C. ◀

Suppose there exists a protocol that visits the wells in an order that results in a tour G0
with cost at most C in Optimal Liquid Handling, then there exists a tour of Gtsp with a
cost of C or less in TSP using Lemma 1. If there is a tour of Gtsp with at most cost of C in
TSP the robotic arm can follow the same path therefore there is a tour of G0 with cost at
most C in the Optimal Liquid Handling problem. This means the Optimal Liquid Handling
can be used to solve the metric TSP problem which proves that Optimal Liquid Handling is
NP-complete. ◀

The NP completeness of the Optimal Liquid Handling problem motivates us to use
machine learning for a practical solution instead of looking for a polynomial-time algorithm.

3 Methods

3.1 Using Reinforcement Learning to Solve Optimal Liquid Handling
Reinforcement learning (RL) has emerged as a powerful technique for solving complex tasks
in various domains. Actor-critic [6] is a type of reinforcement learning algorithm that uses
two estimators: an actor and a critic. The actor is responsible for learning a policy, which is
a function that maps states to actions. The critic is responsible for learning a value function,
which estimates the expected reward from a given state and action. The interaction between
the actor and the critic enables the agent to continually refine its policy based on the feedback
provided by the critic, leading to improved decision-making over time.

Impala is a distributed reinforcement learning framework that integrates the actor-critic
framework with a distributed architecture [4]. Impala is designed to improve the scalability
and efficiency of traditional actor-critic algorithms by training multiple agents. It separates
the learning process into multiple actors and a central learner [4]. Actors interact with their
own instances of the environment, collecting trajectories (sequences of state, action, and
reward). Multiple agents simultaneously interact with the environment and collect experience,
which is used to update a shared value function and policy. Actors asynchronously send
their collected trajectories to the central learner, which processes the data and updates the
policy and value function. The central learner periodically sends the updated policy and
value function back to the actors, ensuring that they stay relatively up-to-date with the
latest learning progress. This enables efficient use of computational resources and allows the
algorithm to scale to a large number of actors. This approach allows for faster and more
efficient learning compared to traditional reinforcement learning algorithms that rely on a
single agent [4].

We tackle the Optimal Liquid Handler problem with the head size of 1 × 1 using rein-
forcement learning. We use Impala [4] for the training and CORA [12] for the benchmarking
and evaluation. CORA (short for Continual Reinforcement Learning Agents) is a package
that provides benchmarking, baselines, and metrics for continual reinforcement learning tasks.

Environment: The environment is the setting in which the RL agent operates. It can
be modeled as a state space, where each state corresponds to a particular configuration of
the environment, and the agent can take actions to transition from one state to another.
The deck, the head, and the configuration of reagents in the deck and the head form the

6 Reinforcement Learning for Robotic Liquid Handler Planning

environment in the liquid handler application. Let N × M be the size of the deck, and K be
the number of different types of possible reagents.

Agent: The agent is the entity that interacts with the environment. It learns a policy
which maps states to actions. The agent receives information about the environment and
takes actions according to its policy and based on the input. Here, the agent outputs steps
in a protocol for the liquid handling problem.

State space: The set of all possible states of the environment is described by {D, G, H}.
We define the state space with a pair of N ×M ×K tensors D, G where both D, G ∈ NN×M×K

and vector H ∈ NK . D describes the current state of the deck where D[i][j] is a vector of
size K that specifies how many units of each reagent are currently present in the well located
at (i, j). Values in D are initialized by the initial state I (as the input to the agent) and
they can change according to each action defined below. Similarly, G describes the goal state
which shows how many units of each reagent is supposed to be in every well after the arm
performs all the actions in the protocol. Finally, H describes the amount of each reagents
currently in the head. The protocol is considered successfully completed if D = G at the end.
We define the state space by tensors with integer values. This choice limits us in terms of
the mixtures we can produce but it is necessary to keep the problem computationally tractable.

