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Abstract
Pangenomic studies have enabled a more accurate depiction of the human genome

landscape. Genome graphs are suitable data structures for analyzing collections
of genomes due to their efficiency and flexibility of encoding shared and unique
substrings from the population of encoded genomes. Novel challenges arise when
genome graphs are applied to thousands of genomes because current genome graph
models are insufficient in addressing the questions: (1) How can genome graphs be
constructed efficiently that optimize the storage space? (2) How can genome graphs
be used to more accurately and more efficiently compare heterogeneous sequences
such as cancer genomes or immune repertoires? To answer these questions, we lay
algorithmic foundations for genome graph construction and comparison.

The size of a genome graph is crucial to both efficient storage and analysis. How-
ever, few genome graph construction methods directly optimize the graph size. By
drawing connections to data compression, we develop an algorithmic framework for
genome graph construction that prioritizes genome graph size and show that the new
framework produces small genome graphs efficiently compared to other genome
graph schemes. Our compression-based framework not only removes the depen-
dency on hyper-parameters but also opens up the potential for adapting established
compression algorithms to construct better genome graphs.

In many scenarios, such as immune repertoire analysis, we need to quantify the
similarity between heterogeneous sets of genomic strings, but the complete strings
are unknown due to limitations in sequencing technology. The distance between
genome graphs can be used to estimate to the difference between these strings. One
important metric is defined as the graph traversal edit distance (GTED). We revisit
the complexity of and the previously proposed algorithms for GTED. We prove that
GTED is NP-complete and show that the previously proposed algorithms computes
a lower bound of GTED. In addition, we propose two correct ILP formulations
of GTED and characterize the relationship between GTED and the previous lower
bound ILPs. We evaluate the empirical efficiency of solving GTED and its lower
bound ILP and show that solving GTED exactly with ILPs is currently not practical
on larger genomes.

Genome graphs are often highly expressive and represent more than one string
sets, and thus the distance between two graphs using standard graph distances does
not always model the actual edit distance between true string sets. To quantify this
discrepancy, we formally define genome graph expressiveness as its diameter and use
it to bound the deviation of the genome graph distance from string set distances. We
produce a more accurate distance measure between (unseen) collections of strings
encoded as genome graphs. The new distance measure and its deviation from string
set distances are evaluated on simulated human T-cell repertoire sequences and Hep-
atitis B virus genomes.
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Chapter 1

Introduction

1.1. The era of pan-genomics
Pangenomics is the study of collections of genomes. The notion of a pangenome first emerged in
the study of microbiomes, where a sample in the microbial environment naturally contains a pool
of diverse genomes from different strains of bacteria. Instead of focusing on one strain, or one
single genome, researchers investigate the diversity of the genomes collected from an environ-
ment or site, which provides insight into the genetic dynamics, drug resistance, and pathogenesis
of the microbial communities [28, 92, 98, 154, 157].

Pagenomics has enabled a more accurate depiction of the genomic landscape of the various
Eukaryotic organisms as well. With the advancement of sequencing technologies, it has become
easier to curate larger and more complex eukaryotic genomes with efforts from 1000 Genomes
Project [2], UK BioBank [152], the Cancer Genome Atlas [161], the Human Pangenome Refer-
ence Consortium [1] and other large-scale sequencing efforts [24, 82]. The information on varia-
tions among individual genomes allows researchers to more accurately identify genetic elements
that are unique to each human population [112, 148], understand the mechanism of genomic
changes in diseases [58, 90, 104] and recover the evolutionary history of live stocks [168] and
plants [11].

Despite the vast amount of data generated, it is challenging to completely catalog all vari-
ations among genomes and fully use them to improve the genomic analysis. While pange-
nomics has been widely acknowledged as an essential approach to integrating the vast amount
sequencing data, the methods are mostly ad hoc and lack theoretical foundations. In this disser-
tation, we introduce two foundational algorithmic questions related to the pangenomic approach:
pangenome reference construction and pangenome comparisons, and properties of those compu-
tational methods that are essential to successful pangenomic analyses. We develop algorithms
and theories that address the time- and space-efficiency, the expressiveness of pangenome repre-
sentation, and the accuracy of pangenome comparison. Combined, this dissertation establishes a
solid algorithmic foundation for efficient and accurate pangenome construction and comparisons.
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1.2. Pangenome reference construction
The human reference genome is the template for most analyses on a human genome. A collec-
tion of sequencing reads, which are fragments of the sample genome, are aligned the reference
genome to obtain a more comprehensive view of the complete sample genome. All downstream
analyses, such as the variant discovery, the analyses on epigenetic elements, and the characteri-
zation of chromosomal organization, depend on sequences aligned to the reference genome. For
the past few decades, the structure of the human reference genome has been taken to be mostly a
single set of strings that contains information mostly from European ancestry [113]. The linear
structure and lack of diversity in its sources have resulted in biases and errors during the process
of alignment to the reference genome [10, 99]. For example, due to variations among human
individuals, collected sequencing reads may not align to the reference genome properly since
they come from non-reference alleles [141]. These unaligned reads are usually discarded even
though they contain valuable information about the sample genome. It is therefore imperative
that the current reference genome is replaced by a high-quality reference that is representative of
genomes of various populations, i.e. a pangenome reference.

A human genome consists of more than 3 billion base pairs, or letters in terms of the string
representation of the genome. To conduct pan-genomic analyses on human genomes, we often
need to access the thousands, even tens of thousands of genomes that aggregate to a set of strings
with a total of hundreds of billions of characters. In this setting, it is no longer viable to represent
such strings with the traditional linear structure. Therefore, a new form of pangenome repre-
sentation needs to be established and new algorithms need to be designed to conduct essential
operations on the new representation.

There are two major schemes of pangenome representations: text-based and graph-based.
Text-based pangenomes encode a collection of genomes via a compressed data structure for
space-efficient storage and/or via an indexing data structure that supports fast substring lookup.
Graph-based pangenomes encode a collection of genomes in a graph structure, where nodes
or edges of the graph are labeled with substrings from the genomes and the proximity of the
substrings are encoded by the graph structure. The two schemes are not mutually exclusive to
each other. In fact, many text-based indices have been adapted to graph-based representations.

1.2.1 Text-based pangenome representation
One type of text-based pangenome representation is the compression-based representation that
uses ideas from data compression. Compression-based pangenome representations usually have
the objective of minimizing the space taken to store a collection of genomes. One key feature
of the genomes exploited by the compression methods is that genomes in a pangenome study
are usually highly similar to each other. This makes using the relative Lempel-Ziv (RLZ) algo-
rithm [13, 35, 74] advantageous to encode pangenomes. The RLZ algorithm uses a reference
string, such as a single consensus reference genome, as the template to compress a collection of
genomes by replacing the substrings in the individual genomes that occur in the reference with
integers that indicate the location of the substring in the reference. RLZ has achieved a very
significant reduction in genome size [36] and has a running time that is linear in the size of the
input genomes. Recently, indexing structures have been developed to enable string query [30]
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and random access [43] on RLZ-compressed strings.
Another class of compression-based representations adapts the Burrows-Wheeler transform

[21] and the FM-index [44], which are alignment indices developed for linear strings, to large col-
lections of strings by reducing the size of the indexing structure. Similar to the RLZ algorithms,
this class of methods reduce space by merging or eliminating the repetitive sequences. Some
examples of this approach are prefix-free parsing methods [17, 114, 134], the r-index [49, 107],
the hybrid index [93] and the marker array [108].

Compression-based methods make decisions on which common substrings to merge by op-
timizing for the size of the compressed strings, which may disrupt the boundaries of biologi-
cally meaningful regions on the genomes. To adapt to the biological significance of shared or
differing substrings among collections of genomes, alignment-based methods use pair-wise or
multi-sequence alignments (MSA) to determine which substrings are shared by the genomes.
BWBBLE [63] compresses a MSA into a linear pangenome by using additional letters to rep-
resent single nucleotide variations (SNV) at each genomic position and concatenating longer
variations among genomes. Representing the pangenome in a linear form allows direct adaption
of alignment data structures such as BWT and linear aligners such as BWA [88] and bowtie [77]
to string alignment to pangenomes. Another pangenome representation is the elastic degenerate
(ED) strings. In ED strings [12, 25], common regions among the genomes are stored once as one
string, whereas the divergence in genomes is stored as a block of stacked substrings following
the shared region.

The reference bias can also be mitigated by replacing the linear reference genome with a
panel of genomes that contain most of the known variations among populations. Reference
flow [23] represents the human pangenome by a small number of reference genomes and adapts
linear aligners to increase the sensitivity of read mapping.

1.2.2 Graph-based pangenome representation
Graph-based pangenomes are used to build the human pangenome reference [50, 52, 91]. In the
graph representation of a pangenome, string labels are added to either nodes and edges that are
substrings in the represented pangenome. The strings in the pangenomes are implicitly stored
in graphs as walks along edges and the concatenation of string labels along the walks. The
differences among genomes are encoded with substructures in the graph where several paths
diverge from the paths that encode the shared strings.

The specific definition of the graphs depends on the construction and application of the rep-
resentation methods, which can be divided into the following categories: (a) variant graphs, (b)
multiple-alignment graphs and (c) de Bruijn graphs.

Variant graphs are graphs that are constructed by augmenting variants in the population to
the linear reference genome. The primary goal of the variant graphs is to curate and enrich
the reference panel of genomes that improve read mapping. Samples that are mapped to the
variant graphs can be labeled, which supports haplotyping variants in different samples [42,
148]. Variant graphs can either be constructed by inserting known variants into the reference
genome [39, 51, 117, 129], or progressively aligning genomes to the existing genome graph that
is initialized with the linear reference genome [89].
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Alignment graphs such as the Cactus graphs [118] and founder block graphs [94] are con-
structed based on multiple-sequence alignments, where matches in the alignment are merged into
a common path and differences in the alignment are converted to bubble structures.

De Bruijn graphs are originally used in sequence assembly where the complete genomes are
reconstructed from a fragmented set of sequencing reads [123]. De Bruijn graphs contain nodes
that have length-k labels that can be directly constructed on a set of sequencing reads instead of
a complete genome assembly, which make it more widely applicable to metagenomics. Colors
can be added to de Bruijn graphs that label the path representing different samples stored in the
graphs [64]. Improvements on colored de Bruijn graph construction [5, 62, 69, 103, 105] and
updating [106] has resulted in faster and more compact de Bruijn graphs.

While text-based compression schemes represent the input genomes well, they lack the flex-
ibility to encode variations beyond the input genomes and the structural changes in the human
genomes [45] such as translocation, inversion and more complex structural variants such as chro-
moplexy [139] and chromothripsis [29] that are hallmarks of diseases such as cancer [60]. Graph-
based representations have advantages over text-based compression schemes in that they are able
to encode such large-scale changes in the genomes by edges between affected regions and rep-
resent a population of genomes that contain sequences that are combinations of substrings in the
input genomes. The application of graph-based pangenomes is not limited to storing the genomic
strings and supporting read alignment, but also to support transcriptomic [142] or epigenomic
analyses [56].

In this dissertation, we focus on graph representation of the pangenome and study the con-
struction, comparison, and essential properties to make analyses based on genome graphs suc-
cessful.

1.3. Pangenome comparisons
By comparing heterogeneous samples collected from different time points and locations, an evo-
lution trajectory can be reconstructed to study the dynamics of microbial genomes, which helps
in identifying clinically relevant genes [28, 92, 157], e.g. genes relevant to antibiotic resistance.
On the other hand, in human genomes, heterogeneity exists in polymorphic regions such as T-cell
and HLA regions. The diversity in genomic sequences in these regions helps maintain a robust
immune system that is adaptive to the massive number of foreign antigens [133]. Heterogeneity
is also a hallmark in diseases such as cancer, where cells at one location contain multiple dif-
ferent genomes due to elevated mutation rates [104]. Comparing immune repertoires and cancer
samples can help to determine better therapeutic strategies and advance understanding of the
mechanism of human immune systems [115] and tumor progression [137, 144]. Representing a
set of diverse genomic sequences is necessary when comparing heterogeneous samples [27] that
contain multiple different genome sequences.

Methods to compare genomes [9] have been developed and improved upon in the past 3
decades and applied in comparative genomics where the evolutionary relationships between or-
ganisms are characterized. However, there are much fewer methods to compare pangenomes
due to the change in pangenome representation. The challenge in comparing pangenome graphs
comes from their combination of strings and graphs. On one hand, graph comparison is al-
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ready difficult, when it is formulated by the graph edit distance or the graph isomorphism prob-
lems [67]. On the other hand, few methods have been developed to study the similarities between
strings reconstructed by traversals in graphs. We introduce several schemes of genome compari-
son methods and graph comparison methods and discuss the existing methods to compare labeled
graphs or graph pangenomes.

1.3.1 String comparisons
One way of comparing two genomes is through whole-genome alignment via edit distance com-
putation. The edit distance between two strings can be computed using dynamic program-
ming [111], which is not scalable to larger genomes. The banded alignment, which assumes
that the pair of strings are similar, has a threshold on the total number of edit operations and can
be computed in linear time [97] in the size of an input string. However, the set of edit operations
allowed in the traditional edit distance does not include larger-scale mutations such as duplica-
tion, inversion, and translocation. Therefore, approximate local alignment methods [34, 65, 96,
118, 138], have been developed to identify segments of the genomes that are similar to each other
and an ordering of such segments to transform one input genome into the other.

A common method to perform approximate local alignment is seed-and-extend. Seeds are
usually a set of substrings with a fixed length, or k-mers, in each genomic string that can be
identified and matched efficiently. The anchors divide the strings into segments. Local align-
ment methods, e.g. the Smith-Waterman [149] algorithm, are applied in the “extend” step that
chains anchors together. Some examples of whole-genome aligners that use seed-and-extend
approaches are Mummer [34, 96], wfmash [57] and minimap2 [87].

Pair-wise genome comparisons can be extended to compare multiple strings simultaneously
through multiple-sequence alignment (MSA) [70]. The MSA problem is NP-hard. Therefore,
existing MSA methods use heuristics such as the progressive alignment approach, where pair-
wise alignments were performed that chain multiple sequences into one alignment [9, 33].

Another scheme for comparing two sets of strings is to extract a smaller representation of the
input pairs of sets of strings for faster distance computation. For example, Mash [116] computes
a Jaccard distance between the MinHash [20] sketches that are scalable to cluster more than
50,000 microbial sequences.

1.3.2 Graph comparisons
The similarity between two general graphs without string labels is traditionally measured by the
graph edit distance, which is the cost of changing one graph into another by adding and deleting
nodes and edges. It is difficult to describe all differences between two large graphs [125], such as
gene regulatory networks or protein interaction networks. Analogous to the heuristics in string
alignment, the similarities between graphs (or networks) are computed by either comparing the
distribution of global graph signatures such as degree distributions, or the distribution of local
graph signatures such as graphlets [164], graph spectra [121, 162]. Recently, local graph signa-
tures are extracted using embeddings based on random walks [55], or deep learning approaches
such as the graph neural networks [163].
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It is challenging to adapt methods to compare graphs to compare genome graphs because the
former emphasizes the similarity between graph structures. In pangenome comparison, the em-
phasis is on the similarity between the sequences. While the graph structure may contain impor-
tant information on the differences between genomes caused by structural variants, two genome
graphs with different underlying graph structures could represent the same set of genomes.

1.3.3 Labeled graph comparisons
On the other hand, it is not trivial to adapt string alignment problems to genome graph alignment
either due to the added complexity of the graph structures. Partial order alignment (POA) algo-
rithms adapt the dynamic programming approach of aligning strings to aligning pairs of acyclic
graphs [54], which can be done in polynomial time. On general graphs, however, it is NP-hard
even to align a sequence to a labeled graph that contains cycles [66, 73]. Graph traversal edit
distance [16] generalizes alignment between strings encoded by genome graphs.

An alternative to whole-graph alignment is to find local similarities between two input graphs.
BubbZ [101] and SibeliaZ [102] construct compact de Bruijn graphs from two input genomes,
identify the most similar paths in the de Bruijn graphs and conduct alignment between the se-
lected paths. Asgan [124] identifies pairs of synteny paths in de Bruijn graphs that match pairs
of unique k-mers from each input graph.

Sketching-based comparisons are also applied in genome graph comparisons. EMDeBruijn [95]
compares two microbial communities using the Earth Mover’s Distance between k-mer frequen-
cies in each input de Bruijn graph that minimizes both the edit distance between paired k-mers
and the length of the shortest path between two k-mers in each graph. A distance between
succinct colored de Bruijn graphs is computed using gcBB [131] that compares the Burrows-
Wheeler Similarity Distributions of the input graphs.

1.4. Challenges of genome graph construction and analysis
The challenges of pangenomics arise from several properties of the representations: efficiency,
expressiveness and accuracy.

1.4.1 Efficiency
Efficiency refers to both the reduced storage space and the faster speed in operations on the
pangenome. The two aspects of efficiency are often related. For example, the time to align
a query string to the reference string grows linearly with the size of both the query string and
the reference string. Therefore, improving space efficiency can lead to an improvement in time
efficiency as well. However, there is no agree-upon formal definition of the size of a genome
graph. Additionally, the closest analogy of the genome graph size optimization problem, as
described in detail in Chapter 2, is the string compression problem, and it is NP-complete to
produce a compressed string that minimizes the size [150]. Another challenge in efficiency
in pan-genomic analysis arises from genome comparison. While it is straightforward to align
strings using the dynamic programming approach [111] and its more efficient variants [97], it is
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not trivial to adapt the string alignment algorithms to graphs. It is also NP-complete to match a
string to a labeled Eulerian graph [73].

1.4.2 Expressiveness
The advantage of the genome graph is that it merges common strings in the input genomes to
reduce the size of the pangenome representation and increase the flexibility of the genomes it
represents. The merging of common sequences gives rise to a new property of the pangenome,
which is its expressiveness. The expressiveness of a pangenome representation can be viewed
as the diversity of genomic strings that it can represent. In addition to the founding strings that
are used to construct the representation, the representation could encode a more diverse set of
strings. Merging sequences results in branched structures that are called bubble structures [120],
which increases the number of possible paths significantly and in turn increases the number of
strings encoded by the graph. The increase in expressiveness has the merit of encoding possible
combinations of subsequences that represent a combination of mutations in the population. Using
a small number of founding sequences, we may be able to represent a more diverse population
by exploiting the expressiveness property.

1.4.3 Accuracy
One of the primary goals of using the pangenome is to increase the accuracy of sequence align-
ment. Accuracy is therefore an essential property of the pangenome representation. The genomes
used to construct a genome graph are accurately represented if they can be reconstructed by con-
catenating labels following a trail in the graph. By including more genomic sequences from
the human genome, the sequence alignment is more sensitive to sequencing reads sampled from
unseen human genomes.

1.4.4 Trade-offs between properties of genome graphs
It is challenging to optimize for all three properties of the genome graph simultaneously. By
optimizing one property of the genome graph, we may lose some other properties.

We may lose accuracy when we speed up genome graph construction. For example, mini-
graph [89] constructs large genome graphs quickly by aligning genomes approximately against
each other. The constructed graph may not represent the founding genomes accurately because
some small variations between genomic sequences are ignored in the fast, approximate align-
ment.

Expressiveness of a genome graph increases at the cost of accuracy when we reduce the size
of a genome graph by merging common substrings. In addition to the desired increase in the
diversity of genomes, combinations of substrings in the founding strings of the genome graph
may result in strings that do not belong to the represented population. As a result, sequencing
reads from a non-human genome may be mapped to the human pangenome, which results in an
incorrect interpretation that the read comes from the human genome. Similarly, when we com-
pare pangenomes, we could obtain results that are based on comparisons of unwanted sequences,
which yields inaccurate similarity measures.
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It is therefore important to characterize all three aspects of the genome graph, understand
how they influence each other and directly co-optimize them.

1.5. Contributions
The previous genome graph construction methods do not directly optimize the space taken by
genome graphs and construct graphs for which small size is an intended but incidental byproduct
of the construction procedure. In Chapter 2, we optimize the size of the genome graph by drawing
the first connection between genome graph construction and string compression. We propose
an algorithmic framework to transform between genome graphs and compressed strings, which
results in an upper bound on the size of the genome graph constructed in terms of the size of an
optimal string compression. To demonstrate that classical compression algorithms can be used
to efficiently construct space-efficient genome graphs, we adapt the algorithmic framework to
construct graphs based on strings compressed by the relative Lempel-Ziv (RLZ) algorithm, which
we call the RLZ graph. The compression-based genome graph construction framework enables
us to adapt algorithmic innovations from string compression to pangenome representation and
analyses and improve time- and space efficiency.

The computational cost for comparing two genome graphs is prohibitively high. Therefore,
a more efficient algorithm is needed for computing distances between genome graphs. In Chap-
ter 3, we revisit the graph traversal edit distance (GTED) and the algorithms to solve it. We
point out that the originally proposed algorithms in Boroojeny et al. [16] do not — as they previ-
ously claimed — compute GTED. Instead, they compute a lower bound of GTED. Additionally,
we show that it is NP-hard to compute GTED, confirming the hardness of genome graph com-
parison. We introduce another graph comparison problem that compares local structures in the
genome graph and we show that it is solved by the previously proposed ILPs. To solve GTED,
we propose two new ILP formulations. We evaluate the ILPs for these on short genomic strings
and show that it is currently impractical to solve these ILPs on larger genomes. This work points
to the direction of approximation algorithms for genome graph comparisons.

Lastly, we study the trade-off between the expressiveness of genome graphs and the accu-
racy of pangenome comparisons. A genome graph constructed from a heterogeneous sample
represents a set of diverse genomes. However, existing genome graph comparison methods are
mostly based on assembly graphs that contain single genomes, and the existing distance metrics
between genome graphs do not take into account both the differences between complete genomic
sequences and the abundances of the genomes. In Chapter 4, we propose Flow-GTED, which
is a distance metric based on GTED, that more accurately measures the distance between two
genome graphs that contain sets of genomes. We characterize the relationship between FGTED
and the distance between the sets of strings that the graphs encode and show that FGTED always
underestimates the distance between strings due to the extra expressiveness of genome graphs.
We characterize the gap between FGTED and the string set distance using the expressiveness
of the genome graph. By using expressiveness as a correction factor, we show how to reduce
the discrepancy between FGTED and the string set distance, which results in a more accurate
estimate of the distance between pangenomes.

In order to analyze large collections of heterogeneous genomes collectively, it is crucial to
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effectively leverage the advantages provided by the graph structure. However, studies of nec-
essary genome graph properties and how to fully use them on heterogeneous string sets were
missing in previous work. This dissertation fills the gap in genome graph studies by reinforcing
the fundamental theories in genome graph construction and comparison.
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Chapter 2

Efficient Genome Graph Construction Via
Compression Schemes

This chapter was published in ISMB 2021 and Bioinformatics [126] and is joint work with Carl
Kingsford. The source code for reproducing the results in this chapter is stored in https://github.
com/Kingsford-Group/rlzgraph.

2.1. Introduction
The linear reference genome suffers from reference bias that results in discarding informative
reads sequenced from non-reference alleles during alignment [10]. To reduce the reference bias,
alternative read alignment approaches that use a set of genomes as the reference have been re-
cently introduced [22, 112]. Genome graphs, due to their compact structure to store the shared
regions of highly similar strings, are widely used to represent and analyze a collection of genomes
compactly [27, 119, 140].

A genome graph is a labeled directed multi-graph that represents a collection of strings if
each string is equal to the concatenation of node labels on a path in the graph. We call such a
path a reconstruction path. The size of a genome graph is the space to store the graph structure,
which is the set of nodes, edges and node labels.

The size of a genome graph is crucial to the efficiency of operations such as mapping se-
quencing reads. As shown in [66], the time complexity of mapping a string to a genome graph
is directly related to the total number of characters in node labels and the number of edges. The
speed of sequence-to-graph mapping can be further improved by a graph index, the size of which
is also dependent on the size of the genome graphs [119, 146, 147].