Action space: Actions that the agent can take in a given state. We design our agent
with an internal state machine that defines the possible actions. There are two states in our
setting. The agent is either in aspiration mode or dispensation mode depending on whether
the head is empty. These two states alternate as described in Figure 2. For simplicity, a
movement of the head is combined with the aspiration or dispensation actions as multiple
actions in the same location can be combined into one single action.

Aspiration

Dispensation

Partial Dispensation
Dispensation Mode:

Head Contains
Reagents

Aspiration Mode:
Empty Head

Figure 2 Two sets of actions and their corresponding internal states. Depending on whether the
agent’s head is empty or not, there are two sets of possible actions: aspiration and dispensation.
To avoid potential cross-contamination, aspiration is only allowed when the head is empty because
there might be residual liquid in the tip caused by previous aspiration that can mix with the reagent
in well.

There are two actions that the agent can take based on the internal states it is currently
in. When the agent is in aspiration mode, the head is empty and the agent can perform an
“aspiration” action.

Aspiration is defined with the tuple (i, j, P) where P is a vector of size K, P ∈ NK , and

∃b 0 < b ≤ 1 where P [k]
D[i][j][k] = b for every k ∈ [1, K]. (1)

This action transfers the amount of reagents defined by P from D[i][j] to the head H. The
condition (1) guarantees that the ratios are kept the same for the amount that is being
aspirated and the mix in the well. Aspiration is formally defined as:

M. Ferdosi, Y. Ge, and C. Kingsford 7

D[i][j] = D[i][j] − P

H = P (2)

The cost of aspiration is ca. This cost is independent of P , the volume aspirated, and the
location. While this is not completely physically accurate, it is a reasonable model when we
want to minimize the number of actions. After each aspiration the internal state of the agent
changes to dispensation mode since the head is not empty anymore.

Similarly, when the agent is in dispensation mode, the agent can perform a “dispense”
action since there is some liquid in the head. Dispense is defined with the tuple (i, j, P)
where P is a vector, P ∈ NK , and

∃b 0 < b ≤ 1 where P [k]
H[k] = b for every k ∈ [1, K]. (3)

This action transfers the amount of the reagents defined by P from the head H to D[i][j].
The condition (3) guarantees that the ratios are kept the same for the amount that is being
dispensed into the well and the mix in the head. Dispense is formally defined as:

D[i][j] = D[i][j] + P

H = H − P (4)

We call this partial dispense in the case where D[i][j] ̸= P . Partial dispense causes the
internal state to stay on dispensation mode since the head is not empty yet. The cost of a
dispense is cd. This is again independent of the volume dispersed.

Each action also comes with a distance cost that models the movement of the head from
the well of the previous action to the well of the next action. The cost of the n-th action
(i, j, P)n depends on the previous (i, j, P)n−1 action and is defined as

cn = Manhattan Distance((i, j)n, (i, j)n−1)
= |in − in−1| + |jn − jn−1|, (5)

and cost of a protocol is defined as the sum of the cost for all actions and movements. We use
Manhattan distance here as our choice of distance, although other metrics are also reasonable.

Reward: The reward is a scalar feedback signal that the agent receives from the envir-
onment after taking an action. The goal of the agent is to learn a policy that maximizes the
cumulative reward over time. The agent’s aim is to reach the goal state while minimizing
the distance cost of the protocol. In this task, the agent receives +1 reward for dispersing
one unit of reagent in a well that is missing at least one unit of that reagent to reach its goal
defined by the goal state G. In order to facilitate the exploration and motivate the agent to
perform moves, we also add +1 reward for aspirating one unit of a reagent that is currently
in a well that does not have that reagent in its goal (or the amount currently in the well
exceeds the amount described in the goal), meaning that this unit has to be moved in order
to achieve the goal state. This way moving one unit of reagent from a wrong well to a correct
well results in total of +2 reward. There is also −1 reward for aspirating one unit of reagent
that is currently in the correct well and another −1 reward for dispersing one unit of reagent
in the wrong well. This means moving one unit from a correct well to another correct well
or from a wrong well to another wrong well results in 0 reward, and moving a unit from a
correct well into a wrong well results in −2 reward. We also weight the distance cost by a

8 Reinforcement Learning for Robotic Liquid Handler Planning

parameter α that is the relative weighting of the distance cost to the reward. More formally,
we calculate the reward for each action as described below.

In aspiration mode, the reward for the move (i, j, P) is calculated by

C = min(G[i][j], D[i][j])
C ′ = min(G[i][j], P)
W = C − C ′

R = P − W

r = |R| − |W | − αcn (6)

where the function “min” between two vectors is defined as a vector of the element-wise
minimum. C ∈ NK shows the amount of reagents that are currently in position (i, j) and are
part of the goal state (completed units) before the move, and C ′ ∈ NK shows the amount of
reagents that will be in position (i, j) and are part of the goal state after the move. W ∈ NK

is the vector of reagents that are being aspirated from a goal well (wrong moves), and R ∈ NK

is the vector of reagents that are being aspirated from a well that does not need that type in
its goal (right moves). Hence, the reward r is calculated by +1×|R|−1×|W | and subtracted
by a factor of the distance cost of that move −αcn. We can always choose a small enough α

based on the size of the deck so that finding a protocol that completes the task by reaching
the goal state has a higher priority than optimizing the distance cost.

Similarly in the dispensation mode, the reward for the move (i, j, P) is calculated by

L = max(G[i][j] − D[i][j], 0)
R = min(P, L)

W = P − R

r = |R| − |W | − αcn (7)

where the function “max” between a vector and a number is defined as the element-wise
maximum of the values in the vector and the number. L ∈ NK shows the amount of reagents
that are needed in position (i, j) to complete the goal for well in (i, j) (units left) before
the move. Similarly to the aspiration reward, R is the vector of reagents that are being
dispersed to a goal well (right moves), and W is the vector reagents that are being dispersed
to a non-goal well (wrong moves). The reward r is again calculated by +1×|R|−1×|W |−αcn.

Policy: The policy is the mapping between states and actions that the agent uses to
make decisions. The goal of the agent is to learn an optimal policy that maximizes the
cumulative reward over time.

3.2 The Network Architecture
We use Impala for our training framework. Impala is a distributed reinforcement learning
algorithm designed to tackle large-scale RL problems efficiently. It achieves this by employing
a distributed architecture, which enables parallel data collection and learning. The actors
are responsible for exploring the environment and generating trajectories of state, action,
reward, and next-state tuples by following their respective behavior policies. The central
learner processes the collected data to update both the policy (actor) and the value function
(critic). Each actor in the Impala architecture has an actor network, which is responsible for

M. Ferdosi, Y. Ge, and C. Kingsford 9

selecting actions based on the current state of the environment. We design the actor network
as a three-layered convolutional network described below.

The designed network needs to take an encoding of the current state {D, G, H} as the
input and must output a probability distribution over all the possible actions to take at
this step. We define observation O = {D, G, H∗} as the encoding, where D, G are previously
defined as the current state and the goal state. H∗ is a tiling of the vector H where H
is repeated N × M times (to count for each well). This way, all three of {D, G, H∗} are
N × M × K tensors. We do this tiling because we want the associations between the current
reagents in the head and the goal definition for each well to be highlighted in the convolutional
layer (e.g. if the amount in the head matches or mismatches with the goal for each well). We
use convolutional layers with kernel size of 1 × 1 to perform a channel-wise feature mixing.
The 1 × 1 convolution is used to combine features across channels with information on H∗

and the channels with information on G. This is aimed to help the network learn which wells
still need some reagents to reach the goal state.

The output of each state is the policy distribution for every possible action. We define
the capacity of the tip on the 1 × 1 head as D. A possible action a is defined as a = (x, y, p)
which states “p amount of the the mix and the position (x, y) on the grid”. The type of the
action (i.e. aspiration or dispensation) is determined by the internal state machine. If the
head is not empty, the action a = (x, y, p) is a dispense, and if it is empty, the action is an
aspiration. Since we are using O = {D, G, H∗} as the encoding, we have 3 × K × N × M

input values, which is equivalent of (3 × K) channels for images of size N × M , where each
channel describes the amount of one reagent in either the current state, the goal state, or the
tiled head. Similarly, we have D × N × M output values that describe the policy distribution;
these are equivalent to D channels for images of size N × M . We use the three layered
convolutional network described in Figure 3 for the actor network, and we use a flattening
layer at the end to get a one-dimensional vector that describes the the policy distribution.