Most of the existing genome graph construction algorithms do not directly optimize the size
of the genome graph. Some of these algorithms design graph structures to adapt to specific
types of input data, such as read alignment [51, 89, 94, 118], variant calls [39, 51, 129] or raw
sequencing reads [64, 89], which are not necessarily optimized. Others only optimize the graph
index that stores reconstruction paths based on assumed types of genome graphs, for example,
the variation graphs [145, 147] or the colored compacted de Bruijn graphs [5, 7, 62, 103, 106].
As a result, the graphs constructed can be large in terms of both the space taken by the graph
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Figure 2.1: A small genome graph, G4,
that contains every genomic string if
edges can be used multiple times.

structure or the lengths of the reconstruction paths.
While a small genome graph is desirable, the smallest genome graph may be useless if each

edge is allowed to be traversed multiple times. The smallest genome graph is a multi-graph with
four nodes, or G4, whose labels are A, T, C and G, respectively (Figure 2.1). The edges in G4

are two edges directing to and from each pair of nodes and a self-loop on each node. G4 contains
the reconstruction path for any sequence over alphabet {A,T,C,G}. However, the length of the
reconstruction paths of each string would have lengths equal to the lengths of the string, which
undermines the goal of a genome graph to compactly store similar strings.

In order to construct a small genome graph that balances the size of the graph and the lengths
of the reconstruction paths, we introduce the definition of a restricted genome graph (Figure 2.2)
and formalize the restricted genome graph optimization problem, which seeks to build the small-
est restricted genome graph given a collection of strings. We present a genome graph construction

AC
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sink

①

③
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S1 = ATCCACTAC
S2 = ATCCAAATCCACT

P1 = 1,2,3,5
P2 = 1,2,4,1,2,3

CT

ATC CA
②

A

Figure 2.2: An example of a restricted genome graph. The graph stores two strings, S1 and S2.
The color of the edges denotes the origin of node adjacencies.

algorithm that directly addresses the restricted genome graph size optimization problem. Opti-
mizing the size of a restricted genome graph is similar to optimizing the space taken by a set of
strings, which echoes the external pointer macro (EPM) compression scheme [150]. We intro-
duce a pair of algorithms that transform between the EPM-compressed form and the restricted
genome graphs and prove an upper bound on the size of the restricted genome graph constructed
given an optimized EPM-compressed form from a set of input sequences. We further reduce
the number of nodes and edges by introducing and solving the source assignment problem via
integer linear programming (ILP).
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As a proof-of-concept that compression-based genome graph construction algorithms pro-
duce smaller genome graphs efficiently, we build the RLZ-Graph, which is based on an EPM
compression heuristic known as the relative Lempel-Ziv (RLZ) algorithm. The EPM compres-
sion problem is NP-complete [151]. Among the approximation heuristics to solve the EPM
compression problem, the relative Lempel-Ziv algorithm [74] runs in linear time and achieves
good compression ratios on human genomic sequences [35, 36, 43]. The RLZ algorithm is based
on the Lempel-Ziv (LZ) algorithm [169]. Although the LZ algorithm achieves a better compres-
sion ratio than RLZ, it does not follow the EPM scheme and thus is not applicable in EPM-based
genome graph construction.

We evaluate the performance of RLZ-Graph by comparing to the colored compacted de
Bruijn graphs (ccdBG) [64]. CcdBG construction methods, similar to the compression-based
genome graph construction algorithms, process the input sequences directly without intermedi-
ate steps such as alignment or variant calling. In ccdBG, the input sequences are fragmented
into preliminary nodes that represent unique strings of length k, or k-mers. Each edge represents
the adjacency between two k-mers in the sequences stored. The preliminary nodes with in- and
out-degrees equal to 1 on a path are further merged into supernodes. Still, the number of nodes
and edges, as well as the number of characters in node labels, in a ccdBG can increase signifi-
cantly as the number of sequences stored increases. The size of the graph also depends heavily
on the parameter k. These factors may offset the effort to efficiently encode the reconstruction
path information in the graph indices [5, 7, 62, 103, 106]. Despite the different approaches to
build the ccdBG indices, ccdBG construction methods result in the same underlying de Bruijn
graph structure. When we compare our algorithm with ccdBG construction algorithms, we only
compare the graph structure, which includes nodes, edges and sequences stored in each node.

The performance of RLZ-Graph is examined in multiple aspects. We show that the RLZ-
Graph scales well in terms of running time and graph sizes with a large number of genomic
sequences by comparing sizes of the RLZ-Graph with the ccdBG constructed by Bifrost [62]
from 100 individuals on all chromosomes from the 1000 Genomes Project [2] (Section 2.8.1).
Across all chromosomes, the disk space taken to store the graph representation of 100 sequences
is on average reduced by 40.7% compared with the ccdBG built under the default settings. Addi-
tionally, we examine the performance of RLZ-Graph, Bifrost and VGtoolkit [51] on 32 individ-
uals from the HGSVC dataset [41] that contains more complex structural variants than the 1000
Genomes Project samples (Section 2.8.2). On this dataset, the advantage of RLZ-Graph over
ccdBGs persists, and RLZ-Graph constructs genome graphs of similar sizes as variation graphs
constructed by VGtoolkit.

Additionally, we evaluate the performance of the ILP solution to the source assignment prob-
lem on RLZ-Graphs constructed from E. coli genome sequence. We show that the solutions
to the source assignment problem reduce the number of nodes by around 8% on 300 E. coli
genomes [26].
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2.2. Definitions

2.2.1 Strings
Let s be a string. s[b : e] denotes a substring starting from position b (inclusively) of s up
to position e (inclusively). We assume 0-indexing throughout this chapter. The length of s is
denoted by |s|. Concatenations of strings {s1, ..., sn} are denoted by s′ = s1 · s2 · ... · sn.

2.2.2 Genome Graphs
Definition 1 (Genome graph). A genome graph G = (V,E, ℓ) of a collection of strings

S = {s1, s2, ..., sn} is a directed multi-graph with node set V , edge multi-set E, and node labels
ℓ(u) for each node u. A genome graph of S contains a collection of paths P = {P1, P2, ..., Pn},
where Pi = v1, v2, ..., v|Pi| , such that si = ℓ(v1) · ℓ(v2) · ... · ℓ(v|Pi|) for all si ∈ S . Such paths
are called reconstruction paths.

The size of a genome graph G = (V,E, ℓ) is denoted by size(G), which is the space to
store the set of nodes, edges and node labels (Section 2.3.1). The number of nodes in the node
set V and the number of edges in edge multi-set E are denoted as |V | and |E|, respectively. A
genome graph may contain parallel edges, where two or more edges are incident to the same pair
of nodes, and each edge may be traversed multiple times. We introduce the notion of a restricted
genome graph, which limits the number of traversals through each edge.

Definition 2 (Restricted genome graph). A restricted genome graph is a genome graph with
a source and sink node and the restriction that each edge is allowed to be traversed at most once
in all reconstruction paths. A source is a node with no incoming edges, which represents the
start of all stored sequences. A sink is a node with no outgoing edges, which represents the end
of all stored sequences.

An example of a restricted genome graph is shown in Figure 2.2. Each edge is traversed only
once in all reconstruction paths, and parallel edges are present. In a restricted genome graph, if
we add edges directing from sink to source, then the concatenation of reconstruction paths for all
sequences forms an Eulerian tour. For a restricted genome graph G = (V,E, ℓ) and a collection
of all reconstruction paths P = {P1, P2, .., Pn}, we have |E| =

∑
Pi∈P(|Pi| − 1)+2n, where 2n

edges are the edges directing from source nodes and edges directing to sink nodes.

2.3. Size formulation of restricted genome graphs and EPM-
compressed forms

2.3.1 Size of a genome graph
We adopt a natural formulation of the size of a labeled graph, which describes the space to store
nodes, edges and node labels. Given a restricted genome graph G = (V,E, ℓ) over alphabet Σ,
let L be a string that contains every node label as a substring. Each node can be represented as
a pointer to L, i.e. v = (pos, len), such that ℓ(v) = L[pos : pos + len − 1]. Each node takes
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2 log |L| bits to be stored. The graph structure is stored as pairs of adjacent nodes. Each edge
takes space 2 log |V | bits. Therefore, the total space taken by a restricted genome graph, denoted
by size(G), under this model is:

size(G) = |L| · log |Σ|+ |V | · 2 log |L|+ |E| · 2 log |V |. (2.1)

We introduce the restricted genome graph optimization problem:
Problem 1 (Restricted genome graph optimization problem). Given a set of sequences, build

a restricted genome graph G such that size(G) is minimized.
In the above formulation, note that |E| refers to the number of edges including the parallel

edges. Solutions to Problem 1 avoid a trivial genome graph solution, that is a multigraph, G4,
with four nodes whose labels are A, T , C, and G, respectively, and edges such that there are
at least two edges with different directions between each pair of nodes. Any sequence over
the alphabet Σ = {A, T, C,G} can be reconstructed in G4 under the definition of a genome
graph (Definition 1) since each edge may be traversed more than once. On the other hand, in
a restricted genome graph, the number of edges grows as the lengths of reconstruction paths
increase. Therefore, minimizing the size of the restricted genome graph achieves a combined
objective of a small genome graph and short parsing of the input sequences.

2.3.2 External Pointer Macro (EPM) Compression Scheme
Optimizing the size of a genome graph is similar to optimizing the size of a set of strings, which
has been studied as a data compression problem. We review the definition of the external pointer
macro (EPM) scheme for data compression [151].

Given an input string, the external pointer macro scheme transform the input string into a
set of pointers to a reference string, where each pointer is the compressed representation of a
substring that occurs in both the input string and the reference string.

Definition 3 (Pointers in EPM). Given a reference string R, a pointer pi = (posi, leni)
represents the substring R[posi : posi + leni − 1].

We say that two pointers, pi = (posi, leni) and pj = (posj, lenj) are equivalent to each other
if R[posi : posi + leni − 1] = R[posj : posj + lenj − 1]. We refer to the length of a pointer
pi = (posi, leni) as pi.len and the position of a pointer as pi.pos.

Definition 4 (External pointer macro (EPM) model [151]). Given an alphabet Σ and a string
T , a compressed form of string T adopts the EPM if the compressed data follows the form
C = R#t, where R is a string over Σ, t = p1, p2... is a sequence of pointers that represent
substrings in R, # is a separator symbol that is not in Σ, and T is equal to the string produced
by substituting pointers in t by their corresponding substrings.

An example of a string compressed using an EPM-scheme is shown in Figure 2.3.
The string T may represent a set of strings S = {s1, s2, ..., sn} by concatenation, i.e. T =

s1$s2...$sn, where $ ̸= # and $ /∈ Σ, where Σ is the alphabet for S. In order to define the end of
each string and forbid pointers to cross the boundaries between strings, the alphabet for T is be
constructed as Σ′ = Σ ∪ {$}. Additionally, a $ character is appended to the end of the reference
string.
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Figure 2.3: An example of external pointer macro scehem where the input string
T=TCGAGATGA, and the compressed form is C = R#t, where R =ATCGATAGA and t =
(1, 4)(3, 3)(7, 2).

2.3.3 Size of an EPM-compressed form
We quantify the space taken by an EPM-compressed form C = R#t. The space taken by
C, size(C), is the space to store the total number of unique pointers in t, the sequence t and
the reference string R. We first encode each unique pointer with a pair of integers, (pos, len),
which takes space 2 log |R| bits. If there are n unique pointers, t can be stored as a sequence
of identifiers of the unique pointers using |t| log n bits. Therefore, the total space taken by an
EPM-compressed form is

size(C) = |R| · log |Σ|+ |t| · log n+ n · 2 log |R|. (2.2)

In Storer and Szymanski [151], the problem of minimizing size(C) given an input string T is
shown to be NP-complete.

From equations (2.1) and (2.2), both the restricted genome graph and the EPM-compressed
form have a size formulation that has three terms, which are the space taken by a reference string,
the space taken by the unique pointers and the space to store the adjacencies between pointers.

In order to reduce the size of the restricted genome graphs (Definition 2), it is natural to
borrow ideas from the field of string compression. We introduce two algorithms that transform
between genome graphs and compressed strings produced by EPM compression scheme [151].

2.4. Transformation between EPM-compressed forms and
genome graphs

2.4.1 EPM-compressed string to genome graph
Given an EPM-compressed form C = R#t of the original string T , and an alphabet Σ, the
genome graph construction algorithm produces a restricted genome graph that stores both R and
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R = AAATCG
S = AAA AAAT AAATC

Figure 2.4: String S is factored into three pointers given the reference string R. Each underlined
substring is represented by a different pointer. According to the naı̈ve algorithm to construct the
genome graph, three nodes are created from three pointers.

T .
A naı̈ve algorithm to construct a genome graph is to create a node for each unique pointer in

t and add an edge between nodes that represent each pair of pointers t[i] and t[i + 1]. However,
in repetitive sequences such as the human genome, a substring may occur in several pointers and
thus may be stored several times redundantly. As shown in Figure 2.4, the substring AAA would
be stored three times according to the naı̈ve algorithm, which results in excess space spent on
storing repetitive content.

Our construction algorithm, introduced below as two-pass CtoG, merges the repetitive
substrings shared by multiple pointers by grouping pointers by their positions on the reference.
Two-pass CtoG constructs the genome graph in two passes through t. In the first pass, the al-
gorithm creates nodes by cutting the reference string according to the boundaries of each pointer.
In the second pass, the algorithm connects the nodes according to the adjacencies between point-
ers in the compressed string t.

We first introduce the notion of sources on the reference string, which are all the occurrences
of substrings represented by each pointer.

Definition 5 (Source). A source, (pos1, len), of a pointer p = (pos2, len) is an occurrence
of R[pos2 : pos2 + len − 1] in R. In other words, R[pos1 : pos1 + len − 1] = R[pos2 :
pos2 + len − 1]. Each pointer p is associated with a source set Sp = {ss1, ss2, ...}, where
R[ssi.pos : ssi.pos+ ssi.len− 1] = R[p.pos : p.pos+ p.len− 1] for all ssi ∈ Sp.

Sources are used to refer to the occurrences of a substring on the reference string R and are
not stored in the compressed form. Pointers are used to refer to the pair of integers eventually
stored in the compressed string t.

Definition 6 (Boundaries of sources and pointers). The boundaries of a source s = (pos, len)
are defined as (b, e), where b = pos and e = pos + len. b is the left boundary and e is the right
boundary. The similar definition of boundaries applies to pointers.

Two boundaries, (b1, e1) and (b2, e2), intersect if and only if b1 = b2 or b1 = e2 or e1 = b2 or
e1 = e2.

First pass. Create a bit vector, B. A bit set at B[i] indicates that a pointer boundary falls at
position i on R. Process t from left to right. For each pointer p = (pos, len), mark its boundaries
by setting B[pos] = 1 and B[pos + len] = 1. After t is exhausted, transform B into a succinct
bitvector that supports rank operations in constant time (e.g. [68, 130]), where rankB(i) returns
the number of set bits at or before position i in B. We then cut the reference string at positions
where a bit is set in B. If B[i] and B[j] are the only set bits in the interval [i : j], we create a node
v = (pos, len) = (i, j− i) with ℓ(v) = R[i : j− 1]. Each node can be treated as a pointer whose
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left and right boundaries are i and j, respectively. Each node is identified using its left boundary,
i.e. rankB(i).

We define the ordering of nodes: vi = (posi, leni) ≺ vj = (posj, lenj) and i < j iff
posi < posj , where i and j are the identifiers of vi and vj . Since nodes are created by cutting
the reference, different nodes will always have different starting positions. Add an edge between
each vi and vi+1 for all i < |V | − 1. The path v1, v2, ..., v|V | represents the reference string R.

Second pass. We process t from left to right again in the second pass to connect nodes.
Create a source and a sink node that represent the start and end of each sequence represented

in T . Add an edge to the node whose position corresponds to t[0].
For each pointer t[i], add reference edges between nodes that fall between the range of posi

and posi + leni, i.e. nodes in {vj | posi ≤ vj.pos < posi + leni}. The identifiers of such
nodes are consecutive because the nodes are sorted by their starting positions. The range of
such node identifiers is between rankB(posi) and rankB(posi + leni − 1). If a pointer t[i] =
(posi, leni) represents the suffix of a sequence, then R[posi + leni − 1] = $. When such pointer
is encountered, add an edge from node vrankB(posi+leni−1) to sink. Add an edge from the source
to node vrankB(t[i+1].pos).

For each pair of pointers t[i] and t[i + 1], we need to connect the nodes that mark the right
and left boundaries of t[i] and t[i + 1], respectively. Let t[i] = (posi, leni) and t[i + 1] =
(posi+1, leni+1). We need to find two nodes, vm = (posm, lenm) and vn = (posn, lenn), such
that posm + lenm = posi + leni and posn = posi+1. Since each node is identified by their left
boundary, two nodes can be identified by m = rankB(posi+ leni−1) and n = rankB(posi+1).
Edge (vm, vn) then represents the adjacency between t[i] and t[i+ 1] in t.

Repeat the process until t is exhausted. An example output of the algorithm is shown in
Figure 2.5.

The running time of the construction algorithm is O(|T |+|R|). In the first pass, the algorithm
passes through each pointer once, and the number of pointers, |t| ≤ |T |. The number of created
nodes is at most |R|. In the second pass, the algorithm adds at most |T | reference edges and |t|
edges that represent adjacency between pointers. In the actual implementation, the parallel edges
are merged. Therefore, during the second pass, we do not need to add reference edges for each
pointer. Hence the running time is O(|t|+ |R|).

The constructed restricted genome graph stores the set of nodes, edges and node labels. While
storing the reconstruction paths is also important, it is a separate challenge from optimizing the
graph structure. There has been a line of work that constructs small graph indices to store the
reconstruction paths efficiently given any graph structure [145–147]. These indices can also be
applied to our genome graph.

There are three types of edges in the produced restricted genome graph: the backward edges,
the forward edges and the reference edges. We define the backward edges as edges that direct
from vj to vi, where j ≥ i, which include self-loops. We define the forward edges as edges that
direct from vi to vj , where i < j − 1. We define the reference edges as the edges that direct
from vi to vi+1. In other words, reference edges (vi = (posi, leni), vj = (posj, lenj)) connect
nodes where the first node’s right boundary intersects with the second node’s left boundary, i.e.
posi + leni = posj .
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We prove the correctness of teh algorithm by showing that the constructed graph is a restricted
genome graph that contains reconstruction paths for R and T .

Theorem 1. Given an EPM-compressed form of string T , C = R#t, the algorithm de-
scribed above creates a genome graph G = (V,E, ℓ) that contains reconstruction paths for R
and T .

Proof. In the second pass of the algorithm, edges are added between the nodes that are the suffix
and the prefix of adjacent pointers. Therefore, all pointer adjacencies are represented as edges in
the genome graph.

All substrings R[i : j] can be reconstructed from G. If R[i : j] is a substring of a node label,
it can be reconstructed from G. If R[i : j] spans two nodes, it spans two nodes connected by a
reference edge.

Any substring T [i : j] can be reconstructed from G. Suppose position i lands in the middle
of a pointer pk = (posk, lenk), which means that k ≤ i ≤ k + lenk − 1.

1. If j ≤ k + lenk − 1, which means that T [i : j] is a substring of the string represented by
a pointer. Since all pointers in t point to substrings in R and R can be reconstructed from
G, a substring of a pointer can be reconstructed.

2. If j > k + lenk − 1, which means that T [i : j] spans at least two pointers. From the
previous case, we have that T [i : k+ lenk−1] can be reconstructed using nodes and edges
in G. Since all adjacencies between two pointers are represented in G, we can apply the
analysis to the rest of T [i : j]. Therefore, T [i : j] can be reconstructed if it spans more
than one pointer.

Finally, we show that the created graph is a restricted genome graph. During the second pass,
a reference edge is added for each node adjacency within each pointer, and an edge is added for
each pointer adjacency. Therefore, each edge is only used once in all of the reconstruction paths.

2.4.2 Genome graph to EPM-compressed form
Given a restricted genome graph G = (V,E, ℓ) and a set of reconstruction paths P that represent
strings in S, we present an algorithm, GtoC, that produces an EPM-compressed form C = R#t
whose decompression equals string T , which is a concatenation of strings in S.

Produce the reference string R by concatenating the node labels in an arbitrary order. Each
node can then be represented as a pointer to R and be denoted as vi = (posi, leni), where
ℓ(vi) = R[posi : posi + leni− 1]. Assign an identifier to each node such that for vi and vj , i < j
if posi < posj .

Process all P ∈ P by substituting nodes with their pointer representations. If two or more
adjacent nodes vi, vi+1, ..., vj in P are connected by a reference edge, merge the two nodes into
one pointer p = (posi, posj + lenj − posi). Concatenate all processed P , which results in t. The
converted sequence of pointers t is then p1, p2, ..., p|t|, where |t| ≤

∑
P∈P |P |.

The converted C satisfies the EPM definition where R is a string over Σ, and t is a sequence of
pointers to substrings in R. Since the concatenation of paths in P spells out T by concatenating
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Figure 2.5: The RLZ-Graph of reference R =ATCGATAGA and input string T =TCGAGATGA.
The black path 0, 1, 2, 3, 4, 5 encodes R, the orange path 1, 2, 2, 3, 5 encodes T . The parallel
edges are shown for the purpose of illustration and are merged in the final graph.

all the labels of nodes on the path, substituting the pointers in t with corresponding substrings
reconstructs T .

The running time of the GtoC construction algorithm is O(|V |+
∑

P∈P |P |) = O(|V |+|E|).
The size of the produced EPM-compressed form can be further reduced if the reference string

R is equal to the shortest superstring that contains all the node labels. While finding the shortest
superstring problem is NP-hard [128] when the number of nodes is greater than 2, it may be
approached by using approximation algorithms [4, 14, 155].

2.5. Upper-bound on the size of the restricted genome graph
and the EPM-compressed form

We show that the size of a restricted genome graph G produced using the two-pass CtoG
algorithm is bounded by the terms of the input EPM-compressed form C (Lemma 1). In the
following proofs, we assume that the input string T represents a concatenated set of m sequences.

Lemma 1. Given an optimally compressed EPM form C = R#t of text T , the size of the
transformed restricted genome graph G = (V,E, ℓ), size(G), according to two-pass CtoG
in Section 2.4.1 has an upper bound:

size(G) ≤ |R| · log |Σ|+min(2n, |R|) · 2 log |R|
+ (min(2n, |R|) · |t| − 1 + 2m) · 2 log(min(2n, |R|)) (2.3)

where n is the number of unique pointers in t.

Proof. The algorithm introduced in Section 4.1 creates nodes by cutting the reference string R
according to the boundaries of pointers. Each node is stored as a pointer (pos, len) to R, which
takes 2 log |R| bits.

The total number of nodes produced by cutting the reference is ≤ min(2n, |R|). The number
of cuts introduced by each unique pointer is ≤ 2. The maximum number of nodes given a
reference string R is |R|. Therefore, the space to store all the nodes is≤ min(2n, |R|) · 2 log |R|.
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The total number of edges, including reference and non-reference edges, in a restricted
genome graph is ≤ min(2n, |R|) · |t| − 1. After the first pass of two-pass CtoG, the in-
terval corresponding to each pointer may be cut into several nodes. Let the average number of
nodes contained in each pointer’s interval be a ≤ |V | ≤ min(2n, |R|). The average number of
reference edges within each pointer is then a− 1, and the total number of edges within pointers
is (a − 1) · |t|. The total number of edges between pointers is |t| − 1. Since T represents m
sequences, we have 2m additional edges directing to and from the sink and source. Together, the
number of edges in the reconstruction path is a · |t| − 1 ≤ min(2n, |R|) · |t| − 1 + 2m.