32 x N x M

(3 x K) x N x M

32 x N x M

D x N x M

1 x (D x N x M)

Convolutional Convolutional Convolutional Flatten

Figure 3 The three-layered convolutional network used for the actor network. The actor learns
the policy, which is described by the probability distribution over the possible actions, based on the
current state {D, G, H} as its input.

The central learner in Impala also has a critic network that estimates the value function,
which represents the expected cumulative reward from a given state, following the current
policy. For our task, we design the critic network as a fully connected layer that gets the
observation {D, G, H} as the input and produces a number as its output that describes the
expected reward for the given state.

10 Reinforcement Learning for Robotic Liquid Handler Planning

4 Results

We first show some examples to showcase some of the challenges that the agent needs to
overcome to find an optimal protocol. We then present experiments benchmarking the
proposed reinforcement learning approach compared with several baseline approaches.

4.1 Challenges
The first priority for the RL agent is to reach the goal state. The agent also needs to minimize
the distance cost of the protocol. Figure 4 shows two possible protocols for a given state.
The agent needs to choose the one with lower distance cost.

11

2 2

1 11 1

Figure 4 Here we have 1 × 4 deck. The two side wells each have one unit of the blue reagent in
the initial state D as shown by the two cylinders. The two middle wells each have one unit of the
blue reagent in the goal state G as shown by the two drops on the bottom right of each well. If we
do the moves based on the red arrows on the top the distance cost will be equal to 4, but if we do
the moves based on the green arrows on the bottom, the distance cost will be equal to 2. We expect
the agent to choose the green arrows for the moves.

One thing that the agent needs to learn is the volume of each action. Always using the
whole volume available for aspiration and dispensation would not reach the goal in some
cases. Figure 5 shows why it is important for the agent learn to use moves with b < 1.

3
111

Figure 5 In this example the left wells has three units of the blue reagent in the current state D
and need to distribute it into three well with one unit in each. It would be impossible for the agent
to reach the goal state G without using moves with b < 1.

Another challenge for the agent is to learn to mix or not mix reagents when necessary.
This is a unique aspect of the planning for liquid handler robotic arm since putting liquid
on top of each other results in mixing them and producing a new reagent. This move is
irreversible by the liquid handler. Figure 6 shows how mixing when not necessary can result
in a state where reaching the goal is not accessible anymore. The agent needs to learn these
cases in order to be able to find the optimal protocol.

The agent cannot simply collect rewards greedily by moving each reagent to a goal well.
Figure 7 shows how a greedy algorithm would fail by falling into a state that makes the goal
unreachable because of the irreversibility of mixing.

M. Ferdosi, Y. Ge, and C. Kingsford 11

11

2

1 1

2

Figure 6 In this example the left column shows the reagents in the initial state. We have one
unit of the blue reagent in the top, one unit of the red reagent in middle, and a mix of one unit of
blue and one unit of red reagents at the bottom (purple reagent). We have the same formation for
the goal state in the column at the right. The agent should never mix the blue reagent and the red
reagent to make the purple reagent for the bottom right well since that would make it impossible to
reach the goal state. Instead, the agent should move every reagent to its corresponding well on the
last column.

11

2 1

1

2

Figure 7 In this example, we have a similar initial state and the same exact goal state as the
example in Figure 6. The only difference is that the blue reagent has moved to the bottom right well.
A greedy agent could move the red reagent to mix with the blue reagent to receive +2 rewards but as
we have seen that would make the goal unreachable. Instead the agent should first aspirate the blue
reagent from the bottom right corner resulting in −1 reward since one unit of blue reagent is part of
the goal state in that well. Only then should it move all three reagents to their corresponding wells.