The size of the genome graph is then:

size(G) = |R| · log |Σ|+ |V | · 2 log |R|+ |E| · 2 log |V |
≤ |R| · log |Σ|+min(2n, |R|) · 2 log |R|
+ (min(2n, |R|) · |t| − 1 + 2m) · 2 log(min(2n, |R|)).

In practice, the graphs are stored such that the parallel edges are merged. We show that the
size of the genome graph G′ produced by merging the parallel edges in G can also be bounded
by the terms of the EPM-compressed form C (Lemma 2).

Lemma 2. Given a restricted genome graph, G = (V,E, ℓ), constructed from an optimally
compressed EPM form C = R#t, the size of the genome graph, G′ = (V,E ′, ℓ), produced by
merging parallel edges in G has an upper bound:

size(G′) ≤ |R| · log |Σ|+min(2n, |R|) · 2 log |R|
+ (min(2n, |R|) + |t| − 1 + 2m) · 2 log(min(2n, |R|)), (2.4)

where n is the number of unique pointers in t.
We show in Lemma 3 that the size of the EPM-compressed form produced by GtoC algo-

rithm (Section 2.4.2) is upper-bounded by combined sizes of storing edges, nodes and the node
labels restricted genome graph.

Lemma 3. Given a restricted genome graph G = (V,E, ℓ) of a collection of strings S,
the size of the transformed EPM-compressed form of the concatenated strings in S, C = R#t
according to GtoC described in Section 2.4.2 has an upper bound:

size(C) ≤ |R| · log |Σ|+ |E| · log
(
|V |+ 1

2

)
+ 2

(
|V |+ 1

2

)
log |R|, (2.5)

where R is a string formed by concatenating all node labels.

Proof. Merging parallel edges does not change the number of nodes and the concatenation of
node labels.

The number of reference edges in G′ is equal to |V |−1, as the nodes are produced by cutting
the reference string.

The number of forward and backward edges in G is equal to |t|−1, and the number of forward
and backward edges in G′ is ≤ |t| − 1 due to parallel edge merging. According to two-pass
CtoG, since C is optimal, only a forward or a backward edge can be added for each pair of
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adjacent pointers in t during the second pass. Suppose two adjacent pointers, p1 = (pos1, len1)
and p2 = (pos2, len2), result in a reference edge, which means that pos2 = pos1 + len1, the two
pointers can be merged into p3 = (pos1, len1 + len2). Merging two pointers reduces the size of
C, which contradicts the assumption that the size of C is optimal.

Together, the space to store all the edges in G′ is ≤ (|V | + |t| − 1) · 2 logmin(2n,R) ≤
(min(2n, |R|) + |t| − 1 + 2m) · 2 logmin(2n, |R|).

Therefore, the size of the genome graph G′ after merging the parallel edges in G is:

|G′| = |R| · log |Σ|+ |V | · 2 log |R|+ |E ′| · 2 log |V |
≤ |R| · log |Σ|+min(2n, |R|) · 2 log |R|
+ (min(2n, |R|) + |t| − 1 + 2m) · 2 log(min(2n, |R|)).

The pair of algorithms do not produce an optimal genome graph or optimal EPM-compressed
form. Still, given an optimal input, the algorithms achieve results that are bounded by the orig-
inal terms in the input. We further improve the transformation from EPM-compressed form to
genome graph by addressing the source assignment problem.

2.6. Source assignment problem
In an EPM-compressed form C = R#t, each pointer may be associated with a substring that oc-
curs several times in R. We name such occurrences as sources. A source (posi, leni) is assigned
to a pointer p if p = (posi, leni).

In the EPM formulation, assigning different sources to a pointer does not change the size of
the compressed string. However, the assignment of sources may change the number of nodes.
According to the two-pass CtoG algorithm, the number of cuts made in the reference is equal
to the number of distinct pointer boundaries. Therefore, the choice of sources is directly related
to the number of nodes in the graph. An example is illustrated in Figures 2.6 and 2.5. The last
phrase, (7, 2), is associated with two sources, (3, 2) and (7, 2). If we assign (3, 2) to the phrase,
which is different from the case in Figure 2.6, the number of nodes created will be 5. Otherwise,
6 nodes will be created as in Figure 2.5.

Given an EPM-compressed form and the set of sources corresponding to each pointer, if we
can assign sources such that the total number of unique pointer boundaries is minimized, we can
reduce the size of the created graph. We formulate the source assignment problem and present
an integer linear programming (ILP) solution for the optimal source assignment during genome
graph construction.

Problem 2 (Source assignment problem). Given a collection of sources sets S = {S1, S2, ..., Sn},
where Si denotes the set of sources for a unique pointer i, find a set of sources S ′ such that for
all Si, Si ∩ S ′ ̸= ∅ and |

⋃
sm∈S′{bm, em}| is minimized, where bm, em are boundaries of source

m.
In this problem, we choose one source for each pointer such that the union of boundaries

{bm, em} of each chosen source sm = (posm, lenm) is minimized. As a reminder, bm = posm
and em = posm + lenm. For convenience, we denote the union of boundaries in a source set S
by
⋃

B{S}, which is equivalent to
⋃

sm∈S{bm, em}.
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The formulation of the source assignment problem is similar to the hitting set problem in
that it chooses the minimum number of positions to hit every pointer. However, the objective is
indirectly related to the number of the chosen sources, and the sources and pointers are defined in
a string context. The hardness of the source assignment problem is open due to these differences
from the setting of the hitting set problem. Still, the similarities to the hitting set problem lead to
the formulation of an integer linear programming (ILP) solution.

2.6.1 Integer linear programming formulation
The objective of the ILP is to minimize the number of cuts made in the reference, where each
cut is made at the boundaries of chosen sources. For each chosen source s = (posi, leni), a cut
is placed at positions posi and posi + leni, which are left and right boundaries of s.

We first construct a set of integers I that is the union of all source boundaries. Create a binary
variable xp for each p ∈ I . xp is set to one if a cut is made at position p.

We create a binary variable ysi for each source si = (posi, leni) that indicates whether the
source is chosen. We create a constraint (Inequality 2.7) that at least one source is chosen from
each set. We create another pair of constraints (Inequality 2.8) that ensures that if a source is
chosen, two cuts are made at its left (posi) and right (posi + leni) boundaries. This leads to the
ILP:

min
∑
p∈I

xp (2.6)

subject to
∑
sj∈Si

ysj ≥ 1 ∀Si ∈ S (2.7)

ysj ≤ min{xposj , xposj+lenj
} (2.8)

xp, ysj ∈ {0, 1} (2.9)

2.6.2 Pruning to reduce the number of sources
In practice, a pointer with a short length may correspond to a large number of sources. For
example, a pointer with length one may correspond to |R|/4 sources, where R is the reference
string and when the alphabet size is 4. This could result in a huge number of variables in the ILP
formulation and would hinder its practicality significantly.

To address this, we preprocess the sources as follows. If a source does not intersect with
any other sources of different pointers, we eliminate the source from the source set unless it is
the only source of a pointer. We name the eliminated sources isolated sources. Removing such
sources does not affect the optimality of the solution.

Lemma 4. If a set of sources, S, that satisfies the constraints of the source assignment prob-
lem, includes an isolated source s, it is possible to find a set of sources S ′ with equal or lower
objective value that does not include s.

Proof. Let the pointer for the isolated source be p and the source set of p be Sp. Since s is an
isolated source, there must be at least another source s′ in Sp. If s′ also does not intersect with
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Figure 2.6: An example of RLZ factorization. The top row is the indices of characters in the
strings. R is the reference string, T is the input string and t is a sequence of phrases resulted
from RLZ factorization. Colored line segments on the third row represent the sources associated
with phrases with the same color.

any other sources in S, S ′ = |
⋃

B{(S \ s) ∪ s′}| = |
⋃

B{S}|. Otherwise, if s′ intersects with
some sources in S, this means that the union of source boundaries is reduced by at least 1 if we
replace s with s′, i.e. S ′ = |

⋃
B{(S \s′)∪s}| ≤ |

⋃
B{S}|−1. Therefore, excluding all isolating

sources during preprocessing does not affect the optimality of the solution.

2.7. Relative Lempel-Ziv Graph
As a proof-of-concept that constructing a genome graph using a compression scheme results in
small graphs, we implement the graph construction algorithm based on an EPM compression
scheme algorithm, relative Lempel-Ziv.

2.7.1 Relative Lempel-Ziv Algorithm
Given a reference string R, the relative Lempel-Ziv (RLZ) algorithm [74], greedily produces a
compressed form of R.

Definition 7 (Phrase). Given a reference string R and a string T , let pointer p = (pos, len)
represent the substring R[pos : pos + len − 1] which equals T [pos′ : pos′ + len − 1] for some
position pos′. Then p is a phrase if p is right-maximal, i.e. if R[pos : pos + len] ̸= T [pos′ :
pos′ + len].

The relative Lempel-Ziv (RLZ) algorithm, proposed by Kuruppu et al. [74], runs in linear
time and achieves good compression ratios with genomic sequences. The RLZ algorithm takes a
reference string R as input and parses the input string T greedily from left to right. At position i
in T , the RLZ algorithm substitutes the longest prefix of T [i : |T |−1] that matches a substring in
R with a phrase. Let the length of the phrase be len. After substitution, the RLZ algorithm skips
to position i + len in T and repeats the substitution process until T is exhausted. The process
of phrase production is called RLZ factorization. In some analysis of the RLZ algorithm, the
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reference string is generated from the set of input strings [48]. Nevertheless, the RLZ algorithm
given a reference string remains the same.

The definitions introduced above are demonstrated in Figure 2.6, where R is the reference
string and T is the input string to the RLZ algorithm. RLZ factors T into a sequence of three
phrases, shown as t. The compressed form of the input string T is C = R#t. Each phrase is
associated with some sources that are represented as line segments in the figure. For example, the
last phrase, (7, 2), replaces the substring T [7 : 8]. It also corresponds to two sources in R: (3, 2)
and (7, 2), which are represented by the green line segments in R. The left and right boundaries
of phrase (7, 2) are (b = 7, e = 8) in T . Source (3, 2) intersects with sources (1, 4) and (3, 3).
However, sources (1, 4) and (3, 3) do not intersect with each other.

2.7.2 Implementation of the RLZ-graph construction framework
RLZ factorization in this manuscript is done on the compressed suffix array in the SDSL C++
library [53]. We apply the two-pass CtoG algorithm described in Section 2.4.1 to construct
a RLZ-Graph. We merge the parallel edges in the implementation as it is the common practice
in genome graph storage.

An example of RLZ-Graph is shown in Figure 2.5. The RLZ-Graph is constructed based
on the RLZ factorization in Figure 2.6, where the reference string is R=ATCGATAGA, the input
string is T=TCGAGATGA and the factored phrase sequence is t = (1, 4), (3, 3), (7, 2). The nodes
are produced by segmenting R according to the boundaries of sources assigned to phrases in t.

In the implementation of RLZ-Graph, we build a bi-directed graph where each node can be
traversed in forward and reverse directions. For each node v = (pos, len), pos is referred to as
the head of the node and pos + len is referred to as the tail. If a node is traversed in reverse
direction, its label is denoted as ℓ̂(v), which is equal to the reverse complement of ℓ(v). This
technique is useful in genomic sequences that underwent structural variations such as inversions,
where the entire genomic segment is replaced by its reverse complement due to a double-strand
break. During the construction of the RLZ-Graph, we use a modified reference sequence R by
concatenating the reference genome of the organism of interest with its reverse complement.
Before the source assignment step, we mark each source as reversed if it is located on the reverse
complement half of R and translate its boundary positions to the forward half. After the source
assignment step, we mark a pointer as reversed if it is assigned a reversed source. When we add
edges, if we encounter a reverse pointer p = (pos, len), we add an edge directing to the tail of
the node vi = (posi, leni) and an edge directing from the head of the node vj = (posj, lenj),
where posi = pos and posj + lenj = pos+ len.

2.7.3 Different source assignment heuristics
Aside from the ILP solution to the source assignment problem (Section 2.6), sources are chosen
by other heuristics in literature regarding RLZ factorization [75]. Specifically, from the source
set corresponding to a phrase, the leftmost source on the reference string is chosen (Left), or the
lexicographically smallest source is chosen (Lex). A source si = (posi, leni) is to the left of
source sj = (posj, lenj), or si <left sj , if posi < posj . A source si is lexicographically smaller
than sj , or si <lex sj , if R[posi : |R| − 1] < R[posj : |R| − 1] given a reference string R.
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In the implementation of RLZ-Graph, the phrase is assigned to the lexicographically smallest
source during RLZ factorization. After that, we re-assign the leftmost source to each phrase in
order to construct a smaller genome graph, which is the default behavior of the RLZ-Graph
software. We evaluate the performance of various source assignment heuristics to reduce the
number of nodes in the graph in the following section.

2.8. Experimental results
We ran all our experiments on a server with 24 cores (48 threads) of two Intel Xeon E5 2690 v3
@ 2.60GHz and 377 GB of memory. The system was running Ubuntu 18.04 with Linux kernel
4.15.0.

In this section, we compare the size of the colored compacted de Bruijn graphs [64] and
variation graphs [51] with that of RLZ-Graphs on human genomic sequences. There are many
genome graph construction methods. However, we are mainly concerned with the methods that
are based on complete genome sequences as input and generate genome graphs that guarantee
exact reconstruction of input sequences. Specifically, we focus on comparing to colored com-
pacted de Bruijn graphs. While there have been many graph construction algorithms for building
colored de Bruijn graphs, the graph structure of ccdBG remains the same in these algorithms
despite the different approaches to store the reconstruction paths as identifiers in each node.

The comparisons made in this section only concern the nodes, edges and node labels.

2.8.1 Performance of RLZ-Graph compared to the colored compacted de
Bruijn graphs

We use Bifrost [62] to construct the ccdBG. The genome graphs constructed include nodes, labels
of nodes and edges, and are stored in graphical fragment assembly (GFA) format [86]. In a GFA
file, the nodes of a graph are stored as a list of pairs of node identifiers and labels, and edges
are stored as a list of pairs of node identifiers. Same as the RLZ-Graph, the graph constructed
by Bifrost is bi-directed and does not contain parallel edges. The RLZ-Graph produced in this
section does not use the ILP solution to assign sources due to time and memory concerns. Instead,
we adopt the leftmost heuristic, where the leftmost source is assigned to each phrase.

We build the graphs on all human chromosomes and show the results on chromosome 1 in
this section (see Figures 2.10–2.12 for the rest of the chromosomes). The genomes we use are
from the 1000 Genomes Project phase 3 [2]. In each experiment, we randomly choose 5, 25,
50, 75 and 100 samples and generate their genomic sequences on all chromosomes using the
consensus command from bcftools [85]. We construct the ccdBG with Bifrost and RLZ-Graph
using the sample sequences and the reference hg37. Hg37 is also used as the reference string
during RLZ factorization. We vary the k-mer sizes used for Bifrost and report the sizes of graphs
with k = 31, 63 and 127. The default choice of k of Bifrost is 31. We repeat each experiment 5
times.

As shown in Figure 2.7, we compare the graph size in different aspects. From 5 sequences
up to 100 sequences, the graph produced by RLZ-Graph is smaller than the graph produced by
Bifrost with different choices of k under all measures in the figure. The number of total characters
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Figure 2.7: Comparison between RLZ-Graph and ccDBG constructed by Bifrost with k = 31, 63
and 127 on human chromosome 1 sequences. (a) Total number of characters in the node labels.
(b) Number of nodes. (c) Number of edges. (d) Size of the GFA file that stores the graph structure
and node labels. The shaded region represents the standard deviation across 5 experiments and
each data point in the plots represents the mean across 5 experiments.
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Figure 2.8: Comparison across RLZ-Graph, ccDBG constructed by Bifrost and variation graph
constructed by VGtoolkit. (a) The total number of characters in the node labels. (b) The number
of nodes. (c) The number of edges. (d) Size of the GFA file that stores the graph structure and
node labels. (e) The average number of characters in node labels. The shaded region represents
the standard deviation across 5 experiments and each data point in the plots represents the mean
across 5 experiments.

in the concatenated node labels are constant in the RLZ-Graph regardless of the increase of the
number of sequences because nodes are produced by cutting a reference string (Figure 2.7(a)). At
100 sequences, the GFA file that stores the RLZ-Graph is 37% smaller than the GFA file storing
the colored de Bruijn graph produced by Bifrost with k = 63 and is 42.2% smaller when k = 31
(Figure 2.7(d)). When k is smaller, the ccdBG becomes impractical for human chromosomes in
terms of running time (Figures 2.10-2.12). Therefore, we do not include the results of graphs
constructed with smaller k values in Figure 2.7.

2.8.2 Comparison between ccdBGs, variation graphs and RLZ-Graphs on
HGSVC data

In addition to SNPs, the Human Genome Structural Variants Consortium (HGSVC) dataset [41]
provides the set of large-scale insertion, deletion, inversion and translocation events. To evalu-
ate RLZ-Graph on a more comprehensive set of variants, we ran RLZ-Graph, Bifrost and VG-
toolkit [51] on the HGSVC dataset, which contains 32 samples from people in various popula-
tions.

While VGtoolkit supports genome graph construction given genomic sequences as input, it
constructs the graph by iteratively aligning sequences to the graph [145–147], which can be
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inefficient when the lengths and the number of sequences are large. Therefore, we construct
variation graphs based on the set of variants as input using VGtoolkit.

In each experiment, we randomly choose 5, 10, 25, 32 samples and generate their sequences
using the consensus command from bcftools. We construct the ccdBG with Bifrost and RLZ-
Graph using the sample sequences and the reference hg38. We vary the k-mer sizes used for
Bifrost and report the size of graphs with k = 31, 63 and 127. The sizes of graphs on disk are
evaluated again using the size of the GFA file. VG format is converted to GFA using vg view
command. We repeat each experiment 5 times.

As shown in Figure 2.8, the sizes of the graphs constructed by Bifrost and RLZ-Graph are
similar to those built from the 1000 Genomes Project (Figure 4). RLZ-Graph constructs graphs
that have similar sizes as variation graphs, which shows that RLZ-Graph does not depend on
preprocessing steps to construct small genome graphs on full-length genomic sequences.

2.8.3 Running time and peak memory used by Bifrost and RLZ-Graph on
1000 Genome Project dataset

The average wall-clock running time and resident set size (RSS) of RLZ-Graph and Bifrost [62]
with k = 31, 63 and 127 on chromosome 1 are reported in Table 2.1 and 2.2. It takes RLZ-Graph
around 2.5 hours to build a graph with 100 chromosome 1 sequences. The running time includes
the time to do RLZ factorization. In all experiments, Bifrost is run in parallel in 20 threads while
RLZ-Graph is run in a single thread.

The RLZ-Graph implementation is not optimized and not parallelized compared to the im-
plementation of Bifrost. Still, the running time of RLZ-Graph is on a similar scale compared to
Bifrost. While RLZ-Graph is not optimized for memory usage, the peak memory, measured by
the resident set size (RSS), used by RLZ-Graph grows linearly in the number of input sequences.
A future direction would be to improve the implementation of RLZ-Graph by parallelizing the
RLZ factorization step.

When k = 15, the size of the GFA file that stores the ccdBG is 15 gigabytes for 5 sequences
of chromosome 1 and the running time of Bifrost is around 8 hours, while the running time is
396 seconds for k = 31. Both the size of the graph and the running time is impractical compared
to other k values. When k = 3, the size of the GFA file is 4.2 kilobytes for 5 sequences of
chromosome 1 with 32 nodes and 127 edges, and the running time of Bifrost is around 2.5 hours.
Although the graph is small, it is similar to the G4 solution to the genome graph size optimization
problem, where the length of the reconstruction path is approximately the same as the original
string.

2.9. Performance of various source assignment heuristics on
E. coli genomes

In the EPM formulation, assigning different sources to a pointer does not change the size of the
compressed string, but may affect the number of nodes.
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Number of sequences 5 25 50 75 100

RLZ-Graph time (s) 1031 2707 4758 6872 9136
Bifrost k=31 time (s) 396 656 986 1542 1852
Bifrost k=63 time (s) 280 510 793 1126 1332
Bifrost k=127 time (s) 412 733 1098 1443 1744

Table 2.1: Average wall-clock running time of RLZ-Graph and Bifrost with different k values on
chromosome 1 sequences.

Number of sequences 5 25 50 75 100

RLZ-Graph RSS (MB) 8562 13316 19258 25918 33762
Bifrost k=31 RSS (MB) 4450 4716 7510 5019 7550
Bifrost k=63 RSS (MB) 6904 6961 7079 7528 7567
Bifrost k=127 RSS (MB) 6949 7059 7655 7727 7803

Table 2.2: Average resident set size of RLZ-Graph and Bifrost with different k values on chro-
mosome 1 sequences.

Aside from the ILP solution to the source assignment problem, sources are chosen by other
heuristics in literature regarding RLZ factorization [75]. Specifically, from the source set corre-
sponding to a phrase, the leftmost source on the reference string is chosen (Left), or the lexico-
graphically smallest source is chosen (Lex). A source si = (posi, leni) is to the left of source
sj = (posj, lenj), or si <left sj , if posi < posj . A source si is lexicographically smaller than sj ,
or si <lex sj , if R[posi : |R| − 1] < R[posj : |R| − 1] given a reference string R. We compare
the number of nodes eliminated by various source assignment heuristics on E. coli genomes.

Figure 2.9: Performance of heuristics solving the source assignment problem. (a) The number
of phrases. (b) The number of nodes. (c) Percentage of nodes was reduced using the leftmost
heuristic and the ILP solution during the source assignment step. The shaded area in the plots
represents the standard deviation across 5 experiments and each data point in the plots represents
the mean across 5 experiments. Lex: lexicographical heuristic. Left: leftmost heuristic. ILP: ILP
solution.

We obtain 300 genomic assemblies of E. coli O157 strain from Genbank [26]. In each ex-
periment, we randomly permute the 300 sequences and construct the RLZ-Graph on the first 50,
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100, 150, 200, 250, 300 sequences. The first sequence in the randomly permuted 300 sequences
is used as the reference string. We repeat each experiment 5 times.

In Figure 2.9(a), we show the rate at which the number of phrases produced by the RLZ
factorization increases as the number of sequences increases. In Figure 2.9(b), we show the
number of nodes produced due to different source assignment strategies. The ILP solution
has the best performance and results in the fewest nodes. The percentage of reduced nodes
is around 8% for 300 E. coli sequences. As the number of sequences increases, the ILP solution
is able to eliminate more nodes compared to the heuristic that always chooses the leftmost source
(Figure 2.9(c)). The percentage of eliminated nodes is calculated as 1 − (|V |ILP/|V |Left) and
1− (|V |Left/|V |Lex), respectively.

Solving the source assignment problem prior to graph construction reduces the number of
nodes by around 8%. Although it is a relatively small percentage, when dealing with very large
genome graphs, it translates into substantial space-savings.

2.10. Discussion
We define the restricted genome graph and formalize the restricted genome graph size optimiza-
tion problem. The optimization problem balances both the size of the graph structure and the
length of the reconstruction paths of sequences stored in the graph, which is similar to the string
compression problem. Inspired by the similarity, we present a pair of algorithms that bridge
genome graph construction and the external pointer macro model. We prove an upper bound on
the size of the genome graph that is constructed based on an optimally compressed string from
the EPM model. One key advantage of our graph construction algorithm is that the total number
of characters stored in the graph is always equal to the size of the reference string regardless of
the number of sequences stored in the graph. The constant number of characters stored in the
graph keeps the space taken by the graph small. Further, since the number of nodes and edges
are derived from an already compressed representation of strings, the number of nodes and the
number of edges remain small.

Equivalent choices made by data compression algorithms may affect the size of the genome
graph differently (Section 2.9). We address this discrepancy by solving the source assignment
problem, which is not limited to the relative Lempel-Ziv algorithm but can be applied to any
EPM-compressed form to reduce the number of nodes and edges. The NP-completeness of the
source assignment problem is still open.

As a proof-of-concept that compression-based genome graph construction algorithms can
produce small genome graphs, we implement RLZ-Graph based on the relative Lempel-Ziv al-
gorithm [74]. We show that RLZ-Graph can reduce the size of the graph significantly on disk
compared to the colored compacted de Bruijn graph.

RLZ-Graph does not depend on hyperparameters or preprocessing steps to construct genome
graphs on full-length genomic sequences. The choice of k-mer sizes is important in de Bruijn
graph construction as it significantly affects the size of the graph. RLZ-Graph removes this
dependence on the choice of k and produces practical graphs with a smaller size that is scalable
to the entire human genome. On the other hand, RLZ-Graph produces graphs with similar sizes
to VGtoolkit, even when the genome sequences are not processed by variant callers or sequence

31



aligners.
While existing genome graph indexing methods (e.g. [145–147]) can be applied to RLZ-

Graphs for downstream genomics analysis, such as alignment and variant calling, it may be
more efficient to use an index specialized for RLZ factorization. There has been a line of work
focusing on fast sequence query given a string compressed by the RLZ algorithm [40, 47, 110].
It is possible to extend these text indices to graph indices that enable faster sequence queries.

This work is an initial investigation into the connection between genome graph construction
and string compression. We show that by using compression algorithms, we can build small
genome graphs efficiently, which opens up the possibilities in future research in adapting other
data compression schemes to genome graph construction.
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Figure 2.10: Comparison between RLZ-Graph and ccdBG constructed by Bifrost with k = 31
on human chromosomes 2–8. (a) Total number of characters in the node labels. (b) Number of
nodes. (c) Number of edges. (d) Size of GFA file that stores the graph structure and node labels.
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Figure 2.11: Comparison between RLZ-Graph and ccdBG constructed by Bifrost with k = 31
on human chromosomes 9–15. (a) Total number of characters in the node labels. (b) Number of
nodes. (c) Number of edges. (d) Size of GFA file that stores the graph structure and node labels.
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Figure 2.12: Comparison between RLZ-Graph and ccdBG constructed by Bifrost with k = 31
on human chromosomes 16–22. (a) Total number of characters in the node labels. (b) Number of
nodes. (c) Number of edges. (d) Size of GFA file that stores the graph structure and node labels.
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Chapter 3

The Complexity of and Algorithms for
Genome Graph Comparison

This chapter is joint work with Yihang Shen and Carl Kingsford. The code to reproduce the
results in this chapter can be found in https://github.com/Kingsford-Group/gtednewilp.

3.1. Introduction
Graph traversal edit distance (GTED) [16] is an elegant measure of the similarity between the
strings represented by edge-labeled Eulerian graphs. For example, given two de Bruijn as-
sembly graphs [123], computing GTED between them measures the similarity between two
genomes without the computationally intensive and possibly error-prone process of assembling
the genomes. Using an approximation of GTED between assembly graphs of Hepatitis B viruses,
Boroojeny et al. [16] group the viruses into clusters consistent with their taxonomy. This can be
extended to inferring phylogeny relationships in metagenomic communities or comparing het-
erogeneous disease samples such as cancer. There are several other methods to compute a simi-
larity measure between strings encoded by two assembly graphs [95, 101, 102, 124]. GTED has
the advantage that it does not require prior knowledge on the type of the genome graph or the
complete sequence of the input genomes. The input to the GTED problem is two unidirectional,
edge-labeled Eulerian graphs, which are defined as:

Definition 8 (Unidirectional, edge-labeled Eulerian Graph). A unidirectional, edge-labeled
Eulerian graph is a connected directed graph G = (V,E, ℓ,Σ), with node set V , edge multi-set
E, constant-size alphabet Σ, and single-character edge labels ℓ : E → Σ, such that G contains
an Eulerian trail that traverses every edge e ∈ E exactly once. The unidirectional condition
means that all edges between the same pair of nodes are in the same direction.

Such graphs arise in genome assembly problems (e.g. the de Bruijn subgraphs). Computing
GTED is the problem of computing the minimum edit distance between the two most similar
strings represented by Eulerian trails each input graph.

Problem 3 (Graph Traversal Edit Distance (GTED) [16]). Given two unidirectional, edge-
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labeled Eulerian graphs G1 and G2, compute

GTED(G1, G2) ≜ min
t1∈trails(G1)
t2∈trails(G2)

edit(str(t1), str(t2)). (3.1)

Here, trails(G) is the collection of all Eulerian trails in graph G, str(t) is a string constructed
by concatenating labels on the Eulerian trail t = (e0, e1, . . . , en), and edit(s1, s2) is the edit
distance between strings s1 and s2.

Boroojeny et al. [16] claim that GTED is polynomially solvable by proposing an integer
linear programming (ILP) formulation of GTED and arguing that the constraints of the ILP
make it polynomially solvable. This result, however, conflicts with several complexity results
on string-to-graph matching problems. Kupferman and Vardi [73] show that it is NP-complete
to determine if a string exactly matches an Eulerian tour in an edge-labeled Eulerian graph.
Additionally, Jain et al. [66] show that it is NP-complete to compute an edit distance between a
string and strings represented by a labeled graph if edit operations are allowed on the graph. On
the other hand, polynomial-time algorithms exist to solve string-to-string alignment [111] and
string-to-graph alignment [66] when edit operations on graphs are not allowed.

We resolve the conflict among the results on complexity of graph comparisons by revisiting
the complexity of and the proposed solutions to GTED. We prove that computing GTED is
NP-complete by reducing from the HAMILTONIAN PATH problem, reaching an agreement with
other related results on complexity. Further, we point out with a counter-example that the optimal
solution of the ILP formulation proposed by Boroojeny et al. [16] does not solve GTED.

We give two ILP formulations for GTED. The first ILP has an exponential number of con-
straints and can be solved by subtour elimination iteratively [31, 38]. The second ILP has a
polynomial number of constraints and shares a similar high-level idea of the global ordering
approach [38] in solving the TRAVELING SALESMAN problem [100].

While the optimal solution to ILP proposed in Boroojeny et al. [16] does not solve GTED, it
does compute a lower bound to GTED. We characterize the cases when GTED is equal to this
lower bound. In addition, we point out that solving this ILP formulation finds a minimum-cost
matching between closed-trail decompositions in the input graphs, which may be used to com-
pute the similarity between repeats in the genomes. Boroojeny et al. [16] claim their proposed
ILP formulation is solvable in polynomial time by arguing that the constraint matrix of the linear
relaxation of the ILP is always totally unimodular. We show that this claim is false by proving
that the constraint matrix is not always totally unimodular and showing that there exists optimal
fractional solutions to its linear relaxation.

We evaluate the efficiency of solving ILP formulations for GTED and its lower bound on
simulated genomic strings and show that it is impractical to compute GTED on larger genomes.

In summary, we revisit two important problems in genome graph comparisons: Graph Traver-
sal Edit Distance (GTED). We show that GTED is NP-complete, and provide the first correct ILP
formulations for it. We also show that the ILP formulation proposed by [16] is a lower bound
to GTED. We evaluate the efficiency of the ILPs for GTED and its lower bound on genomic
sequences. These results provide solid algorithmic foundations for continued algorithmic in-
novation on the task of comparing genome graphs and point to the direction of approximation
heuristics.
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3.2. GTED is NP-complete

3.2.1 Conflicting results on computational complexity of GTED and string-
to-graph matching

The natural decision versions of all of the computational problems described in this chapter are
clearly in NP. Under the assumption that P ̸= NP, the results on the computational complexity of
GTED and string-to-graph matching claimed in Boroojeny et al. [16] and Kupferman and Vardi
[73], respectively, cannot be both true.

Kupferman and Vardi [73] show that the problem of determining if an input string can be
spelled by concatenating edge labels in an Eulerian trail in an input graph is NP-complete. We
call this problem EULERIAN TRAIL EQUALING WORD. We show in Theorem 2 that we can
reduce ETEW to GTED, and therefore if GTED is polynomially solvable, then ETEW is poly-
nomially solvable.

Problem 4 (Eulerian Trail Equaling Word [73]). Given a string s ∈ Σ∗, an edge-labaled
Eulerian graph G, find an Eulerian trail t of G such that str(t) = s.

Theorem 2. If GTED ∈ P then ETEW ∈ P.

Proof. Let ⟨s,G⟩ be an instance of ETEW. Construct a directed, acyclic graph (DAG), C, that
has only one path. Let the path in C be P = (e1, . . . , e|s|) and the edge label of ei be s[i].
Clearly, C is a unidirectional, edge-labeled Eulerian graph, P is the only Eulerian trail in C, and
str(P ) = s.

For the graph G = (VG, EG, ℓG,Σ) from the ETEW instance, which may not be unidirec-
tional, create another graph G′ that contains all of the nodes and edges in G except the anti-
parallel edges. Let ΣG′ = Σ ∪ {ϵ}, where ϵ is a character that is not in Σ. For each pair of
anti-parallel edges (u, v) and (v, u) in G, add four edges (u,w1), (w1, v), (v, w2), (w2, u) by in-
troducing new vertices w1, w2 to G′. Let ℓG′(u,w1) = ℓG(u, v) and ℓG′(w2, u) = ℓG(v, u). Let
ℓG′(w1, v) = ℓG′(v, w2) = ϵ for every newly introduced vertex. G′ has at most twice the number
of edges as G and is Eulerian and unidirectional.

Define the cost of changing a character from a to b cost(a, b) for a, b ∈ Σ ∪ {−} to be 0 if
a = b and 1 otherwise. “−” is the gap character indicating an insertion or a deletion. Define
cost(a, ϵ) with a ∈ Σ to be 1. Define cost(−, ϵ) to be 0.

Use the (assumed) polynomial-time algorithm for GTED to ask whether GTED(C,G′) ≤ 0
under edit distance Σ. If yes, then let (s1, s2) be the 0-cost alignment of the strings spelled out
by the trails in C and G′, respectively. The non-gap characters of s1 must spell out s since there
is only one Eulerian trail in C. Because the alignment cost is 0, any − (gap) characters in s1
must be aligned with ϵ characters in s2 and any non-gap characters in s1 must be aligned to the
same character in s2. The trail in G′ that spells s2 can be transformed to a trail that spells s3 by
collapsing the edges with ϵ character labels, and s3 = s1.

If GTED(C,G′) > 0, G must not contain an Eulerian trail that spells s. Otherwise, such a
trail could be extended to a trail introducing some ϵ characters that could be aligned to s with
zero cost by aligning gaps with ϵ characters.

Hence, an (assumed) polynomial-time algorithm for GTED solves ETEW in polynomial
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time. This contradicts Theorem 6 of Kupferman and Vardi [73] of the NP-completeness of
ETEW (under P ̸= NP).

3.2.2 Reduction from Hamiltonian Path to GTED
We resolve the contradiction by showing that GTED is NP-complete.

Theorem 3. GTED is NP-complete.

Proof. We reduce from the HAMILTONIAN PATH problem, which asks whether a directed, sim-
ple graph G contains a path that visits every vertex exactly once. Here simple means no self-loops
or parallel edges. Let ⟨G = (V,E)⟩ be an instance of HAMILTONIAN PATH, with n = |V | ver-
tices. The reduction is almost identical to that presented in Kupferman and Vardi [73], and from
here until noted later in the proof the argument is identical except for the technicalities intro-
duced to force unidirectionality (and another minor change described later). The first step is to
construct the Eulerian closure of G, which is defined as G′ = (V ′, E ′) where

V ′ = {vin, vout : v ∈ V } ∪ {w}, (3.2)

and E ′ is the union of the following sets of edges and their labels:

• E1 = {(vin, vout) : v ∈ V }, labeled a,
• E2 = {(uout, vin) : (u, v) ∈ E}, labeled b,
• E3 = {(vout, vin) : v ∈ V }, labeled c,
• E4 = {(vin, uout) : (u, v) ∈ E}, labeled c,
• E5 = {(uin, w) : u ∈ V }, labeled c,
• E6 = {(w, uin) : u ∈ V }, labeled b.

Since G′ is connected and every outgoing edge in G′ has a corresponding antiparallel incoming
edge, G′ is Eulerian. It is not unidirectional, so we further create G′′ from G′ by adding dummy
nodes to each pair of antiparallel edges and labelling the length-2 paths so created with x#, where
x is the original label of the split edge (a, b, or c) and # is some new symbol (shared between
all the new edges). We call these length-2 paths introduced to achieve unidirectionality “split
edges”.

We now argue that G has a Hamiltonian path iff G′′ has an Eulerian trail that spells out

q = a#(b#a#)n−1(c#)2n−1(c#b#)|E|+1. (3.3)

If such an Eulerian trail exists, then the trail starts with spelling the string a#(b#a#)n−1, which
corresponds to a Hamiltonian trail in G since it visits exactly n “vertex split edges” (type E1,
labeled a#) and each vertex split edge can be used only once (since it is an Eulerian trail).
Further, successively visited vertices must be connected by an edge in G since those are the
only b# split edges in G′′ (except those leaving w, but w must not be involved in spelling out
a#(b#a#)n−1, since entering w requires using a split edge labeled c#).

For the other direction, if a G has a Hamiltonian path v1, . . . , vn, then walking that sequence
of vertices in G′′ will spell out a#(b#a#)n−1. This path will cover all E1 edges and the E2

edges that are on the Hamiltonian path. Retracing the path so far in reverse will use 2n− 1 split
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edges labeled c#, consuming the (c#)2n−1 term in q and covering all nodes’ reverse vertex edges
E3 (since the path is Hamiltonian). The reverse path also covers the E4 edges corresponding to
reverse Hamiltonian path edges. Our Eulerian trail is now “at” node vin1 .

What remains is to complete the Eulerian walk covering (a) edges and their antiparallel coun-
terparts corresponding to edges in G that were not used in the Hamiltonian path, and (b) the edges
adjacent to node w. To do this, define pred(v) be the vertices u in G for which edge (u, v) exists
and u is not the predecessor of v along the Hamiltonian path. For each u ∈ pred(v1), traverse
the split edge labeled c# to uout then traverse the forward split edge labeled b# back to vin1 . This
results in a string (c#b#)|pred(v1)|. Once the predecessors of v1 are exhausted, traverse the split
edge labeled c# from vin1 into node w and then traverse the split edge labeled b# to vin2 . This
again generates a c#b# string. Repeat the process, covering the edges of v2’s predecessors and
returning to w to move to the next node along the Hamiltonian path for each node v3, . . . , vn.
After covering the predecessors of vinn , go to vin1 through the remaining edges in E5 and E6,
(vinn , w) and (w, vin1 ), which completes the Eulerian tour. This covers all the edges of G′′. The
word spelled out in this last section of the Eulerian trail is a sequence of repetitions of c#b#,
with one repetition for each edge that is not in the Hamiltonian path (|E| − n+ 1) and all of the
edges in E5 and E6 for entering and leaving each node (2n), with a total of |E| + 1 repetitions,
which is the final (c#b#)|E|+1 term in q.

This ends the slight modification of the proof in Kupferman and Vardi [73], where the differ-
ences are (a) the introduction of the # characters and (b) using the exponent |E| + 1 of the final
part of q instead of |E|+ n+ 1 as in Kupferman and Vardi [73] since we create w-edges only to
vin vertices. (This second change has no material effect on the proof, but reduces the length of
the string that must be matched.)

Now, given an instance ⟨G = (V,E)⟩ of HAMILTONIAN PATH, with n = |V | vertices, we
construct G′′ as above (obtaining a unidirectional Eulerian graph) and create graph C that only
represents string q. Note that |Σ| = 4 and G′′ and C can be constructed in polynomial time.
GTED(G′′, C) = 0 if and only if an Eulerian path in G′′ spells out q, since there can be no indels
or mismatches. By the above argument, an Eulerian tour that spells out q exists if and only if G
has a Hamiltonian path.

3.3. Revisiting the correctness of the proposed ILP solutions
to GTED

In this section, we revisit two proposed ILP solutions to GTED by Boroojeny et al. [16] and show
that the optimal solution to these ILP is not always equal to GTED.

3.3.1 Alignment graph
The previously proposed ILP formulations for GTED are based on the alignment graph con-
structed from the input graphs. The high-level concept of an alignment graph is similar to the
dynamic programming matrix for the string-to-string alignment problem [111].
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Figure 3.1: (a) An example of two edge-labeled Eulerian graphs G1 (top) and G2 (bottom).
(b) The alignment graph A(G1, G2). The cycle with red edges is the path corresponding to
GTED(G1, G2). Red solid edges are matches with cost 0 and red dashed-line edge is mismatch
with cost 1.

Definition 9 (Alignment graph). Let G1, G2 be two unidirectional, edge-labeled Eulerian
graphs. The alignment graph A(G1, G2) = (V,E, δ) is a directed graph that has vertex set
V = V1 × V2 and edge multi-set E that equals the union of the following:
Vertical edges [(u1, u2), (v1, u2)] for (u1, v1) ∈ E1 and u2 ∈ V2,
Horizontal edges [(u1, u2), (u1, v2)] for u1 ∈ V1 and (u2, v2) ∈ E2,
Diagonal edges [(u1, u2), (v1, v2)] for (u1, v1) ∈ E1 and (u2, v2) ∈ E2.
Each edge is associated with a cost by the cost function δ : E → R.

Each diagonal edge e = [(u1, v1), (u2, v2)] in an alignment graph can be projected to (u1, v1)
and (u2, v2) in G1 and G2, respectively. Similarly, each vertical edge can be projected to one
edge in G1, and each horizontal edge can be projected to one edge in G2.

We define the edge projection function πi that projects an edge from the alignment graph to
an edge in the input graph Gi. We also define the path projection function Πi that projects a trail
in the alignment graph to a trail in the input graph Gi. For example, let a trail in the alignment
graph be p = (e1, e2, . . . , em), and Πi(p) = (πi(e1), πi(e2), . . . , πi(em)) is a trail in Gi.

An example of an alignment graph is shown in Figure 3.1(b). The horizontal edges corre-
spond to gaps in strings represented by G1, vertical edges correspond to gaps in strings repre-
sented by G2, and diagonal edges correspond to the matching between edge labels from the two
graphs. In the rest of this paper, we assume that the costs for horizontal and vertical edges are 1,
and the costs for the diagonal edges are 1 if the diagonal edge represents a mismatch and 0 if it is
a match. The cost function δ can be defined to capture the cost of matching between edge labels
or inserting gaps. This definition of alignment graph is also a generalization of the alignment
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graph used in string-to-graph alignment [66].

3.3.2 The first previously proposed ILP for GTED
Lemma 1 in Boroojeny et al. [16] provides a model for computing GTED by finding the minimum-
cost trail in the alignment graph. We reiterate it here for completeness.

Lemma 5 ([16]). For any two edge-labeled Eulerian graphs G1 and G2,

GTED(G1, G2) = minimizec δ(c)

subject to c is a trail in A(G1, G2),

Πi(c) is an Eulerian trail in Gi for i = 1, 2,

(3.4)

where δ(c) is the total edge cost of c, and Πi(c) is the projection from c to Gi.
An example of such a minimum-cost trail is shown in Figure 3.1(b). Boroojeny et al. [16]

provide the following ILP formulation and claim that it is a direct translation of Lemma 5:

minimize
x∈N|E|

∑
e∈E

xeδ(e) (3.5)

subject to Ax = 0 (3.6)∑
e∈E

xeIi(e, f) = 1 for i = 1, 2 and for all f ∈ Ei (3.7)

Aue =


−1 if e = (u, v) ∈ E for some vertex v ∈ V

1 if e = (v, u) ∈ E for some u ∈ V

0 otherwise
(3.8)

Here, E is the edge set of A(G1, G2). A is the negative incidence matrix of size |V | × |E|, and
Ii(e, f) is an indicator function that is 1 if edge e in E projects to edge f in the input graph
Gi (and 0 otherwise). We define the domain of each xe to include all non-negative integers.
However, due to constraints (3.7), the values of xe are limited to either 0 or 1. We describe this
ILP formulation with the assumption that both input graphs have closed Eulerian trails, which
means that each node has equal numbers of incoming and outgoing edges. We discuss the cases
when input graphs contain open Eulerian trails in Section 3.4.

The ILP in (3.5)-(3.8) allows the solutions to select disjoint cycles in the alignment graph, and
the projection of edges in these disjoint cycles does not correspond to a single string represented
by either of the input graphs. We show that the ILP in (3.5)-(3.8) does not solve GTED by giving
an example where the objective value of the optimal solution to the ILP in (3.5)-(3.8) is not equal
to GTED.

Construct two input graphs as shown in Figure 3.2(a). Specifically, G1 spells circular permu-
tations of TTTGAA and G2 spells circular permutations of TTTAGA. It is clear that
GTED(G1, G2) = 2 under Levenshtein edit distance. On the other hand, as shown in Fig-
ure 3.2(a), an optimal solution in A(G1, G2) contains two disjoint cycles with nonzero xe values
that have a total edge cost equal to 0. This solution is a feasible solution to the ILP in (3.5)-(3.8).
It is also an optimal solution because the objective value is zero, which is the lower bound on
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Figure 3.2: (a) The subgraph in the alignment graph induced by an optimal solution to the ILP
in (3.5)-(3.8) and the ILP in (3.11)-(3.12) with input graphs on the left and top. The red and
blue edges in the alignment graph are edges matching labels in red and blue font, respectively,
and are part of the optimal solution to the ILP in (3.5)-(3.8). The cost of the red and blue edges
are zero. (b) The subgraph induced by xinit with s1 = u1 and s2 = v1 according to the ILP
in (3.11)-(3.12). The rest of the edges in the alignment graph are omitted for simplicity.

the ILP in (3.5)-(3.8). This optimal objective value, however, is smaller than GTED(G1, G2).
Therefore, the ILP in (3.5)-(3.8) does not solve GTED since it allows the solution to be a set of
disjoint components.

3.3.3 The second previously proposed ILP formulation of GTED
We describe the second proposed ILP formulation of GTED by Boroojeny et al. [16]. Follow-
ing Boroojeny et al. [16], we use simplices, a notion from geometry, to generalize the notion of
an edge to higher dimensions. A k-simplex is a k-dimensional polytope which is the convex hull
of its k+1 vertices. For example, a 1-simplex is an undirected edge, and a 2-simplex is a triangle.
We use the orientation of a simplex, which is given by the ordering of the vertex set of a simplex
up to an even permutation, to generalize the notion of the edge direction [109, p. 26]. We use
square brackets [·] to denote an oriented simplex. For example, [v0, v1] denotes a 1-simplex with
orientation v0 → v1, which is a directed edge from v0 to v1, and [v0, v1, v2] denotes a 2-simplex
with orientation corresponding to the vertex ordering v0 → v1 → v2 → v0. Each k-simplex
has two possible unique orientations, and we use the signed coefficient to connect their forms
together, e.g. [v0, v1] = −[v1, v0].

For each pair of graphs G1 and G2 and their alignment graph A(G1, G2), we define an ori-
ented 2-simplex set T (G1, G2) which is the union of:

• [(u1, u2), (v1, u2), (v1, v2)] for all (u1, v1) ∈ E1 and (u2, v2) ∈ E2, or
• [(u1, u2), (u1, v2), (v1, v2)] for all (u1, v1) ∈ E1 and (u2, v2) ∈ E2,
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Figure 3.3: (a) A graph that contains an unoriented 2-simplex with three unoriented 1-simplices.
(b), (c) The same graph with two different ways of orienting the simplices and the corresponding
boundary matrices.

We use the boundary operator [109, p. 28], denoted by ∂, to map an oriented k-simplex to a
sum of oriented (k − 1)-simplices with signed coefficients.