4.2 Experiments

We show experimental results from the reinforcement learning agent to show the potential of
this approach on solving the automated protocol design for robotic liquid handlers. In the
first experiment, we show that by training on various settings we are able to receive almost
perfect results in terms of receiving the highest possible reward for each instance. In the
second experiment, we show that the trained agent is robust to other settings, and in the
third experiment we show the comparison of reinforcement learning method and traditional
planning and a greedy algorithm in terms of finding the optimal protocols. We used the
following hyperparameters for the reinforcement learning: number of actors = 16, batch
size = 16, discount factor = 0.9, and learning rate = 10−4. All the experiment are performed
on a machine with Apple M2 Pro chip with a 10-core CPU and a 16-core GPU and 32GB of
unified memory.

12 Reinforcement Learning for Robotic Liquid Handler Planning

4.2.1 Model Performance in Terms of Completing the Task
In this experiment, we train the model on randomly generated initial and goal states. Every
unit of reagent is placed on the locations of the grid uniformly and independently. We
make sure that the input is synthesized in a way that the maximum possible reward is fully
reachable, meaning if there are S units of reagents in the goal, there is a protocol that reaches
2S reward. To create these instances, we separate the wells that initially have the reagents
from the wells that have the reagents in the goal state. This guarantees that no reagent is
already where it should be in the goal state making the reward for it unreachable. The other
condition is that the reagents are placed in a way that a series of aspiration and dispense
steps will reach the goal state from the initial state. To guarantee this, we start by creating a
random goal state and then randomly move portions of each mixture in the goal state to new
wells to create the initial state. This guarantees that there is at least one path to reach the
goal from the initial state by doing the reverse of each action that initially produced the test
case. We also choose α = 0 for this experiment so the distance cost does not affect the rewards.

We train the model on seven different settings with various deck sizes and reagent numbers.
Table 1 shows the average performance of each setting for 1000 inputs confirming that the
trained model can complete the task for the vast majority of the inputs. For the first four
settings, the agent reaches the goal in every single instance and for the three larger settings
the model receives around 95% of the rewards on average. That means the model outputs a
protocol that gets very close to the goal state, but it is not able to reach the goal in some
cases. There is a trade-off between the deck size and the training time in a way that the
agent needs more training to work with bigger decks as the state space grows exponentially.
In addition, having more reagents increases the complexity of the task, and requires longer
protocols to reach the goal. That is the reason we see a drop on the average reward for
the bigger instances. Figure 8 shows the average cumulative reward of each run for all the
settings over the steps of the training.

M × N K Reagents Units Max Reward Reward Steps Training time

2 × 2 2 1, 1 2 4 4 ± 0 1M 3m 59s
5 × 5 2 2, 2 4 8 8 ± 0 10M 21m 46s

10 × 10 2 3, 3 6 12 12 ± 0 16M 1h 31m
12 × 12 2 5, 5 10 20 20 ± 0 16M 1h 53m
15 × 15 2 10, 10 20 40 38.2 ± 0.45 18M 2h 37m
10 × 10 4 5, 5, 5, 5 20 40 39 ± 0.05 18M 1h 41m
20 × 20 3 15, 15, 15 45 90 83.16 ± 5.58 50M 15h

Table 1 This table shows the results of training the model on six different settings. The reward
is the average reward over 1000 sample and the training time is the amount of time before the model
converges. Steps shows the number of training iterations the model was trained on. The training
stops if the model converges. For a trained model, it takes less than a second to output the protocol
for every setting.