∂[v0, v1, . . . , vk] =

p∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk], (3.9)

where v̂i denotes the vertex vi is to be deleted. Intuitively, the boundary operator maps the
oriented k-simplex to a sum of oriented (k − 1)-simplices such that their vertices are in the k-
simplex and their orientations are consistent with the orientation of the k-simplex. For example,
when k = 2, we have:

∂[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1] = [v1, v2] + [v2, v0] + [v0, v1]. (3.10)

We reiterate the second ILP formulation proposed in Boroojeny et al. [16]. Given an alignment
graph A(G1, G2) = (V,E, δ) and the oriented 2-simplex set T (G1, G2),

minimize
x∈N|E|,y∈Z|T (G1,G2)|

∑
e∈E

xeδ(e)

subject to x = xinit + [∂]y

(3.11)

Entries in x and y correspond to 1-simplices and 2-simplices in E and T (G1, G2), respectively.
[∂] is a |E| × |T (G1, G2)| boundary matrix where each entry [∂]i,j is the signed coefficient of the
oriented 1-simplex (the directed edge) in E corresponding to xi in the boundary of the oriented
2-simplex in T (G1, G2) corresponding to yj . The index i, j for each 1-simplex or 2-simplex is
assigned based on an arbitrary ordering of the 1-simplices in E or the 2-simplices in T (G1, G2).
An example of the boundary matrix is shown in Figure 3.3. δ(e) is the cost of each edge. xinit ∈
R|E| is a vector where each entry corresponds to a 1-simplex in E with |E1| + |E2| nonzero
entries that represent one Eulerian trail in each input graph. xinit is a feasible solution to the ILP.
Let s1 be the source of the Eulerian trail in G1, and s2 be the sink of the Eulerian trail in G2.
Each entry in xinit is defined by

xinit
e =

{
1 if e = [(u1, s2), (v1, s2)] or e = [(s1, u2), (s1, v2)],

0 otherwise.
(3.12)

If the Eulerian trail is closed in Gi, si can be any vertex in Vi. An example of xinit is shown in
Figure 3.2(b).
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3.3.4 Equivalence between two ILPs proposed by Boroojeny et al.
The analysis provided by Boroojeny et al. [16] states that the LP relaxation of the ILP in (3.5)-
(3.8) does not always yield integer solutions, but the LP relaxation of the ILP in (3.11)-(3.12)
always yields integer solutions. This suggests that the two LP relaxations have difference feasi-
bility regions for x. We show that these two LP relaxations are actually equivalent in Theorem 4.
Further, we show that the ILP in (3.5)-(3.8) and the ILP in (3.11)-(3.12) are also equivalent.
Since the ILP in (3.5)-(3.8) does not solve for GTED(G1, G2) as shown in 3.3.2, we conclude
that the ILP in (3.11)-(3.12) also does not solve GTED(G1, G2).

Theorem 4. Given two unidirectional, edge-labeled Eulerian graphs G1, G2, the feasibility
region of x in the LP relaxation of the ILP in (3.11)-(3.12) is the same as the feasibility region of
x in the LP relaxation of the ILP in (3.5)-(3.8).

Let A(G1, G2) = (V,E, δ) be the alignment graph of G1 = (V1, E1, ℓ1,Σ1) and G2 =
(V2, E2, ℓ2,Σ2), and let T (G1, G2) be its two-simplex set. First, we have the following result:

Lemma 6. Let [yi] ∈ R|T (G1,G2)| be a vector such that the j-th entry of [yi], [yi]j is equal to
0 for all j ̸= i. The vector x′ = x + [∂][yi] satisfies the constraints (3.6)-(3.7) if the vector x
satisfies the constraints (3.6)-(3.7).

Proof. Let σi ∈ T (G1, G2) be the 2-simplex corresponding to the entry i of [yi]. Based on the
construction of T (G1, G2), σi has two forms: [(u1, u2), (v1, u2), (v1, v2)] or [(u1, u2), (u1, v2), (v1, v2)].
Without loss of generality, we assume σi = [(u1, u2), (v1, u2), (v1, v2)]. We can prove this lemma
by using the same way when σi = [(u1, u2), (u1, v2), (v1, v2)]. Since

∂σi = [(u1, u2), (v1, u2)] + [(v1, u2), (v1, v2)]− [(u1, u2), (v1, v2)],

We have

[∂][yi] = [yi]i[xe1 ] + [yi]i[xe2 ]− [yi]i[xe3 ],

where e1 = [(u1, u2), (v1, u2)], e2 = [(v1, u2), (v1, v2)], e3 = [(u1, u2), (v1, v2)], and [xe] ∈ R|E|

is a vector such that all the entries are 0 except that the one corresponding to edge e is 1. we
also let [xv] ∈ R|V | be a vector such that all the entries are 0 except that the one corresponding to
vertex v is 1. Therefore, we have

Ax′ = Ax+ [yi]i[xv2 ]− [yi]i[xv1 ] + [yi]i[xv3 ]− [yi]i[xv2 ]− [yi]i[xv3 ] + [yi]i[xv1 ] = Ax,

where v1 = (u1, u2), v2 = (v1, u2), and v3 = (v1, v2). Hence, x′ satisfies the constraints (3.6) if
x satisfies the constraints (3.6).

In addition, since
∑

e∈E x′
eIi(e, f) =

∑
e∈E xeIi(e, f)+[yi]iIi(e1, f)+[yi]iIi(e2, f)−[yi]iIi(e3, f),

and:

• I1(e1, (u1, v1)) = 1 and Ii(e1, f) = 0 for other f ∈ Gi,
• I2(e2, (u2, v2)) = 1 and Ii(e2, f) = 0 for other f ∈ Gi,
• I1(e3, (u1, v1)) = 1, I2(e3, (u2, v2)) = 1, and Ii(e3, f) = 0 for other f ∈ Gi,

we have:
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• [yi]iI1(e1, (u1, v1)) + [yi]iI1(e2, (u1, v1))− [yi]iI1(e3, (u1, v1)) = [yi]i + 0− [yi]i = 0,
• [yi]iI2(e1, (u2, v2)) + [yi]iI2(e2, (u2, v2))− [yi]iI2(e3, (u2, v2)) = 0 + [yi]i − [yi]i = 0,
• [yi]iIi(e1, f) + [yi]iIi(e2, f) − [yi]iIi(e3, f) = 0 + 0 − 0 = 0 for any other i = 1, 2 and
f ∈ Ei.

Therefore,
∑

e∈E x′
eIi(e, f) =

∑
e∈E xeIi(e, f), meaning that x′ satisfies the constraints (3.7) if

x satisfies the constraints (3.7).

With Lemma 6, we prove that any feasible solution of x in (3.11) is a feasible solution
of (3.5)-(3.8). First, it is easy to check that xinit satisfies the constraints (3.6)-(3.7). For each
feasible solution of x in (3.11), since x = xinit + [∂]y = xinit +

∑
i[∂][yi], by iteratively using

Lemma 6, we get that x satisfies the constraints (3.6)-(3.7). Since xe ≥ 0 for all e ∈ E is a
constraint existing in both linear relaxations, x is a feasible solution of (3.5)-(3.8).

We now show that any feasible solution of (3.5)-(3.8) is a feasible solution of (3.11). Let
x be a feasible solution of (3.5)-(3.8). We show that x is also a feasible solution of (3.11) by
proving that x can be converted to xinit in (3.11) via the boundary operator ∂. First, if there is
a diagonal edge e = [(u1, u2), (v1, v2)] in E such that xe > 0, then it can be replaced by the
horizontal edge eh = [(u1, u2), (u1, v2)] followed by the vertical edge ev = [(u1, v2), (v1, v2)]
by using one boundary operation on the 2-simplex [(u1, u2), (u1, v2), (v1, v2)]. Hence, x can be
converted to a new vector x′, such that x′

e = 0, x′
eh

= xeh + xe, x′
ev = xev + xe, and all the

other entries in x′ are the same as those in x. It is easy to check that x′ is also a feasible solution
of (3.5)-(3.8). Therefore, without loss of generality, we assume x to be a vector such that all the
entries corresponding to diagonal edges in A(G1, G2) are zero.

We then prove that any x can be converted to xinit in (3.11) via the boundary operator. Let
the source and the sink node of x in A(G1, G2) be (s11, s

2
1) and (s12, s

2
2), where si1 is the source

node of Gi and si2 is the sink node of Gi. When the Eulerian trail is closed (meaning that it is an
Eulerian tour) in Gi, we let si1 = si2 be an arbitrary vertex in Vi. xinit can be seen as a trail (tour)
in A(G1, G2) that starts from (s11, s

2
1), walks along an Eulerian trail of G2 via all the horizontal

edges Ph,

Ph = {[(s11, s21), (s11, v21)], [(s11, v21), (s11, v22)], . . . , [(s11, v2i−1), (s
1
1, v

2
i )], [(s

1
1, v

2
i ), (s

1
1, s

2
2)]},

and then walks along an Eulerian trail of G1 via all the vertical edges Pv,

Pv = {[(s11, s22), (v11, s22)], [(v11, s22), (v12, s22)], . . . , [(v1j−1, s
2
2), (v

1
j , s

2
2)], [(v

1
j , s

2
2), (s

1
2, s

2
2)]},

until the sink node (s12, s
2
2). Here {s21, v21, v22, . . . , v2i−1, v

2
i , s

2
2} is an Eulerian trail of G2 and

{s11, v11, v12, . . . , v1i−1, v
1
i , s

1
2} is an Eulerian trail of G1. We use P0 = {Ph, Pv} to denote the trail

from (s11, s
2
1) to (s12, s

2
2) that is the concatenation of Ph and Pv. It is easy to see that each edge in

P0 is unique.
As shown in Qiu and Kingsford [127], x is a flow of A(G1, G2) with the additional con-

straints (3.7). Therefore, according to the flow decomposition theorem [3, p. 80], x can be
decomposed into a finite set of weighted paths in A(G1, G2) from (s11, s

2
1) to (s12, s

2
2), which is

denoted as {(p1, wp
1), . . . , (pn, w

p
n)}, and a finite set of weight cycles in A(G1, G2), which is

denoted as {(c1, wc
1), . . . , (cm, w

c
m)}. Each path or cycle only contains horizontal and vertical

edges.
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Figure 3.4: (a) An example of converting three vertical edges followed by one horizontal edge
(blue line) to one horizontal edge followed by three vertical edges (red line). It can be done by
doing boundary operations on 2-simplices labeled from 0 to 5. (b) An example of a cycle path
(red line) and its auxiliary trail (blue line).

For path i, we use a vector xp,i to represent (pi, w
p
i ),

xp,i
e =

{
wp

i if e ∈ pi

0 otherwise,
(3.13)

By using the boundary operator, each path pi can actually be converted to a new trail p′i such
that each edge in p′i is also an edge in P0. To prove this, we consider the following two cases:

• If pi walks along all the horizontal edges followed by all the vertical edges, then every
edge in pi is an edge in P0. To see that, let e be an horizontal edge in pi, since pi starts
from (s11, s

2
1), e has the form [(s11, v), (s

1
1, v

′)] where [v, v′] ∈ E2. Since Ph corresponds to
the Eulerian trail of G2, for each [v, v′] ∈ E2, we have [(s11, v), (s

1
1, v

′)] ∈ Ph. Therefore
e ∈ P0. We can use the same way to prove e ∈ P0 when e is a vertical edge. Note that in
this case, the number of horizontal edges or vertical edges can be zero.

• If not, then we let pi = {ei1, ei2, . . . , eim}, and let eit be the vertical edge with the small-
est index t. There exists an integer k (k ≥ 1) such that {eit, eit+1, . . . , e

i
t+k−1} are all

vertical edges and eit+k is an horizontal edge. We denote each vertical edge eit+w ∈
{eit, eit+1, . . . , e

i
t+k−1} as [(vw, vt), (vw+1, vt)] and denote eit+k as [(vk, vt), (vk, vt+1)]. It

is easy to see that when w = 0, vw = s11. By using the boundary operator, this subpath
{eit, eit+1, . . . , e

i
t+k−1, e

i
t+k} can be replaced by another subpath with one horizontal edge

[(s11, vt), (s
1
1, vt+1)] followed by k vertical edges:

{[(s11, vt+1), (v1, vt+1)], [(v1, vt+1), (v2, vt+1)], . . . , [(vk−1, vt+1), (vk, vt+1)].

Now we have a new path, denoted as p1i , in which the smallest index of the vertical edges
becomes t + 1. Figure 3.4(a) shows an example, in which the blue line represents the
subpath of pi and the red line represents the new subpath in p1i .
To create a new vector that represents p1i , we first create a zero vector yp,i,1 ∈ R|T (G1,G2)|,
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and from w = 0 to w = k − 1, we iteratively update yp,i,1 via the following equations:

yp,i,1σ =


yp,i,1σ − wp

i if σ = [(vw, vt), (vw+1, vt), (vw+1, vt+1)]

yp,i,1σ + wp
i if σ = [(vw, vt), (vw, vt+1), (vw+1, vt+1)]

0 otherwise.
(3.14)

The vector xp,i,1 = xp,i + [∂]yp,i,1 is the one that represents p1i .
Since the length of pi is finite, by doing such a transformation a finite number of times,
we can convert pi to a new path p′i such that p′i walks along all the horizontal edges first
followed by all the vertical edges, therefore each edge in p′i is also an edge in P0. We
use the vector x̂p,i to represent p′i, x̂

p,i = xp,i + [∂]
∑q

j=1 y
p,i,j where q is the number of

transformations. Apperantly, x̂p,i
e = 0 when e /∈ P0. Let yp,i =

∑q
j=1 y

p,i,j , we have
x̂p,i = xp,i + [∂]yp,i.

For cycle i, we also use a vector xc,i to represent (ci, wc
i ),

xc,i
e =

{
wc

i if e ∈ ci

0 otherwise,
(3.15)

Let (v, v′) be an arbitrary chosen node in ci, we construct a trail piaux that passes (v, v′) as follows:
• From (s11, s

2
1), walk along Ph until the node (s11, v

′). It corresponds to a part of an Eulerian
trail of G2.

• From (s11, v
′), walk along an Eulerian trail of G1 to (s12, v

′). It must passes the node (v, v′).
• From (s12, v

′), walk along the remaining part of the Eulerian trail of G2 to the node (s12, s
2
2).

Figure 3.4(b) shows an example, in which the blue line represents piaux and the red line represents
ci.

We use xaux,i to denote the vector representing piaux. The combination of ci and piaux, repre-
sented by the vector xc,i + xaux,i creates a new trail (may have repeated edges) from (s11, s

2
1) to

(s12, s
2
2): (1) walk along piaux from (s11, s

2
1) to (v, v′), (2) walk along ci from (v, v′) to itself, and

(3) walk along the remaining part of piaux from (v, v′) to (s12, s
2
2). By using the same way as we

described above, each ci+ piaux or piaux can be converted to a new trail in which each edge is also
an edge in P0. We use x̂c,i or x̂aux,i to represent the new trail accordingly, therefore, we have
x̂c,i = xc,i + xaux,i + [∂]yc,i and x̂aux,i = xaux,i + [∂]yaux,i. Likewise, x̂c,i

e = x̂aux,i
e = 0 when

e /∈ P0.
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We define a new vector x̂ such that:

x̂ =
n∑

i=1

x̂p,i +
m∑
j=1

x̂c,j − x̂aux,j

=
n∑

i=1

xp,i + [∂]yp,i +
m∑
j=1

xc,j + xaux,j + [∂]yc,j −

(
m∑
j=1

xaux,j + [∂]yaux,j

)

=
n∑

i=1

xp,i +
m∑
j=1

xc,j + [∂]

(
n∑

i=1

yp,i +
m∑
j=1

yc,j −
m∑
j=1

yaux,j

)

= x+ [∂]

(
n∑

i=1

yp,i +
m∑
j=1

yc,j −
m∑
j=1

yaux,j

)
.

Therefore, x̂ is a vector converted from x via boundary operations. x̂ is equal to xinit because:
1. x̂e = 0 when e /∈ P0 since x̂p,i

e = x̂c,i
e = x̂aux,i

e = 0 when e /∈ P0 for each i.

2. As we have proved above, the boundary operator preserves the constraints (3.6)-(3.7).
Therefore, x̂ satisfies the constraints (3.6)-(3.7) since x is a feasible solution of (3.5)-(3.8).
Combined with the first point, we have that x̂e = 1 if e ∈ P0 and x̂e = 0 otherwise,
meaning that x̂ = xinit.

Hence, for each feasible solution x of (3.5)-(3.8), we have:

x = xinit − [∂]

(
n∑

i=1

yp,i +
m∑
j=1

yc,j −
m∑
j=1

yaux,j

)

= xinit + [∂]

(
−

n∑
i=1

yp,i −
m∑
j=1

yc,j +
m∑
j=1

yaux,j

)
,

meaning that x is also a feasible solution of (3.11).
We proved that the feasibility region of x in (3.11) is the same as the feasibility region of x

in (3.5)-(3.8), and since the objective functions of these two linear relaxations are the same, the
optimal solutions of them are equal.

By employing the same approach and taking into account that if all edge weights in a flow
network are non-negative integers, the flow decomposition theorem guarantees that the network
can be decomposed into a finite set of weighted paths and cycles, each with positive integer
weight, we can prove that the ILP in (3.5)-(3.8) and the ILP in (3.11)-(3.12) are also equivalent.

Based on the proof, we can conclude that the way to index the vertices or edges in the align-
ment graph, or the 2-simplices in T (G1, G2), will not affect the equivalence result. Additionally,
different choices of orientations for the 2-simplices in T (G1, G2) will also not impact the equiv-
alence result. This is because for any two sets T (G1, G2) and T ′(G1, G2) containing the same
2-simplices with the same indices but different orientations, if (x, y) is a feasible solution of the
ILP in (3.11)-(3.12) (or its relaxation) that corresponds to T (G1, G2), then (x, y′) is a feasible
solution of the ILP in (3.11)-(3.12) (or its relaxation) that corresponds to T ′(G1, G2), where
yi = y′i when σi ∈ T (G1, G2) has the same orientation as σ′

i ∈ T ′(G1, G2), and yi = −y′i when
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Figure 3.5: Modified alignment graphs based on input types. (a) G1 has open Eulerian trails
while G2 has closed Eulerian trails. (b) Both G1 and G2 have closed Eulerian trails. (c) Both G1

and G2 have open Eulerian trails. Solid red and blue nodes are the source and sink nodes of the
graphs with open Eulerian trails. “s” and “t” are the added source and sink nodes. Colored edges
are added alignment edges directing from and to source and sink nodes, respectively.

σi ∈ T (G1, G2) has the opposite orientation to σ′
i ∈ T ′(G1, G2). Therefore, it is acceptable to

specify a particular orientation for each 2-simplex when defining T (G1, G2).

3.4. New ILP solutions to GTED
To ensure that our new ILP formulations are applicable to input graphs regardless of whether
they contain an open or closed Eulerian trail, we add a source node s and a sink node t to the
alignment graph. Figure 3.5 illustrates three possible cases of input graphs.

1. If only one of the input graphs has closed Eulerian trails, wlog, let G1 be the input graph
with open Eulerian trails. Let a1 and b1 be the start and end of the Eulerian trail that
have odd degrees. Add edges [s, (a1, v2)] and [(b1, v2), t] to E for all nodes v2 ∈ V2

(Figure 3.5(a)).

2. If both input graphs have closed Eulerian trails, let a1 and a2 be two arbitrary nodes in G1

and G2, respectively. Add edges [s, (a1, v2)], [s, (v1, a2)], [(a1, v2), t] and [(v1, a2), t] for all
nodes v1 ∈ V1 and v2 ∈ V2 to E (Figure 3.5(b)).

3. If both input graphs have open Eulerian trails, add edges [s, (a1, a2)] and [t, (b1, b2)], where
ai and bi are start and end nodes of the Eulerian trails in Gi, respectively (Figure 3.5(c)).

According to Lemma 5, we can solve GTED(G1, G2) by finding a single trail in A(G1, G2)
that satisfies the projection requirements. This is equivalent to finding a s-t trail in A(G1, G2)
that satisfies constraints:∑

(u,v)∈E

xuvIi((u, v), f) = 1 for all (u, v) ∈ E, f ∈ Gi, u ̸= s, v ̸= t, (3.16)
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where Ii(e, f) = 1 if the alignment edge e projects to f in Gi. An optimal solution to GTED in
the alignment graph must start and end with the source and sink node because they are connected
to all possible starts and ends of Eulerian trails in the input graphs.

Since a trail inA(G1, G2) is a flow network, we use the following flow constraints to enforce
the equality between the number of in- and out-edges for each node in the alignment graph except
the source and sink nodes. ∑

(s,u)∈E

xsu = 1 (3.17)

∑
(v,t)∈E

xvt = 1 (3.18)

∑
(u,v)∈E

xuv =
∑

(v,w)∈E

xvw for all v ∈ V (3.19)

Constraints (3.16) and (3.19) are equivalent to constraints (3.7) and (3.6), respectively. Therefore,
we rewrite the ILP in (3.5)-(3.8) in terms of the modified alignment graph.

minimize
x∈N|E|

∑
e∈E

xeδ(e)

subject to constraints (3.16)–(3.19).
(lower bound ILP)

As we show in Section 3.3.2, constraints (3.16)-(3.19) do not guarantee that the ILP solution
is one trail in A(G1, G2), thus allowing several disjoint covering trails to be selected in the
solution and fails to model GTED correctly. We show in Section 3.5 that the solutions to this ILP
is a lower bound to GTED.

According to Lemma 1 in Dias et al. [38], a subgraph of a directed graph G with source node
s and sink node t is a s-t trail if and only if it is a flow network and every strongly connected
component (SCC) of the subgraph has at least one edge outgoing from it. Thus, in order to
formulate an ILP for the GTED problem, it is necessary to devise constraints that prevent disjoint
SCCs from being selected in the alignment graph. In the following, we describe two approaches
for achieving this.

3.4.1 Enforcing one trail in the alignment graph via constraint generation
Section 3.2 of Dias et al. [38] proposes a method to design linear constraints for eliminating
disjoint SCCs, which can be directly adapted to our problem. Let C be the collection of all
strongly connected subgraphs of the alignment graphA(G1, G2). We use the following constraint
to enforce that the selected edges form one s-t trail in the alignment graph:

If
∑

(u,v)∈E(C)

xuv = |E(C)|, then
∑

(u,v)∈ε+(C)

xuv ≥ 1 for all C ∈ C, (3.20)

where E(C) is the set of edges in the strongly connected subgraph C and ε+(C) is the set of
edges (u, v) such that u belongs to C and v does not belong to C.

∑
(u,v)∈E(C) xuv = |E(C)|
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indicates that C is in the subgraph of A(G1, G2) constructed by all edges (u, v) with positive
xuv, and

∑
(u,v)∈ε+(C) xuv ≥ 1 guarantees that there exists an out-going edge of C that is in the

subgraph.
We use the same technique as Dias et al. [38] to linearize the “if-then” condition in (3.20) by

introducing a new variable β for each strongly connected component:∑
(u,v)∈E(C)

xuv ≥ |E(C)|βC for all C ∈ C (3.21)

∑
(u,v)∈E(C)

xuv − |E(C)|+ 1− |E(C)|βC ≤ 0 for all C ∈ C (3.22)

∑
(u,v)∈ε+(C)

xuv ≥ βC for all C ∈ C (3.23)

βC ∈ {0, 1} for all C ∈ C (3.24)

To summarize, given any pair of unidirectional, edge-labeled Eulerian graphs G1 and G2 and
their alignment graphA(G1, G2) = (V,E, δ), GTED(G1, G2) is equal to the optimal solution of
the following ILP formulation:

minimize
x∈{0,1}|E|

∑
e∈E

xeδ(e)

subject to constraints (3.16)–(3.19) and
constraints (3.21)–(3.24).

(exponential ILP)

This ILP has an exponential number of constraints as there is a set of constraints for every
strongly connected subgraph in the alignment graph. To solve this ILP more efficiently, we
can use the procedure similar to the iterative constraint generation procedure in Dias et al. [38].
Initially, solve the ILP with only constraints (3.16)-(3.19). Create a subgraph, G′, induced by
edges with positive xuv. For each disjoint SCC in G′ that does not contain the sink node, add
constraints (3.21)-(3.24) for edges in the SCC and solve the new ILP. Iterate until no disjoint
SCCs are found in the solution (Algorithm 1).

3.4.2 A compact ILP for GTED with polynomial number of constraints
In the worst case, the number of iterations to solve (exponential ILP) via constraint generation is
exponential. As an alternative, we introduce a compact ILP with only a polynomial number of
constraints. The intuition behind this ILP is that we can impose a partially increasing ordering
on all the edges so that the selected edges forms a s-t trail in the alignment graph. This idea is
similar to the Miller-Tucker-Zemlin ILP formulation of the TRAVELLING SALESMAN problem
(TSP) [100].

We add variables duv that are constrained to provide a partial ordering of the edges in the s-t
trail and set the variables duv to zero for edges that are not selected in the s-t trail. Intuitively,
there must exist an ordering of edges in a s-t trail such that for each pair of consecutive edges
(u, v) and (v, w), the difference in their order variable duv and dvw is 1. Therefore, for each
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Algorithm 1: Iterative constraints generation algorithm to solve (exponential ILP)
Input Two unidirectional, edge-labeled Eulerian graphs and their alignment graph
C ← ∅
while true do

Solve the ILP (exponential ILP) with C
if the ILP variables xuv induce a strongly connected component C not satisfying (3.20)

then
C = C ∪ {C}

else
return the optimal ILP value and the corresponding optimal solution x

end if
end while

node v that is not the source or the sink, if we sum up the order variables for the incoming edges
and outgoing edges respectively, the difference between the two sums is equal to the number of
selected incoming/outgoing edges. Lastly, the order variable for the edge starting at source is 1,
and the order variable for the edge ending at sink is the number of selected edges. This gives the
ordering constraints as follows:

If xuv = 0, then duv = 0 for all (u, v) ∈ E (3.25)∑
(v,w)∈E

dvw −
∑

(u,v)∈E

duv =
∑

(v,w)∈E

xvw for all v ∈ V \ {s, t} (3.26)

∑
(s,u)∈E

dsu = 1 (3.27)

∑
(v,t)∈E

dvt =
∑

(u,v)∈E

xuv (3.28)

We enforce that all variables xe ∈ {0, 1} and de ∈ N for all e ∈ E.
The “if-then” statement in Equation (3.25) can be linearized by introducing an additional

binary variable yuv for each edge [19, 38]:

−xuv − |E|yuv ≤ −1 (3.29)
duv − |E|(1− yuv) ≤ 0 (3.30)

yuv ∈ {0, 1}. (3.31)

Here, yuv is an indicator of whether xuv ≥ 0. The coefficient |E| is the number of edges in the
alignment graph and also an upper bound on the ordering variables. When yuv = 1, duv ≤ 0,
and yuv does not impose constraints on xuv. When yuv = 0, xuv ≥ 1, and yuv does not impose
constraints on duv.

We prove the correctness of the compact ILP by showing that the ordering constraints (3.26)
correctly forbids disjoint strongly connected components from being selected in the ILP solution.
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Lemma 7. Let xe and de be ILP variables. Let G′ be a subgraph of A(G1, G2) that is
induced by edges with xe = 1. If xe and de satisfy constraints (3.16)-(3.28) for all e ∈ E, G′ is
connected with one trail from s to t that traverses each edge in G′ exactly once.

Proof. We prove the lemma in 2 parts: (1) all nodes except s and t in G′ have an equal number
of in- and out-edges, (2) G′ contains only one connected component.

The first statement holds because the edges of G′ form a flow from s to t, and is enforced by
constraints (3.19).

We then show that G′ does not contain isolated subgraphs that are not reachable from s or
t. Due to constraints (3.19), the only possible scenario is that the isolated subgraph is strongly
connected. Suppose for contradiction that there is a strongly connected component, C, in G′ that
is not reachable from s or t.

The sum of the left hand side of constraints (3.26) over all vertices in C is∑
v∈C

( ∑
(u,v)∈C

duv −
∑

(v,w)∈C

dvw

)
=
∑
v∈C

∑
(u,v)∈C

duv −
∑
v∈C

∑
(v,w)∈C

dvw (3.32)

=
∑

(u,v)∈E(C)

duv −
∑

(v,w)∈E(C)

dvw = 0. (3.33)

However, the right-hand side of the same constraints is always positive. Hence we have a con-
tradiction. Therefore, G′ has only one connected component.

Due to Lemma 5 and Lemma 7, given input graphs G1 and G2 and the alignment graph
A(G1, G2), GTED(G1, G2) is equal to the optimal objective of

minimize
x∈{0,1}|E|

∑
e∈E

xeδ(e)

subject to constraints (3.16)–(3.19),
constraints (3.26)–(3.28)
and constraints (3.29)–(3.31).

(compact ILP)

3.5. A lower bound on GTED
While the (lower bound ILP) and the ILP in (3.11)-(3.12) do not solve GTED, the optimal so-
lution to these ILPs is a lower bound of GTED. It also solves an interesting variant of GTED
(Section 3.5.1), which is a local similarity measure between two genome graphs. We call this
variant as Closed-trail Cover Traversal Edit Distance (CCTED).

3.5.1 Closed-trail Cover Traversal Edit Distance
We introduce a variant of GTED, the Closed-trail Cover Traversal Edit Distance. We show in this
section that the lower bound ILP solves CCTED when the two input graphs have closed Eulerian
trails.
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We first introduce the min-cost item matching problem between two multi-sets. Let two
multi-sets of items be S1 and S2, and, wlog, let |S1| ≤ |S2|. Let c : (S1 ∪ {ϵ})× S2 → N be the
cost of matching either an empty item ϵ or an item in S1 with an item in S2. Given S1, S2 and the
cost function c, min-cost matching problem finds a matching,Mc(S1, S2), such that each item
in S1 ∪ {ϵ}|S2|−|S1| is matched with exactly one item in S2 and the total cost of the matching,∑

(s1,s2)∈Mc(S1,S2)
c(s1, s2), is minimized.

The min-cost item matching problem is similar to the Earth Mover’s Distance defined in [122],
except that only integral units of items can be matched and the cost of matching an empty item
with another item is not constant. Similar to the Earth Mover’s Distance, the min-cost item
matching problem can be computed using the ILP formulation of the min-cost max-flow prob-
lem [127, 135]. When the cost is the edit distance, the cost to match ϵ with a string is equal to
the length of the string.

Define traversal edit distance, editt(t1, t2) as the edit distance between the strings constructed
from a pair of trails t1 and t2. In other words, editt(t1, t2) = edit(str(t1), str(t2)).

Problem 5 (Closed-Trail Cover Traversal Edit Distance (CCTED)). Given two unidirec-
tional, edge-labeled Eulerian graphs G1 and G2 with closed Eulerian trails, compute

CCTED(G1, G2) ≜ min
C1∈CC(G1),
C2∈CC(G2)

∑
(t1,t2)∈Meditt (C1,C2)

edit(str(t1), str(t2)), (3.34)

Here, CC(G) denotes the collection of all possible sets of edge-disjoint, closed trails in G, such
that every edge in G belongs to exactly one of these trails. Each element of CC(G) can be
interpreted as a cover of G using such trails.Meditt(C1, C2) is a min-cost matching between two
covers using the traversal edit distance as the cost.

CCTED is likely a more suitable metric comparisons between genomes that undergo large-
scale rearrangements. This analogy is to the relationship between the synteny block compar-
ison [124] and the string edit distance computation, where the former is more often used in
interspecies comparisons and in detecting segmental duplications [18, 158, 159], and the latter is
more often seen in intraspecies comparisons.

Following similar ideas as Lemma 5, we can compute CCTED by finding a set of closed
trails in the alignment graph such that the total cost of alignment edges are minimized, and the
projection of all edges in the collection of selected trails is equal to the multi-set of input graph
edges.

Lemma 8. For any two edge-labeled Eulerian graphs G1 and G2,

CCTED(G1, G2) = minimize
C

∑
c∈C

δ(c) (3.35)

subject to C is a set of closed trails in A(G1, G2),⋃
e∈C

Πi(e) = Ei for i = 1, 2, (3.36)

where C is a collection of trails and δ(c) is the total cost of edges in trail c.

Proof. Given any pair of covers C1 ∈ CC(G1) and C2 ∈ CC(G2) and their min-cost matching
based on the edit distance Meditt(C1, C2), we can project each pair of matched closed trailed
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to a closed trail in the alignment graph. For a matching between a trail and the empty item ϵ,
we can project it to a closed trail in the alignment graph with all vertical edges if the trail is
from G1 or horizontal edges if the trail is from G2. The total cost of the projected edges must
be greater than or equal to the objective (3.35). On the other hand, every collection of trails
C that satisfy constraints (3.36) can be projected to a cover in each of the input graphs, and∑

c∈C δ(c) ≥ CCTED(G1, G2). Hence equality holds.

3.5.2 Correctness of the ILP formulation for CCTED
We show that the ILP in (3.5)-(3.8) proposed by Boroojeny et al. [16] solves CCTED.

Theorem 5. Given two input graphs G1 and G2, the optimal objective value of the ILP
in (3.5)-(3.8) based on A(G1, G2) is equal to CCTED(G1, G2).

Proof. As shown in the proof of Lemma 8, any pair of edge-disjoint, closed-trail covers in the in-
put graph can be projected to a set of closed trails inA(G1, G2), which satisfied constraints (3.6)-
(3.8). The objective of this feasible solution, which is the total cost of the projected closed trails,
equals CCTED. Therefore, CCTED(G1, G2) is greater than or equal to the objective of the ILP
in (3.5)-(3.8).

Conversely, we can transform any feasible solutions of the ILP in (3.5)-(3.8) to a pair of
covers of G1 and G2. We can do this by transforming one closed trail at a time from the subgraph
of the alignment graph, A′ induced by edges with ILP variable xuv = 1. Let c be a closed trail
in A′. Let c1 = Π1(c) and c2 = Π2(c) be two closed trails in G1 and G2 that are projected
from c. We can construct an alignment between str(c1) and str(c2) from c by adding match or
insertion/deletion columns for each match or insertion/deletion edges in c accordingly. The cost
of the alignment is equal to the total cost of edges in c by the construction of the alignment graph.
We can then remove edges in c from the alignment graph and edges in c1 and c2 from the input
graphs, respectively. The remaining edges inA′ and G1 and G2 still satisfy the constraints (3.6)-
(3.8). Repeat this process and we get a total cost of

∑
e∈E xeδ(e) that aligns pairs of closed trails

that form covers of G1 and G2. This total cost is greater than or equal to CCTED(G1, G2).

3.5.3 The relationship between CCTED and GTED
Let the variables in an optimal solution to (lower bound ILP) be xopt and the optimal objective
value be copt. Since the constraints for (lower bound ILP) is a subset of (exponential ILP), and
two ILPs have the same objective function, copt ≤ GTED(G1, G2) for any pair of graphs.

Moreover, when the solution to (lower bound ILP) forms only one connected component, the
optimal value of (lower bound ILP) is equal to GTED.

Theorem 6. LetA′(G1, G2) be the subgraph ofA(G1, G2) induced by edges (u, v) ∈ E with
xopt
uv = 1 in the optimal solution to (lower bound ILP). There exists A′(G1, G2) that has exactly

one connected component if and only if copt = GTED(G1, G2).

Proof. We first show that if copt = GTED(G1, G2), then there exists A′(G1, G2) that has one
connected component. A feasible solution to (exponential ILP) is always a feasible solution
to (lower bound ILP), and since copt = GTED(G1, G2), an optimal solution to (exponential ILP)
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is also an optimal solution to (lower bound ILP), which can induce a subgraph in the alignment
graph that only contains one connected component.

Conversely, if xopt induces a subgraph in the alignment graph with only one connected
component, it satisfies constraints (3.21)-(3.24) and therefore is feasible to the ILP for GTED
(exponential ILP). Since copt ≤ GTED(G1, G2), this solution must also be optimal for
GTED(G1, G2).

In practice, we may estimate GTED approximately by the solution to (lower bound ILP). As
we show in Section 3.7, the time needed to solve (lower bound ILP) is much less than the time
needed to solve GTED. However, in adversarial cases, copt could be zero but GTED could be
arbitrarily large. We can determine if the copt is a lower bound on GTED or exactly equal to
GTED by checking if the subgraph induced by the solution to (lower bound ILP) has multiple
connected components.

3.6. Characterizations of the ILP in (3.11)-(3.12)

Boroojeny et al. [16] propose the ILP in (3.11)-(3.12), and we show in Section ?? that the x
variables in this ILP have the same feasible region as the x variables in lower bound ILP. How-
ever, Boroojeny et al. [16] argue that the linear programming relaxation of the ILP in (3.11)-
(3.12) always yields integer optimal solutions, and therefore the ILP in (3.11)-(3.12) can be
solved in polynomial time. We provide a counterexample where the ILP in (3.11)-(3.12) yields
fractional optimal solutions with fractional variable values. Additionally, we show that the con-
straint matrix of the LP relaxation of the ILP in (3.11)-(3.12) is not totally unimodular given
most non-trivial input graphs.

3.6.1 The linear relaxation of the ILP in (3.11)-(3.12) does not always yield
integer solutions

3.6.1.1 [∂] is not necessarily totally unimodular

A linear programming formulation always yields integer solutions if its constraint matrix is to-
tally unimodular, which means that all of its square submatrices have determinants of 0, -1 or
1 [37]. To show that the constraint matrix of the LP relaxation of the ILP in (3.11)-(3.12) is not
totally unimodular, we first write the LP in standard form.

In a standard form of an LP, all variables are greater than or equal to 0. Since y vectors in
the LP relaxation of the ILP in (3.11)-(3.12) can contain negative entries, we decompose it into
y+ − y−. Given alignment graph A(G1, G2) = (V,E, δ) and T (G1, G2), we can now write the
standard form of the LP in (3.11)-(3.12) as

minimize
x∈R|E|,y+,y−∈R|T (G1,G2)|

∑
e∈E

xeδ(e)

subject to [I,−[∂], [∂]] [x, y+, y−]⊤ = xinit

x, y+, y− ≥ 0.

(3.37)
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Figure 3.6: (a) Subgraphs Gsub
1 and Gsub

2 of input graphs G1 and G2. Dots represent a path from
node 1 to k−1 with middle nodes omitted. (b) The alignment graphA(Gsub

1 , Gsub
2 ) with different

edges labeled with colors. (c) A subgraph of the alignment graph in (b) with edges and triangles
numbered. Dots represent horizontal and diagonal edges omitted. The same vertices that are
repeated in (c) are marked with yellow and red filling colors.

Hence the constraint matrix of the LP relaxation is A = [I,−[∂], [∂]]. According to the char-
acteristics of a totally unimodular matrix [136, p. 280] A is not totally unimodular if [∂] is not
totally unimodular. We show that [∂] is not TU when the input graphs satisfy the constraints
given in the following theorem.

Theorem 7. Given two unidirectional, edge-labeled Eulerian graphs G1 and G2 where
|E1| ≥ 2 and |E2| ≥ 2, the boundary matrix [∂] constructed from A(G1, G2) = (V,E, δ) and
T (G1, G2) is not totally unimodular if there is a vertex v ∈ V1 or V2 such that there are at least
3 unique edges in E1 or E2 that are incident to v. Here, unique edges are edges that connect to
v at one end but have different endpoints at the other end.

Proof. To prove that the boundary matrix is not TU, we only need to show that it is not TU
under one specific chosen orientation for 1- and 2-simplices, as well as one specific chosen set
of indices for 1- and 2-simplices. This is because changing the orientations or indices of 1-
simplices in E or 2-simplices in T (G1, G2) corresponds to permuting rows and columns of [∂]
or multiplying rows and columns of [∂] by −1, which preserves the total unimodularity [136, p.
280].

Without loss of generality, let v0 ∈ V1 be a node that is incident to at least 3 unique edges.
Since G1 is an Eulerian graph, v must be part of a cycle C in G1. Also, there must exist an-
other node vk and an edge between v0 and vk in either direction, such that the edge between
v0 and vk is not contained in cycle C (Figure 3.6(a)). Suppose the number of nodes in the cy-
cle is k (k ≥ 3 due to the unidirectionality constraint), and let the cycle C = v0, v1, . . . , vk−1.
Since a specific choice of 1-simplex orientations does not affect the total unimodularity of the
boundary matrix, we assume the edge between v0 and vk is [vk, v0] without loss of general-
ity. We use Gsub

1 = (V sub
1 , Esub

1 ) to denote the subgraph with V sub
1 = {v0, . . . , vk−1, vk} and

Esub
1 = {[vi, vi+1] : i ∈ {0, 1, . . . k − 2}} ∪ {[vk, v0]}. Since |E2| ≥ 2 and G2 is a connected

graph, there exist two consecutive, directed edges in G2. We use Gsub
2 = (V sub

2 , Esub
2 ) to de-

note the subgraph of G2 with V sub
2 = {va, vb, vc} and Esub

2 = {[va, vb], [vb, vc]}. The alignment
graph A(Gsub

1 , Gsub
2 ) is formed with Gsub

1 and Gsub
2 and is a subgraph of A(G1, G2), therefore,
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each subgraph of A(Gsub
1 , Gsub

2 ) is also a subgraph of A(G1, G2). Similarly, the 2-simplex set
T (Gsub

1 , Gsub
2 ) is a subset of T (G1, G2).

We extract a sequence of 2-simplices (Figure 3.6(c)), Tc, from T (Gsub
1 , Gsub

2 ) via following
steps:

1. Extract all oriented 2-simplices [(vi, va), (vi, vb), (vi+1, vb)] and
[(vi, va), (vi+1, va), (vi+1, vb)] for 0 ≤ i ≤ k − 2 from T (Gsub

1 , Gsub
2 ).

Flip the orientations of [(vi, va), (vi+1, va), (vi+1, vb)] for all 0 ≤ i ≤ k − 2, obtaining
[(vi, va), (vi+1, vb), (vi+1, va)]. Use σ2i to denote [(vi, va), (vi, vb), (vi+1, vb)], and σ2i+1 to
denote [(vi, va), (vi+1, vb), (vi+1, va)].

2. Add to the sequence another five oriented 2-simplices from T (Gsub
1 , Gsub

2 ) in the order as
specified: σ2k−2 = [(vk−1, va), (vk−1, vb), (v0, vb)], σ2k−1 = [(vk−1, vb), (v0, vb), (v0, vc)],
σ2k = [(vk, vb), (v0, vb), (v0, vc)], σ2k+1 = [(vk, va), (vk, vb), (v0, vb)] and finally σ2k+2 =
[(vk, va), (v0, va), (v0, vb)].

In total, we extract a sequence of (2k + 3) oriented 2-simplices, Tc = {σ0, σ1, . . . , σ2k+2},
such that σi and σi+1 mod (2k+3) share one edge. The extracted 2-simplices and their orien-
tations as well as all shared edges are shown in Figure 3.6(c). We flip the orientations of
[(vi, va), (vi+1, va), (vi+1, vb)] solely to ensure that the submatrix constructed below has a sim-
ple form, which makes it easier to compute the determinant.

Based on Tc, we obtain M1, a (2k+3)×(2k+3) submatrix of [∂] where each roll corresponds
to a shared edge and each column corresponds to a 2-simplex in Tc. The entry values of M1 are
the signed coefficients of each selected 1-simplex from the boundaries of selected 2-simplices.

M1 =



1 0 . . . 0 0 0 0 0 0 1
−1 1 . . . 0 0 0 0 0 0 0
0 −1 . . . 0 0 0 0 0 0 0
...

... . . . ...
...

...
...

...
...

...
0 0 . . . 1 0 0 0 0 0 0
0 0 . . . −1 1 0 0 0 0 0
0 0 . . . 0 −1 1 0 0 0 0
0 0 . . . 0 0 1 1 0 0 0
0 0 . . . 0 0 0 1 1 0 0
0 0 . . . 0 0 0 0 1 1 0
0 0 . . . 0 0 0 0 0 −1 −1


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The determinant of M1 is:

detM1

= det



−1 1 . . . 0 0 0 0 0 0
0 −1 . . . 0 0 0 0 0 0
...

... . . . ...
...

...
...

...
...

0 0 . . . 1 0 0 0 0 0
0 0 . . . −1 1 0 0 0 0
0 0 . . . 0 −1 1 0 0 0
0 0 . . . 0 0 1 1 0 0
0 0 . . . 0 0 0 1 1 0
0 0 . . . 0 0 0 0 1 1
0 0 . . . 0 0 0 0 0 −1


− det



1 0 . . . 0 0 0 0 0 0
−1 1 . . . 0 0 0 0 0 0
0 −1 . . . 0 0 0 0 0 0
...

... . . . ...
...

...
...

...
...

0 0 . . . 1 0 0 0 0 0
0 0 . . . −1 1 0 0 0 0
0 0 . . . 0 −1 1 0 0 0
0 0 . . . 0 0 1 1 0 0
0 0 . . . 0 0 0 1 1 0
0 0 . . . 0 0 0 0 1 1


= (−1)2k−2 × (−1)− 12k+2 = −2.

Since the determinant of M1 is -2, and M1 is a submatrix of [∂], [∂] is not totally unimodular.

The minimal pair of input graphs that satisfy the conditions in Theorem 7 is a graph with one
3-node cycle and one additional edge incident to the cycle and an acyclic, connected graph with
three nodes. In practice, most non-trivial edge-labeled Eulerian graphs satisfy these conditions.

According to the definitions in Dey et al. [37], the subgraph used to construct M1 in the
above proof (Figure 3.6(c)) is a Möbius subcomplex, and M1 is a (2k + 3)-Möbius cycle matrix
(MCM). Theorem 7 also establishes that there may exist a Möbius subcomplex in an alignment
graph, which corrects the false claim made in Lemma 2 in [16].

Theorem 2 in Boroojeny et al. [16] attempts to employ a more algebraic approach to at-
tempt to demonstrate that [∂] is TU by establishing that the alignment graph is a Möbius-free
product space. However, the property of being Möbius-free globally does not imply the ab-
sence of Möbius subcomplexes locally. As we show in Theorem 7, although the alignment graph
A(Gsub

1 , Gsub
2 ) is homotopically equivalent to the one-dimensional circle, which is Möbius-free,

it still contains a Möbius subcomplex.

3.6.1.2 The LP yields optimal fractional solutions.

The fact that [∂] is not totally unimodular does not guarantee that the LP in (3.11)-(3.12) has
a fractional optimal objective value. In this section, we prove that the LP in (3.11)-(3.12) does
not always yield integer optimal solutions by constructing a specific example with a fractional
optimal objective value.

Theorem 8. The LP in (3.5)-(3.8) and the LP in (3.11)-(3.12) do not always yield optimal
integer solutions.

We prove the above theorem by giving an example where the LP in (3.5)-(3.8) yields a frac-
tional optimal solution. Since by Theorem 4, two LPs are equivalent, it follows that the LP
in (3.11)-(3.12) also yields the same fractional optimal solution.

Construct G1 and G2 such that their edges and edge labels are equal to the ones specified
in Figure 3.7(a). Let the edge multi-set of A(G1, G2) be E. We assign an edge cost to 0 if
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Figure 3.7: An example of a fractional optimal solution to the LP in (3.11)-(3.12) and the LP
in (3.5)-(3.8). (a) A pair of input graphs to the LP in (3.11)-(3.12) and the LP in (3.5)-(3.8).
Letters in red are edge labels. (b) A subgraph of A(G1, G2) that is induced by alignment edges
with non-zero weights (blue font) in an optimal solution to the LPs. The letters in red show the
matching between the edge labels or between edge labels and gaps.

the edge matches two equal characters and 1 otherwise. Construct vector x∗ ∈ R|E| and set
entries corresponding to edges in Figure 3.7(b) to 0.5 except edge [(v3, vc), (v0, vf )] to which the
corresponding entry is set to 1. Set the rest of the entries of x∗ to 0.