4.2.2 Robustness of the Model in Unseen Settings
We show that the trained model can solve settings that are different from what the model has
been trained on. To show this, we train a model on the deck size of 10 × 10, with two types

M. Ferdosi, Y. Ge, and C. Kingsford 13

2x2 Deck and [1,1] reagents
5x5 Deck and [2,2] reagents
10x10 Deck and [3,3] reagents
12x12 Deck and [5,5] reagents
15x15 Deck and [10,10] reagents
10x10 Deck and [5,5,5,5] reagents

0 2M 4M 6M 8M 10M 12M 14M 16M

Av
er

ag
e

R
ew

ar
ds

Steps

40

35

30

25

20

15

10

5

0

Figure 8 This figure shows the reward over time during the training for different settings. For
smaller cases, the model converges to completing all the input tests and receiving full rewards. Every
point on the figure is the average of 10 instances and points are generated every 10,000 steps.

of reagents with total units of [4, 4] (meaning 4 units of reagent r1 and 4 units of reagent
r2). For evaluation, however, we test the model on the same deck size but with four different
settings with total units of {[5, 5], [3, 3], [3, 5], [2, 6]} with respective total available rewards of
20, 12, 16, and 16 (taking α = 0 to remove the distance costs). Since N , M (deck size) and
K (number of different reagents) are the same as the training, the state and action spaces
have the same dimensions as before and the network is able to adapt to these new instances.
We use the same approach as the previous section to create 1000 random instances. As we
can see in Figure 9, the model is able to fully generalize to all of these cases receiving the
average reward equal to the max reward possible. Our model is able to do this is because the
actor network is designed to be sensitive to every unit of reagent that is not placed correctly
and continue working on them until it reaches the goal state making the model generalizable
to unseen settings.

4.2.3 Optimality of the Protocol in Different Models
Due to the super-exponential nature of the problem, brute force and classic planning al-
gorithm are not tractable for solving this problem. In this section, we compare the proposed
reinforcement learning model with a greedy heuristic algorithm and a heuristic-based beam
search algorithm as baselines. We compare all the models in terms of success rate which is
defined as how often a model outputs a protocol that reaches the goal state, the average
distance cost, and the runtime. Table 2 shows the details of each setting.

Greedy Heuristic Algorithm: For this algorithm, we iteratively perform a greedy
actions to reach the goal state. We use the same state machine described in Figure 2 but
instead of letting the RL agent decide on the tuple a = (x, y, p), we choose them in a greedy
fashion. For aspiration, we limit our choices only to the wells that currently have extra
reagents compared to what they should have according to the goal state. Similarly, for
dispense we only consider the wells that need additional reagents to reach the goal state. We
choose the closest x and y to the current position of the head among those choices, and pick
p randomly. With this definition of greedy actions, we get closer to the goal state after every
step. We stop when we reach the goal state or when there is no more greedy action possible
to take.

14 Reinforcement Learning for Robotic Liquid Handler Planning

Figure 9 The reward over time for unseen settings during the training. It shows that for all the
cases, the model trained on [4, 4] is able to complete all the input tests and receiving full rewards
after around 7 millions steps. After each step of the training on [4, 4], we evaluate the model on four
new settings that are [5, 5], [3, 3], [3, 5], and [2, 6] with respective total available rewards of 20, 12,
16, and 16 (taking α = 0) from left to right.

Heuristic-Based Beam Search: We also use the beam search algorithm, a heuristic
search method, as a baseline for this problem. The beam search algorithm uses a breadth-first
search (BFS) approach to explore the solution tree. In contrast to the standard BFS that
expands all nodes at every level, the beam search uses a heuristic to order the nodes and
only keeps a specific set of promising nodes at each stage. The size of this set is called
the beam width and is a parameter of the algorithm. At each step, beam search gener-
ates all possible successors to the current state by applying all applicable actions. These
successors are then evaluated based on a heuristic function that assigns a score to each
state based on its desirability. The states with the highest scores are selected to be the
new set of candidate states for the next iteration. This technique significantly cuts down
the search space, making it tractable. However, it can also prune the path to the optimal
solution, resulting in potentially sub-optimal protocols. We designed a heuristic functions
tailored to the optimal liquid handling problem for the beam search. The heuristic function
for each action is the sum of the cost and the absolute differences between the volumes of
reagents in each well at the current state and the corresponding target volume in the goal state.

As we can see from the Table 2, the proposed reinforcement learning approach outperforms
both baselines in terms of the success rate, resulting in a protocol that reaches the goal
state in the vast majority of cases. The average distance cost for the proposed reinforcement
learning method is also lower than the greedy heuristics method in all the cases. The greedy
heuristics method is able to find a valid protocol more often for the cases where the amount
of reagents is small compared to the grid size. For those cases, the random positioning of
reagents results in a sparse grid which is a simpler task and makes it easier for the greedy
heuristic to perform greedy actions one at a time. The beam search algorithm is able to find

M. Ferdosi, Y. Ge, and C. Kingsford 15

protocols with smaller distance cost but it has a much smaller success rate. In addition, the
beam search has an exponential runtime which makes it not scalable for the larger instances.

M × N Reagents Model Success Rate(%) Distance Cost Training time Query(s)

RL 100 38.496 22m 0.484
4 × 4 4, 4 GH 78.7 39.40 - 0.004

BS 95.0 23.87 - 3.80

RL 100 44.471 50m 0.484
6 × 6 3, 3 GH 93.2 46.254 0.002

BS 92 30.74 - 5.37

RL 98.9 102.84 1h 21m 0.490
6 × 6 8, 8 GH 59.8 113.148 - 0.009

BS 72 68.44 - 30.10

RL 100 76.53 1h 51m 0.486
8 × 8 4, 4 GH 93.0 81.455 - 0.003

BS 91 59.59 - 24.67

RL 95.3 264.97 4h 31m 0.494
8 × 8 15, 15 GH 40.0 266.652 - 0.014

BS 43 190.08 - 143.47

RL 87.9 232.83 6h 36m 0.474
10 × 10 5, 5, 5, 5 GH 70.5 249.99 - 0.008

BS 34 150.41 - 306.45

Table 2 This table shows the results of comparison between the reinforcement learning (RL),
greedy heuristic (GH), and beam search (BS). Each experiment is repeated 1000 times for RL and
GH and 100 times for BS. Success rate is the the number each model reached the goal state divided
by the total number of experiments. Distance cost is the average of distance cost for those runs
that reached the goal. Training time is the amount of time it took for the RL model to train, and
query time is the average time it takes each model to output the protocol. We used α = 0.2 for the
reinforcement learning model and used the beam size of 25 for the beam search on the two larger
decks and beam size of 40 for the other instances.

5 Conclusion

We demonstrated the potential of reinforcement learning for automating protocol design for
robotic liquid handlers. We developed a reinforcement learning agent that automatically
generates step-by-step protocols based on the initial state of the deck, reagent types, and
volumes. This will result in reduced human labor in the process and further improve the
automation of liquid handling tasks. Our proposed reinforcement learning algorithm can
effectively solve the planning problem for practical cases involving decks of up to 20 × 20
wells and four different types of reagents.

Future research could focus on expanding the capabilities of the agent to handle more
complex laboratory tasks, larger decks, other distance metrics, and a greater variety of reagent
types. Additionally, integrating our approach with existing liquid handling software could

16 Reinforcement Learning for Robotic Liquid Handler Planning

streamline the protocol design process and further advance the adoption of this technology in
laboratories. Overall, this work represents a promising step towards harnessing the power of re-
inforcement learning to to further automate the liquid handling process. The implementation
of all the models is publicly released at https://github.com/Kingsford-Group/rlforlqh.

References
1 Philip An, Dwight Winters, and Kenneth W Walker. Automated high-throughput dense

matrix protein folding screen using a liquid handling robot combined with microfluidic capillary
electrophoresis. Protein Expression and Purification, 120:138–147, 2016.

2 Dominik Buchner, Till-Hendrik Macher, Arne J Beermann, Marie-Thérése Werner, and Florian
Leese. Standardized high-throughput biomonitoring using DNA metabarcoding: Strategies
for the adoption of automated liquid handlers. Environmental Science and Ecotechnology,
8:100122, 2021.