Lemma 9. x∗ is an optimal solution to the LP in (3.5)-(3.8) constructed withA(G1, G2) and
T (G1, G2).

Proof. We prove the optimality of x∗ via complementary slackness. We first write the LP
in (3.5)-(3.8) in standard form.

minimize
x∈R|E|

∑
e∈E

δexe

subject to Ax = b

xe ≥ 0 for all e ∈ E.

(3.38)

Here, δ is a vector of size |E| where each entry is cost of edge e. The constraint matrix A of the
primal LP (3.38) has |E| columns and |V |+ |E1|+ |E2| = m rows, where V is the vertex set of
A(G1, G2), and E1 and E2 are edge multi-sets of the input graphs. The first |V | rows correspond
to the constraints specified in (3.6). The rest of the rows correspond to the constraints in (3.7)
that enforce the projected multi-set of edges to be equal to the multi-set of edges in each input
graph. Since the input graphs both contain Eulerian tours, the vector b has size m, where the first
|V | entries are zeroes and the rest of the entries are 1s.
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We write the dual form of LP (3.38) as follows.

maximize
y∈Rm

m∑
j=1

bjyj

subject to A⊤y ≤ δ.

(3.39)

Let the objective value of LP (3.38) given a x as input is objpx, and the objective value of LP (3.39)
given a y as input is objdy. To show that x∗ is an optimal solution to the LP in (3.5)-(3.8), we need
to show that there exists a feasible solution to the dual LP, y∗, that satisfies the complementary
slackness conditions and that objdy∗ = objpx∗ .

Since each alignment edge has two endpoints and is projected to at most one edge in each
graph, there are at most 4 non-zero entries in each column of A. The variables in y of the dual
form can be interpreted in three parts. Each of the first |V | entries of y can be assigned to each
vertex in the alignment graph, and the next |E1| entries can be assigned to edges in G1 and the
last |E2| entries can be assigned to edges in G2. There are |E| constraints in the dual LP, and the
e-th constraint can be assigned to one edge in the alignment graph has cost δe. Therefore, each
constraint that is assigned to a horizontal or a vertical edge can be written as

yvoute
− yvine + yei ≤ δe, (3.40)

where i = 1 if e is a horizontal edge, and i = 2 if e is a vertical edge. yvine and yvoute
are the

y entries that are assigned to the vertices that are the start and end of edge e, and yei are the y
entries that assigned to the πi(e).

Similarly, each constraint that is assigned to a diagonal edge is

yvine − yvoute
+ ye1 + ye2 ≤ δe. (3.41)

We can verify that x∗ is a feasible solution of the primal form (3.38) by checking if con-
straints (3.6)-(3.7) are satisfied. The primal objective value can be computed in a straightforward
way, and we can obtain objpx∗ = 3.5.

According to complementary slackness conditions, since x∗
e > 0 for edges shown in Fig-

ure 3.7(b), the corresponding constraints in the dual LP (3.39) must be tight, meaning that the
equality must hold in these constraints. The rest of the dual constraints could have non-zero
slacks.

Let the subgraph of A(G1, G2) shown in Figure 3.7(b) be A′. Denote the cycle that traverses
from [(0, f), (4, a)] to [(3, c), (0, f)] be C ′ and the 4-node cycle that traverses ((0, f), (1, a), (2, e),
(3, c)) be C ′′. Denote the concatenation of two cycles with C. The projected cycle from C to G1

is

C1 = (v0, v4, v5, v0, v4, v5, v0, v1, v2, v3, v0, v1, v2, v3, v0). (3.42)

The projected cycle from C to G2 is

C2 = (vf , va, ve, vc, vd, va, vb, vc, vd, va, vb, vc, vf , va, ve, vc, vf ). (3.43)
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Sum up all the constraints that are assigned edge e where x∗
e > 0. Since these edges form a cycle,

we get: ∑
e∈C

(
yvoute

− yvine
)
+ 2
( ∑
e1∈C1

ye1 +
∑
e2∈C2

ye2
)

(3.44)

= 0 + 2
( ∑
e1∈C1

ye1 +
∑
e2∈C2

ye2
)

(3.45)

=
∑
e∈C

δe = 7, (3.46)

⇒
∑
e1∈C1

ye1 +
∑
e2∈C2

ye2 = 3.5. (3.47)

The summed edge cost is 7 as there are 7 edges that are either mismatch edges or vertical edges.
All y entries that correspond to vertices are free variables and are in every constraint. After

fixing the y variables that satisfy constraints (3.47), the rest of the y variables can be set to satisfy
the dual cosntraint. We now obtain y∗ which is a feasible solution to the dual LP.

The only entries in y∗ that could have non-zero dual costs are those that correspond to edges
in E1 and E2. Since these corresponding dual costs are all 1,

objdy∗ =
∑
e1∈C1

ye1 +
∑
e2∈C2

ye2 = 3.5 = objpx∗ .

Since the costs of alignment graph edges are all integers, the fact that the LP in (3.11)-(3.12)
and the LP in (3.5)-(3.8) yield fractional optimal objective values mean that they must yield
fractional solutions and assign fractional values to entries in x. Theorem 8 follows. Since the
LP in (3.11)-(3.12) yields fractional solutions and GTED is always an integer, solving the LP
in (3.11)-(3.12) does not solve GTED.

3.7. Empirical evaluation of the ILP formulations for GTED
and its lower bound

3.7.1 Implementation of the ILP formulations
We implement the algorithms and ILP formulations for (exponential ILP), (compact ILP) and
(lower bound ILP). In practice, the multi-set of edges of each input graph may contain many
duplicates of edges that have the same start and end vertices due to repeats in the strings. We re-
duce the number of variables and constraints in the implemented ILPs by merging the edges that
share the same start and end nodes and record the multiplicity of each edge. Each x variable is no
longer binary but a non-negative integer that satisfy the modified projection constraints (3.16):∑

(u,v)∈E

xuvIi((u, v), f) = Mi(f) for all (u, v) ∈ E, f ∈ Gi, u ̸= s, v ̸= t, (3.48)
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where Mi(f) is the multiplicity of edge f in Gi. Let C be the strongly connected component
in the subgraph induced by positive xuv, now

∑
(u,v)∈E(C) xuv is no longer upper bounded by

|E(C)|. Therefore, the constraints (3.22) is changed to∑
(u,v)∈E(C)

xuv − |E(C)|+ 1−W (C)βC ≤ 0 for all C ∈ C, (3.49)

W (C) =
∑

(u,v)∈E(C)

max

(∑
f∈G1

M1(f)I1((u, v), f),
∑
f∈G2

M2(f)I2((u, v), f)

)
,

where W (C) is the maximum total multiplicities of edges in the strongly connected subgraph in
each input graph that is projected from C.

Likewise, constraints (3.30) that set the upper bounds on the ordering variables also need to
be modified, as the upper bound of the ordering variable duv for each edge no longer represents
the order of one edge but the sum of orders of copies of (u, v) that are selected, which is at most
|E|2. Therefore, constraints (3.30) are changed to

duv − |E|2(1− yuv) ≤ 0. (3.50)

The rest of the constraints remain unchanged.
We ran all our experiments on a server with 48 cores (96 threads) of Intel(R) Xeon(R) CPU

E5-2690 v3 @ 2.60GHz and 378 GB of memory. The system was running Ubuntu 18.04 with
Linux kernel 4.15.0. We solve all the ILP formulations and their linear relaxations using the
Gurobi solver [59] using 32 threads.

3.7.2 GTED on simulated TCR sequences
We construct 20 de Bruijn graphs with k = 4 using 150-character sequences extracted from
the V genes from the IMGT database [80]. We solve the linear relaxation of (compact ILP),
(exponential ILP) and (lower bound ILP) and their linear relaxation on all 190 pairs of graphs.
We do not show results for solving (compact ILP) for GTED on this set of graphs as the running
time exceeds 30 minutes on most pairs of graphs.

To compare the time to solve the ILP formulations when GTED is equal to the optimal ob-
jective of (lower bound ILP), we only include 168 out of 190 graphs where GTED is equal to
the lower bound. On average, it takes 26 seconds wall-clock time to solve (lower bound ILP),
and 71 seconds to solve (exponential ILP) using the iterative algorithm. On average, it takes
9 seconds to solve the LP relaxation of (compact ILP) and 1 second to solve the LP relaxation
of (lower bound ILP). The time to construct the alignment graph for all pairs is less than 0.2
seconds. The distribution of wall-clock running time is shown in Figure 3.8(a). The time to
solve (exponential ILP) and (lower bound ILP) is generally positively correlated with the GTED
values (Figure 3.8(b)). On average, it takes 7 iterations for the iterative algorithm to find the
optimal solution that induces one strongly connected subgraph (Figure 3.8(c)).

In summary, it is fastest to compute the lower bound of GTED. Computing GTED exactly by
solving the proposed ILPs on genome graphs of size 150 is already time consuming. When the
sizes of the genome graphs are fixed, the time to solve for GTED and its lower bound increases
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Figure 3.8: (a) The distribution of wall-clock running time for constructing alignment graphs,
solving the ILP formulations for GTED and its lower bound, and their linear relaxations on the
log scale. (b) The relationship between the time to solve (lower bound ILP), (exponential ILP)
iteratively and GTED. (c) The distribution of the number of iterations to solve exponential ILP.
The box plots in each plot show the median (middle line), the first and third quantiles (upper and
lower boundaries of the box), the range of data within 1.5 inter-quantile range between Q1 and
Q3 (whiskers), and the outlier data points.

as GTED between the two genome graphs increases. In the case where GTED is equal to its
lower bound, the subgraph induced by some optimal solutions of (lower bound ILP) contains
more than one strongly connected component. Therefore, in order to reconstruct the strings from
each input graph that have the smallest edit distance, we generally need to obtain the optimal
solution to the ILP for GTED. In all cases, the time to solve the (exponential ILP) is less than the
time to solve the (compact ILP).

3.7.3 GTED on difficult cases
Repeats, such as segmental duplications and translocations [32, 90] in the genomes increase the
complexity of genome comparisons. We simulate such structures with a class of graphs that
contain n simple cycles of which n− 1 peripheral cycles are attached to the n-th central cycle at
either a node or a set of edges (Figure 3.9(a)). The input graphs in Figure 3.2 belong to this class
of graphs that contain 2 cycles. This class of graphs simulates the complex structural variants in
disease genomes or the differences between genomes of different species.

We generate pairs of 3-cycle graphs with varying sizes and randomly assign letters from {A,
T, C, G} to edges. We compute the lower bound of GTED and GTED using (lower bound ILP)
and (compact ILP), respectively. We denote the lower bound of GTED computed by solving
(lower bound ILP) as GTEDl. We group the generated 3-cycle graph pairs based on the value of
(GTED − GTEDl) and select 20 pairs of graphs randomly for each (GTED − GTEDl) value
ranging from 1 to 5. The maximum number of edges in all selected graphs is 32.

We show the difficulty of computing GTED using the iterative algorithm on the 100 se-
lected pairs of 3-cycle graphs. We terminate the ILP solver after 20 minutes. As shown in
Figure 3.9, as the difference between GTED and GTEDl increases, the wall-clock time to
solve (exponential ILP) for GTED increases faster than the time to solve (compact ILP) for
GTED. For pairs on graphs with (GTED − GTEDl) = 5, on average it takes more than 15
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Figure 3.9: (a) An example of a 3-cycle graph. Cycle 1 and 2 are attached to cycle 3. (b) The
distribution of wall-clock time to solve the compact ILP and the iterative exponential ILP on 100
pairs of 3-cycle graphs.

minutes to solve (exponential ILP) with more than 500 iterations. On the other hand, it takes an
average of 5 seconds to solve (compact ILP) for GTED and no more than 1 second to solve for
the lower bound. The average time to solve each ILP is shown in Table 3.1.

In summary, on the class of 3-cycle graphs introduced above, the difficulty to solve GTED
via the iterative algorithm increases rapidly as the gap between GTED and GTEDl increases.
Although (exponential ILP) is solved more quickly than (compact ILP) for GTED when the
sequences are long and the GTED is equal to GTEDl (Section 3.7.2), (compact ILP) may be
more efficient when the graphs contain overlapping cycles such that the gap between GTED and
GTEDl is larger.

GTED - GTEDl
lower bound ILP

runtime (s)
GTED iterative

runtime (s) Iterations GTED compact
runtime (s)

1.0 0.06 0.17 3.55 0.39
2.0 0.05 0.87 13.00 0.43
3.0 0.08 25.41 67.60 1.24
4.0 0.07 205.59 179.10 1.70
5.0 0.08 943.68 502.85 5.37

Table 3.1: The average wall-clock time to solve lower bound ILP, exponential ILP, compact ILP
and the number of iterations for pairs of 3-cycle graphs for each GTED − GTEDl.
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3.8. Conclusion
We point out the contradictions in the result on the complexity of labeled graph comparison prob-
lems and resolve the contradictions by showing that GTED, as opposed to the results in Boroo-
jeny et al. [16], is NP-complete. On one hand, this makes GTED a less attractive measure for
comparing graphs since it is unlikely that there is an efficient algorithm to compute the measure.
On the other hand, this result better explains the difficulty of finding a truly efficient algorithm for
computing GTED exactly. In addition, we show that the previously proposed ILP of GTED [16]
does not solve GTED and give two new ILP formulations of GTED.

While the previously proposed ILP of GTED does not solve GTED, it solves for a lower
bound of GTED. Further, we characterize the LP relaxation of the ILP in (3.11)-(3.12) and show
that, contrary to the results in Boroojeny et al. [16], the LP in (3.11)-(3.12) does not always yield
optimal integer solutions.

As shown previously [16, 127], it takes more than 4 hours to solve (lower bound ILP) for
graphs that represent viral genomes that contain ≈ 3000 bases with a multi-threaded LP solver.
Likewise, we show that computing GTED using either (exponential ILP) or (compact ILP) is
already slow on small genomes, especially on pairs of genomes that are different due to segmental
duplications and translations. The empirical results show that it is currently impossible to solve
GTED or its lower bound directly using this approach for bacterial- or eukaryotic-sized genomes
on modern hardware. The results here should increase the theoretical interest in GTED along the
directions of heuristics or approximation algorithms as justified by the NP-hardness of finding
GTED.
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Chapter 4

Expressiveness of Genome Graphs and its
Effect on Genome Graph Comparison

This chapter was published in ISMB 2022 and Bioinformatics [127] and is joint work with Carl
Kingsford. The code to reproduce results in this chapter can be found at https://github.com/
Kingsford-Group/gtedemedtest.

4.1. Introduction
Intra-sample heterogeneity describes the phenomenon where a genomic sample contains a di-
verse set of genomic sequences. A heterogeneous string set is a set of strings where each string
is assigned a weight representing its abundance in the set. Computing the distance between het-
erogeneous string sets is essentially computing the distance between two distributions of strings.
We formulate the problem of heterogeneous sample comparison as the heterogeneous string set
comparison problem.

This problem can be used to compare samples that contain different sets of genomic se-
quences. For example, cancer samples are clustered based on differences in their genomic and
transcriptomic features [104, 167] into cancer subtypes that correlate with patient survival rates.
The dissimilarities between T-cell receptor (TCR) sequences are computed between individuals
to study immune responses [15]. Different compositions of these sequences result in different
clinical outcomes such as response to treatment.

We point out that the Earth Mover’s Distance (EMD) [135], or the Wasserstein distance [160],
with edit distance as the ground metric is an elegant metric to compare a pair of heterogeneous
string sets. Given two distributions of items and a cost to transform one item into another, EMD
computes the total cost of transforming one distribution into another. The EMD was initially
used in computer vision to compare distributions of pixel values in images [84] and later adapted
to natural language processing [76]. It has also been used to approximate the distance between
two genomes [95] by computing the distance between two distributions of k-mers. To compare
heterogeneous string sets, when the strings and their distributions are known, we use edit distance
as the cost to transform one string to another. We refer to this as the Earth Mover’s Edit Distance
(EMED).
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In practice, the complete strings of interest and their abundances are often unknown, and these
strings are only observed as fragmented sequencing reads. It is impossible to exactly compute
EMED between the true sets of complete strings from the sequencing reads only.

The challenges posed by incomplete observed sequences can be alleviated by representing
the string set using a graph structure. Multiple types of genome graphs have been introduced [6,
39, 51, 62, 64, 79, 89, 103, 118, 119]. For our purposes, a genome graph is a directed multigraph
with labeled nodes and weighted edges, along with a source and a sink node. A string is spelled
by a source-to-sink path, or s-t path, if it is equal to the concatenation of node labels on the path.
We say that a genome graph represents a string set if the union of paths that spells each string in
the set is equal to the graph. In other words, a string set can be spelled by a decomposition of the
genome graph.

There are several methods that compute the distance between genome graphs [16, 102, 124].
Among those, Graph Traversal Edit Distance (GTED) [16] is a general measure that can be
applied to genome graphs and does not rely on the type of genome graphs nor the knowledge of
the true string sets. Given two genome graphs, GTED is the minimum edit distance between two
strings spelled by Eulerian trails in each graph.

However, applying GTED on genome graphs representing heterogeneous string sets may
overestimate the similarity between these string sets for two reasons. First, Eulerian trails in
genome graphs that represent heterogeneous string sets spells concatenated strings in the string
set. As a result, since GTED is the distance between Eulerian trails, it measures the edit distance
between the concatenated strings instead of the distance between the string sets. Specifically,
computing the edit distance between concatenated strings may align the prefix of one string to the
suffix of another string without appropriate penalties. Thus, as we show in this chapter, GTED
always underestimates the actual distance between the heterogeneous string sets. We address
this challenge by proposing a variant of GTED, called Flow-GTED, which is the minimum earth
mover’s edit distance between the string sets spelled by flow decomposition of input graphs.

Second, and more significantly, both FGTED and GTED are the edit distance between the
two string sets represented by each genome graph that are most similar to each other. However, a
genome graph that is constructed from sequencing fragments typically is able to represent more
than one set of strings [72, 120]. As a genome graph merges shared sequences into the same
node, it creates chains of bubble structures [165] that result in an exponential number of possible
paths, and these paths spell a much more diverse collection of strings than the original set. We
call the degree to which a genome graph encodes a larger set of strings than the true underlying
set the “expressiveness” of a genome graph. Due to the expressiveness of a genome graph, the
Eulerian cycles found by GTED may not spell the true set of strings and the computed distance
may be far from the true distance between string sets used to construct the graphs (Figure 4.1(a)).

We prove both that FGTED is always larger than or equal to GTED, and that FGTED is
always less than or equal to the EMED between true sets of strings.

However, FGTED and GTED can be quite far from the EMED. To resolve this discrepancy
between FGTED and EMED, we define the collection of strings that can be represented by the
genome graph as its string set universe, and genome graph expressiveness as the diameter of its
string set universe (SUD), which is the maximum EMED between two string sets that can be
represented by the graph (Figure 4.1(b)).

Using diameters, we are able to upper-bound the deviation of FGTED from EMED. Addi-
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Figure 4.1: (a) Genome graph expressiveness results in inexact representations of true string sets.
(b) Overview of part of theoretical contributions.

tionally, we are able to correct FGTED and more accurately estimate the true string set distance
empirically. On simulated TCR sequences, we reduce the average deviation of FGTED from
EMED by more than 300%, and increase the correlation between the true and estimated string
set distances by 20%. On Hepatitis B virus genomes, we reduce the average deviation by more
than 250%.

These results provide the first connection between comparisons of genome graphs that en-
code multiple sequences and a natural string distance and provide the first formalization of the
expressiveness of genome graphs. Additionally, they provide a practical method to estimate and
reduce discrepancy between genome graph distances and string set distances.

4.2. Preliminary Concepts

4.2.1 Strings
Definition 10 (Heterogeneous string set). A heterogeneous string set S = {(w1, s1), . . . , (wn, sn)}

contains a set of strings, where each string si is assigned a weight wi ∈ [0, 1] that indicates the
abundance of si in S. We say that the total weight of S is

∑
i∈[1,n] wi = 1.

Here, edit(s1, s2) is the minimum cost to transform s1 into s2 under edit distance [83]. The
set of operations that transforms s1 to s2 can be written as an alignment between s1 and s2, or
A = align(s1, s2). The i-th position in A is denoted by A[i] =

[
c(1,i)
c(2,i)

]
, where c(a,i) is either a gap

character “-” or a character in sa.
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Figure 4.2: An example of a valid flow graph and flow decomposition. The heterogeneous string
set S = {(TAT, 0.5), (CAG, 0.5)} is represented by the graph on the right. Each edge in the
graph has a capacity/flow of 0.5. The blue and orange dashed arrows represent two paths in a
flow decomposition in the graph.

4.2.2 Flow Networks
Definition 11 (Valid flow network). A directed graph G = (V,E,w), where w(e) is the

weight of each edge, is a valid flow network if there exists a source s and sink node t such that
the graph contains exactly one strongly connected component and that

(Flow conservation)
∑

(u,v)∈E

w(u, v) =
∑

(v,w)∈E

w(v, w) ∀v ∈ V, v ̸= s, v ̸= t,

(Total capacity)
∑

(s,u)∈E

w(s, u) =
∑

(v,t)∈E

w(v, t) > 0.

Definition 12 (s-t Flow decomposition). A s-t flow decomposition of a valid flow graph G,
denoted as D(G), is a collection of s-t paths and their weights P = {(w1, p1), . . . , (wn, pn)},
where pi =

(
(s, u1), . . . , (um, t)

)
is an ordered sequence of edges in G, such that:

(Flow coverage)
∑
pi∈P

O(e, i) · wi = w(e) ∀e ∈ G,

where O(e, i) is equal to the number of occurrences of edge e in path pi.
A valid flow network (Figure 4.2) has at least one way of flow decomposition according to

the flow decomposition theorem [3] and typically has more than one flow decomposition. Let
the set of all possible flow decomposition of G be DG .

4.2.3 Genome Graphs
There are many variants of genome graphs used for various purposes and in various settings.
Here, we introduce the definition of genome graphs we will use.

Definition 13 (Genome graph). A genome graph G = (V,E, l, w) is a valid flow network
with node set V , edge set E, node labels l(u) for each u ∈ V and edge weights w(e) for each
e ∈ E. A genome graph contains a source node s and a sink node t, and l(s) =“$”, l(t) =“#”,
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where $ and # are special characters that do not appear in any string set considered in the scope
of this chapter.

Define operator S(·) that transforms a set of paths in a genome graph G to a set of strings
by concatenating the node labels on each path. S(P) = {

(
concat(p), w(p)

)
| p ∈ P} is a

heterogeneous string set where the weight of each string is equal to the weight of the path that
spells the string.

Definition 14 (String set represented by a genome graph). A genome graph G represents a
string set S if there exists a decomposition D(G) ∈ DG , such that S(D(G)) = S .

We use G = G(S) to denote when G represents S.
Definition 15 (String set universe represented by a genome graph). The string set universe

SU(G) of a genome graph G is the collection of heterogeneous string sets that can be represented
by G. Formally, SU(G) = {S(D) | D ∈ DG}.

4.2.4 Alignment Graph
We use the same definition for the alignment graphs as in Chapter 3. For the sake of complete-
ness, we reiterate the definition here.