3 Rainer E Burkard, Vladimir G Deineko, René van Dal, Jack AA van der Veen, and Gerhard J
Woeginger. Well-solvable special cases of the traveling salesman problem: a survey. SIAM
Review, 40(3):496–546, 1998.

4 Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-RL
with importance weighted actor-learner architectures. In International Conference on Machine
Learning, pages 1407–1416. PMLR, 2018.

5 Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

6 Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in Neural Information
Processing Systems, 12, 1999.

7 Fanwei Kong, Liang Yuan, Yuan F Zheng, and Weidong Chen. Automatic liquid handling for
life science: a critical review of the current state of the art. Journal of Laboratory Automation,
17(3):169–185, 2012.

8 Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400,
2021.

9 Christoph B Messner, Vadim Demichev, Daniel Wendisch, Laura Michalick, Matthew White,
Anja Freiwald, Kathrin Textoris-Taube, Spyros I Vernardis, Anna-Sophia Egger, Marco Kreidl,
et al. Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell
Systems, 11(1):11–24, 2020.

10 Jeremiah J Minich, Greg Humphrey, Rodolfo AS Benitez, Jon Sanders, Austin Swafford, Eric E
Allen, and Rob Knight. High-throughput miniaturized 16s rRNA amplicon library preparation
reduces costs while preserving microbiome integrity. mSystems, 3(6):e00166–18, 2018.

11 Ian M Pendleton, Gary Cattabriga, Zhi Li, Mansoor Ani Najeeb, Sorelle A Friedler, Alexan-
der J Norquist, Emory M Chan, and Joshua Schrier. Experiment specification, capture and
laboratory automation technology (ESCALATE): a software pipeline for automated chemical
experimentation and data management. MRS Communications, 9(3):846–859, 2019.

12 Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. CORA:
Benchmarks, baselines, and metrics as a platform for continual reinforcement learning agents.
In Conference on Lifelong Learning Agents, pages 705–743. PMLR, 2022.

13 Justin Vrana, Orlando de Lange, Yaoyu Yang, Garrett Newman, Ayesha Saleem, Abraham
Miller, Cameron Cordray, Samer Halabiya, Michelle Parks, Eriberto Lopez, et al. Aquarium:
open-source laboratory software for design, execution and data management. Synthetic Biology,
6(1):ysab006, 2021.

14 Yishan Wang, Hanyujie Kang, Xuefeng Liu, and Zhaohui Tong. Combination of RT-qPCR
testing and clinical features for diagnosis of COVID-19 facilitates management of SARS-CoV-2
outbreak. Journal of Medical Virology, 92(6):538, 2020.

https://github.com/Kingsford-Group/rlforlqh

M. Ferdosi, Y. Ge, and C. Kingsford 17

15 Ellis Whitehead, Fabian Rudolf, Hans-Michael Kaltenbach, and Jörg Stelling. Automated
planning enables complex protocols on liquid-handling robots. ACS Synthetic Biology, 7(3):922–
932, 2018.

16 Jing Wui Yeoh, Neil Swainston, Peter Vegh, Valentin Zulkower, Pablo Carbonell, Maciej B
Holowko, Gopal Peddinti, and Chueh Loo Poh. SynBiopython: an open-source software library
for Synthetic Biology. Synthetic Biology, 6(1), 2021.

17 Min Zhu, Pingbo Zhang, Minghui Geng-Spyropoulos, Ruin Moaddel, Richard D Semba, and
Luigi Ferrucci. A robotic protocol for high-throughput processing of samples for selected
reaction monitoring assays. Proteomics, 17(6):1600339, 2017.

	1 Introduction
	2 Formal Problem Statement
	2.1 The Optimal Liquid Handling problem is NP-complete.

	3 Methods
	3.1 Using Reinforcement Learning to Solve Optimal Liquid Handling
	3.2 The Network Architecture

	4 Results
	4.1 Challenges
	4.2 Experiments
	4.2.1 Model Performance in Terms of Completing the Task
	4.2.2 Robustness of the Model in Unseen Settings
	4.2.3 Optimality of the Protocol in Different Models

	5 Conclusion