Definition 16 (Alignment graph). Let G1, G2 be two unidirectional, edge-labeled Eulerian
graphs. The alignment graph A(G1, G2) = (V,E, δ) is a directed graph that has vertex set
V = V1 × V2 and edge multi-set E that equals the union of the following:
Vertical edges [(u1, u2), (v1, u2)] for (u1, v1) ∈ E1 and u2 ∈ V2,
Horizontal edges [(u1, u2), (u1, v2)] for u1 ∈ V1 and (u2, v2) ∈ E2,
Diagonal edges [(u1, u2), (v1, v2)] for (u1, v1) ∈ E1 and (u2, v2) ∈ E2.
Each edge is associated with a cost by the cost function δ : E → R.

Definition 17 (Projection function). Define the projection function as P(G,H)(e) = E ′ that
maps an edge e from graph G to a set of edges E ′ in graph H. The projection function maps an
edge in the alignment graph to the edges in the input graphs that are matched together by that
edge. It also maps an edge in one of the input graphs to a set of edges in the alignment graph
where it is matched with other edges in another input graph. Specifically:
Projection from alignment graph to one of the input graphs is defined by

P(AG,Gi)((u1, u2), (v1, v2)) = {(ui, vi)}, i ∈ {1, 2}.

Projection from one of the input graphs to alignment graph is defined by

P(G1,AG)((u1, v1)) = {e | e = ((u1, u2), (v1, v2)) ∈ EAG},
P(G2,AG)((u2, v2)) = {e | e = ((u1, u2), (v1, v2)) ∈ EAG}.

Given a set of paths P in AG, we use P(AG,Gi)(P) to denote the projection of P onto Gi,
where P(AG,Gi)(P) = {

(
P(AG,Gi)(e) | e ∈ p

)
| p ∈ P}.

For convenience, we define that fi(D(AG)) = S(P(AG,Gi)(D(AG))), which is the set of
strings spelled by a path decomposition in AG that is projected onto Gi.
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4.2.5 Graph Traversal Edit Distance (GTED)
Graph Traversal Edit Distance (GTED), proposed by Boroojeny et al. [16], is a distance between
two labeled graphs which are assumed to be Eulerian graphs. Given a genome graph in our
definition, we add an edge directing from sink to source with a weight equal to the sum of edge
weights that are directed from the source node in order to make an Eulerian graph.

We reiterate the definition of GTED from Chapter 3.
Problem 6 (Graph Traversal Edit Distance (GTED) [16]). Given two unidirectional, edge-

labeled Eulerian graphs G1 and G2, compute

GTED(G1, G2) ≜ min
t1∈trails(G1)
t2∈trails(G2)

edit(str(t1), str(t2)). (4.1)

Here, trails(G) is the collection of all Eulerian trails in graph G, str(t) is a string constructed
by concatenating labels on the Eulerian trail t = (e0, e1, . . . , en), and edit(s1, s2) is the edit
distance between strings s1 and s2.

According to Lemma 5, GTED can be computed by finding a s-t trail in the alignment graph
whose projection is equal to the input graphs that has a minimum cost.
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Figure 4.3: (a) An alignment graph AG between G1 (vertical) and G2 (horizontal). Insertion,
deletion and match/mismatch edges are labeled with different colors. (b) AG′ after removing
all the edges with zero flow in a solution to FGTED(G1,G2). Edges in G1 and G2 that are high-
lighted with matching colors are projections from edges in AG′ to G1 and G2, respectively. Path
($, A, T,#) ∈ G1 is aligned to ($, A, T,#) ∈ G2 and path ($, A, C,#) ∈ G1 is aligned to
($, A,#) ∈ G2. The weights on AG and AG′ edges are omitted for simplicity.

4.3. Traversal edit distance between two pangenome graphs
GTED was originally used to compare genome graphs that are assumed to contain single genomes.
It is therefore intuitive that each string represented by the genome graph is spelled with an Eu-
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lerian cycle. This property follows the property of assembly graphs [123]. When the genome
graph represents more than one string, finding a string spelled by an Eulerian cycle c in the graph
is equivalent to finding a concatenation of a permutation of strings in a string set. When aligning
two Eulerian cycles, c1 and c2, from input graphs, the boundaries between strings are ignored
and the prefix of one string may be aligned to the suffix of another string with no cost. However,
such alignment is not allowed when we compare sets of strings.

4.3.1 Earth Mover’s Edit Distance
To find a distance between two heterogeneous string sets, we need to take into account not only
the distance between pairs of strings, but also the abundance of each string in the set. When we
compare two heterogeneous string sets, we are essentially comparing two distributions of strings.
Therefore, we propose using the Earth Mover’s Distance (EMD) as a natural distance measure,
which is also known as the Wasserstein distance [156] in the literature and is related to optimal
transport.

Given two distributions of items (here, strings) and a cost function that quantifies the cost of
transforming one item into another, the EMD between the two distributions is the minimum cost
to transform one distribution into another. Computing EMD can be viewed as a transportation
problem that finds a many-to-many mapping between two sets of items and minimizes the total
cost of the mapping [135, 160].

EMD was used to compare histograms that are normalized to having the same support [135].
In the case where two sets have different total weights, the items that are not matched are dropped
without penalty.

To use EMD with the edit distance and compare sets of strings, we allow strings to not be
matched with any string and add a penalty for when a string is not matched. The Earth Mover’s
Edit Distance (EMED) is equal to the cost of the normalized min-cost matching between two
heterogeneous string sets defined below. The normalized min-cost matching is similar to the
min-cost matching introduced in Section 3.5.1.

Given two heterogeneous string sets, S1 and S2, and the edit distance cost function edit(·, ·),
we add an empty string, ϵ, with weight 0 to each string set to produce S ′

1 and S ′
2, respectively.

The normalized min-cost matching problem finds a matching, M = Medit(S1,S2), which is a
matrix of size (|S1|+ 1)× (|S2|+ 1), such that

M = argmin
Medit(S1,S2)

∑
s1∈S′

1
s2∈S′

2

edit(si, sj) · Mi,j

subject to
|S1|∑
i=1

Mi,j = wj for all 1 ≤ j ≤ |S2|,

|S2|∑
j=1

Mi,j = wi for all 1 ≤ j ≤ |S1|.

(4.2)

Equations (4.2) define a mapping between S ′
1 and S ′

2 that contain the added empty strings. The
normalized EMED allows but does not enforce matching between a nonempty string with an
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empty string. The edit distance between an empty string and a nonempty string s is equal to the
length of s.

EMED between two string sets can be computed in polynomial time by solving the LP relax-
ation of the ILP formulation (4.2).

4.3.2 Flow Graph Traversal Edit Distance
We propose a variant of GTED so that it is equal to the minimum EMED between string sets
represented by each genome graph.

Definition 18 (Flow-GTED). Given two genome graphs G1 and G2,

FGTED(G1, G2) = min
D1∈DG1
D2∈DG2

EMED(S(D1), S(D2))

4.3.3 FGTED is NP-complete
We show that FGTED is NP-complete using a similar argument as in the proof of the NP-
completeness of GTED in chapter 3 (Theorem 3).

Theorem 9. FGTED is NP-complete.

Proof. Let G = (v, E) be an instance of the HAMILTONIAN CYCLE problem. Let n = |V | be
the number of vertices in G. Construct the Eulerian closure of G and split the anti-parallel edges.
Let the new graph be G′ = (V ′, E ′). Attach a source s and a sink node t to an arbitrary node vin1
by adding edge (s, vin1 ) and (vin1 , t) with labels s and t, respectively.

Construct a string q, such that

q = sa#(b#a#)n−1(c#)2n−1(c#b#)|E|+1t. (4.3)

Create a graph Q that only contains one path with labels on the edges of the path that spell the
string q. The union of the set of trails in any flow decomposition of G′ is equal to a set of Eulerian
trails, E , that starts at s and ends at t. All Eulerian trails in E are also closed Eulerian trails of
G′ \ {s, t} that starts and ends at vin1 .

Using the same line of argument in the proof of Theorem 3, an Eulerian trail in G′ that spells
q is equivalent to a Hamilton Cycle in G. In addition, FGTED(Q,G′) = 0 if and only if all
Eulerian trails in E spell out q. Therefore, if FGTED(Q,G′) = 0, then there is a Hamiltonian
Cycle in G. Otherwise, then there must not exist a Hamiltonian Cycle in G.

4.3.4 FGTED reduced to GTED with a modified alignment graph
We show that FGTED can be computed by using GTED as a subroutine and propose the follow-
ing algorithm for solving FGTED.

Given two input graphs G1 and G2, we add an edge from sink to source to each input graph
so that they are Eulerian. Let A(G1, G2) be the alignment graph constructed based on the two
input genome graphs G1, G2. Let s and t be the source and sink of the alignment graph. Modify
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the edge costs such that the cost of aligning the sink character “#” with any other character and
the cost of introducing gaps right before the edge with the sink character is infinity.

Suppose a solver solves GTED by finding the minimum-cost s-t trail in A(G1, G2). Let the
trail found by the GTED solver be A′, which is a subgraph of A. Let A∗ be A′ after removing
the sink-to-source edge.

Theorem 10. The total cost of edges in A∗ is equal to FGTED(G1,G2).
We prove Theorem 10 by showing that each s-t path in the flow decomposition of D(A∗) is

equal to the edit distance between two strings represented by two s-t paths in each of the input
graphs.

Figure 4.3(a) gives an example of the alignment graph built from two input graphs using the
proposed cost function. Let the sink nodes in G1 and G2 be t1 and t2, and the source nodes be
s1 and s2, respectively. After removing all the alignment edges with infinite costs, there is an
edge to the alignment node (t1, t2) in AG if and only if there exists an edge (u1, t1) in G1 and an
edge (u2, t2) in G2. The only incoming edge to (s1, s2) is (s, (s1, s2)) and ((t1, t2), (s1, s2)), and
the only outgoing edge from (t1, t2) is ((s1, s2), t) and ((t1, t2), (s1, s2)). We refer to the edge
((t1, t2), (s1, s2)) as the sink-to-source edge in the alignment graph in the rest of this chapter.

Lemma 10. Given an s-t path p ∈ D(A∗), let s1 = S(P(A∗,G1)(p)) be the string spelled by
projecting p onto G1, and s2 = S(P(A∗,G2)(p)). Then for any p ∈ D(A∗),∑

e∈p

cost(e) = edit(s1, s2).

Proof. We prove in two directions.

(≥ direction) We construct A = align(s1, s2) from p. For each e = ((u1, u2), (v1, v2)) ∈ p:
(1) if u1 = v1, add c =

[ −
l(v2)

]
to A, (2) if u2 = v2, add c =

[
l(v1)
−
]

to A, (3) else, add c =
[
l(v1)
l(v2)

]
to

A. By definition of an alignment graph, cost(e) = cost(c) in for all e, and therefore

cost(A) =
∑
c∈A

cost(c) =
∑
e∈p

cost(e).

Since edit distance minimizes the cost of edit operations, cost(A) = cost(p) ≥ ED(s1, s2).

(≤ direction) We construct p′ from A∗ = align(s1, s2) such that cost(A∗) = ED(s1, s2). The
procedure is similar as above — for each pair of adjacent entries in A∗, add corresponding edge
to p′. Then cost(p′) = cost(A∗) = ED(s1, s2).

Let A′ = A∗ \ p ∪ p′. Both p and p′ can be found in A, and both p and p′ can be constructed
by the alignment of the same pair of strings. Therefore, A′ is also a valid flow network and a
feasible solution to GTED. Since A∗ is the optimal solution to GTED, cost(A∗) ≤ cost(A′),
and

cost(AG∗)− cost(AG′) ≤ 0

⇒ w(p) · (cost(p)− cost(p′)) ≤ 0

⇒ w(p) · (cost(p)− ED(s1, s2)) ≤ 0

⇒ cost(p) ≤ ED(s1, s2).
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We then show that for any arbitrary s-t flow decomposition of A∗, the earth mover’s edit
distance between string sets reconstructed from the decomposition is equal to the sum of edge
costs in A∗.

Lemma 11. Given S∗
1 and S∗

2 obtained from any decomposition D(AG∗) ∈ DA∗ ,

EMED(S∗
1 ,S∗

2 ) = cost(A∗),

where cost(A∗) is sum of edge costs in the solution alignment graph to GTED.

Proof. We prove in two directions.

(≤ direction) We construct a mapping M between strings in S∗
1 and S∗

2 from the decomposition
D(A∗), where M(si, sj) is the portion of si ∈ S1 and sj ∈ S2 that are aligned. For each
p ∈ D(A∗), we obtain s1 and s2 as strings constructed from projections of p onto G1 and G2 and
increment the weight of mapping M(s1, s2) by w(p). After iterating through all paths in D(A∗),
the cost of M is

cost(M) =
∑

(s1,s2)∈M

M(s1, s2) · ED(s1, s2)

=
∑

p∈D(A∗)

w(p) · cost(p) = cost(A∗).

M is also a feasible solution to the LP formulation of EMED (4.2). Since EMED minimizes the
cost of mapping between S∗

1 and S∗
2 , EMED(S∗

1 ,S∗
2 ) ≤ cost(A∗).

(≥ direction) We construct a valid flow network,A′ using an optimal solution to EMED(S∗
1 ,S∗

2 ).
For each pairing (si, sj) for si ∈ S1 and sj ∈ S2, we obtain its weight w and cost c from
the EMED solution. Let A = align(si, sj) be an optimal alignment under edit distance, and
cost(A) = c. We then add a path corresponding to A with weight w in A′. This follows
the same procedure in the proof of Lemma 10. After adding all paths, we obtain A′ with
cost(A′) = EMED(S∗

1 ,S∗
2 ). Since cost(A∗) is minimized by GTED, cost(A′) ≥ cost(A∗) ⇒

EMED(S∗
1 ,S∗

2 ) ≥ cost(A∗).

Lemma 11 provides a transformation algorithm between optimal solutions to EMED and
solutions to GTED under modified edge costs related to sink characters. Using Lemma 11, we
can show that the EMED between S∗

1 and S∗
2 constructed from any decomposition inA∗ is equal

to the decompositions of G1 and G2 that are closest in terms of EMED.
Lemma 12. Given S∗

1 and S∗
2 obtained from any decomposition D(A∗) ∈ DA∗ ,

EMED(S∗
1 ,S∗

2 ) = min
D1∈DG2 ,
D2∈DG2

EMED
(
S(D1), S(D2)

)
Proof. In Lemma 11, S∗

1 and S∗
2 can be constructed from decomposing G1 and G2. Suppose

for contradiction that there exists a decomposition that constructs string sets S ′
1 and S ′

2, such
that EMED(S∗

1 ,S∗
2 ) > EMED(S ′

1,S ′
2). Following the procedure in the proof of Lemma 11,

we can construct a feasible solution to GTED with a cost equal to EMED(S ′
1,S ′

2), which is
less than cost(A∗) = EMED(S∗

1 ,S∗
2 ). This contradicts the assumption that GTED minimizes

cost(A∗).
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According to Lemma 12 and definition of FGTED, the proposed algorithm to solve FGTED
via GTED is correct.

4.4. The Relationship Between GTED, FGTED and EMED

4.4.1 FGTED is Always Smaller Than or Equal to GTED
Theorem 11. GTED(G1,G2) ≤ FGTED(G1,G2) for any pair of genome graphs G1,G2.

Proof. Since computing FGTED uses an alignment graph that is a subgraph of the alignment
graph without modification, any solution to FGTED can be transformed into a solution in GTED.
Since GTED(G1,G2) minimizes the total edge costs, the theorem is true.

Observing that we can do flow decomposition in both the FGTED solution and input genome
graphs, we will show in this section that FGTED can be bounded by EMED between decompo-
sitions in input genome graphs and in the alignment graph solutions.

Theorem 12. Given two sets of strings S1 and S2, and genome graphs representing these
string sets, G1 = G(S1) and G2 = G(S2),

0 ≤ EMED(S1,S2)− FGTED(G1,G2) (4.4)

≤ min
D(A∗)∈DA∗

S∗
1=f1(D(A∗))

S∗
2=f2(D(A∗))

(
EMED(S1,S∗

1 ) + EMED(S2,S∗
2 )
)

(4.5)

where A∗ is the solution obtained from FGTED(G1,G2).
The proof of this theorem is completed in two parts. The first inequality is shown in Sec-

tion 4.4.2 and the second is proven in Section 4.4.3. Since FGTED computes a distance that
is larger than GTED between the same pair of genome graphs (Theorem 11), Theorem 12 also
shows that FGTED always estimates the distance between true string sets more accurately than
GTED.

4.4.2 FGTED is Always Less Than or Equal to EMED
Lemma 13. Given heterogeneous string sets S1 and S2 and genome graphs representing

these string sets, G1 = G(S1) and G2 = G(S2), FGTED(G1,G2) ≤ EMED(S1,S2).

Proof. According to the definition of FGTED, FGTED is equal to flow decomposition in DG1

and DG2 that minimizes the EMED between them. Since S1 and S2 can be constructed from a
flow decomposition in DG1 and DG2 , respectively, this lemma is true.
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4.4.3 Genome Graph Expressiveness
A genome graph typically can represent more than one set of strings. We name the collection
of string sets representable by a genome graph the string set universe of that genome graph, or
SU(G). FGTED is equal to the minimum EMED between two sets of strings in the string set
universe of G that are the closest in the metric space of EMED. We define the expressiveness of
a genome graph as the diameter of its string set universe, which is the maximum EMED between
the string sets in SU(G).

Definition 19 (String Set Universe Diameter (SUD)). Given a genome graph G,

SUD(G) = max
Sa,Sb∈SU(G)

EMED(Sa,Sb)

4.4.3.1 String Set Universe Diameter as an Upper Bound on Deviation of FGTED from
EMED

The string set universe diameter gives one measure of the size of SU(G), and it can also be used
to characterize the deviation of GTED from EMED.

Let S1 and S2 be the true string sets that are represented by G1 and G2. Recall that S∗
1 and S∗

2

are string sets obtained from a decomposition D(A∗), and that
EMED(S∗

1 ,S∗
2 ) = FGTED(G(S1), G(S2)). From Theorem 12, we have that EMED(S1,S2) ≥

EMED(S∗
1 ,S∗

2 ). We can bound the deviation of EMED(S∗
1 ,S∗

2 ) from EMED(S1,S2) using tri-
angle inequalities.

Lemma 14. Given string sets S1 and S2 and genome graphs G1 = G(S1) and G2 = G(S2),

EMED(S1,S2)− FGTED(G1,G2)
≤ min

D(AG∗)∈DAG∗
S∗
1=f1(D(AG∗))

S∗
2=f2(D(AG∗))

(
EMED(S1,S∗

1 ) + EMED(S2,S∗
2 )
)
, (4.6)

where AG∗ is the solution obtained from FGTED(G1,G2).

Proof. Both edit distance and EMD are metrics [83, 135], which means that triangle inequality
holds for EMED between strings. Therefore, for any string sets S∗

1 and S∗
2 ,

EMED(S1,S∗
1 ) + EMED(S∗

1 ,S2) ≥ EMED(S1,S2)
EMED(S2,S∗

2 ) + EMED(S∗
1 ,S∗

2 ) ≥ EMED(S∗
1 ,S2)

Combining two inequalities, we have

EMED(S∗
1 ,S∗

2 ) = FGTED(G1,G2) ≥ EMED(S1,S2)− (EMED(S1,S∗
1 ) + EMED(S2,S∗

2 ))

⇒ EMED(S1,S2)− FGTED(G1,G2) ≤ EMED(S1,S∗
1 ) + EMED(S2,S∗

2 ). (4.7)

The above inequality (4.7) holds for any string sets S∗
1 and S∗

2 . To give a tight upper bound
on the deviation, we take the minimum over all possible pairs of string sets constructed from
decomposing A∗ that yields inequality (4.6).
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Lemma 14 proves the second inequality of Theorem 12 thus completing the proof for Theo-
rem 12 with Lemma 13.

The upper-bound found in Lemma 14 can be used as a factor that evaluates the pair-wise
expressiveness of two genome graphs. While a genome graph may represent a large universe
of string sets, as long as the true string set is close to the “best” string set in the pair-wise
comparison, the deviation of FGTED from EMED is small. We define this upper bound as the
String Universe Co-Expansion Factor (SUCEF), which can be used to evaluate the discrepancy
between FGTED and EMED.

Definition 20 (String Universe Co-Expansion Factor (SUCEF)).

SUCEF(S1,S2,G1,G2) = min
D(AG∗)∈DAG∗
S∗
1=f1(D(AG∗))

S∗
2=f2(D(AG∗))

(
EMED(S1,S∗

1 ) + EMED(S2,S∗
2 )
)
,

where A∗ is the solution to FGTED(G1,G2).
On the other hand, finding SUCEF not only requires knowledge of true string sets S1 and S2,

but SUCEF is also a pair-dependent measure that needs to be calculated for every pair of string
sets and corresponding genome graphs. In order to characterize the effect of the expressiveness
of individual genome graphs, we introduce another upper bound on the deviation of FGTED
from EMED using the string set universe diameters.

The sum of string set universe diameters of two genome graphs is an upper bound on SUCEF
of these graphs and any two sets of strings they represent.

Lemma 15. Given two genome graphs G1 and G2 and two sets of strings S1 and S2 they
represent,

EMED(S1,S2)− FGTED(G1,G2) ≤ SUCEF(S1,S2,G1,G2)
≤ SUD(G1) + SUD(G2).

Proof. Both S1 and S∗
1 are represented by G1 and belong to SU(G1). Therefore, by definition

of string set universe diameter, EMED(S1,S∗
1 ) ≤ SUD(G1) as the diameter maximizes the

distance between any pair of strings represented by the genome graph. The same holds for
EMED(S2,S∗

2 ) ≤ SUD(G2).

Using Lemma 15, we can bound the deviation of FGTED from EMED using the expres-
siveness of individual genome graphs even when we do not have the knowledge of ground truth
string sets. In practice, we can construct genome graphs using known sequences from the species
of interest and form a training set. Using the training set, we can learn the relationship between
SUDs and the deviation of FGTED from EMED, and then empirically estimate the anticipated
discrepancy between FGTED and EMED. In the following sections, we show that we can im-
prove FGTED using SUDs to obtain reduced anticipated deviation from EMED and stronger
correlation with EMED.
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4.5. Correcting the discrepancy between FGTED and EMED
empirically

4.5.1 Estimating String Set Universe Diameters
The string set universe diameter of a genome graph can be estimated by sampling flow decom-
positions of the graph. To sample a flow decomposition, we first sample one s-t path. At each
node u, we choose the neighbor v with the highest edge weight w(u, v) with probability 0.5 and
randomly choose a neighbor otherwise. After sampling a path, we send flow that is equal to the
minimum edge weight on that path and produce the residual graph by subtracting the flow from
edge weights on that s-t path. We repeat this process on the residual graph until all edge weights
are zero. This process assumes that the input genome graphs are acyclic to ensure all edge ca-
pacities (weights) are satisfied because otherwise there might be isolated cycles in the graph that
is not reachable from the source node. If a genome graph is cyclic, e.g. de Bruijn graphs, string
sets from SU(G1) can be obtained by sampling Eulerian cycles in the genome graph, and each
string in the string set is obtained by segmenting the sampled Eulerian cycle at source and sink
nodes. After sampling 50 pairs of flow decompositions, we construct string sets from sampled
flow decompositions and calculate pairwise EMED. We then obtain the highest pairwise EMED
and use it as the estimated diameter.

4.5.2 Correcting FGTED Using String Set Universe Diameters
Using the sum of SUDs, we empirically estimate the deviation of FGTED from EMED with a lin-
ear regression model. We denote the deviation of FGTED from EMED by deviation(S1,S2,G1,G2),
which is computed as |EMED(S1,S2) − FGTED(G(S1), G(S2))|. The linear regression model,
LR, has the following form:

deviation(S1,S2,G1,G2) = a ·
(
SUD(G1) + SUD(G2)

)
+ b

= LR
(
SUD(G1) + SUD(G2)

)
,

where a is the coefficient of the model and b is the intercept. The fitted model will minimize the
mean squared error between predicted deviation and true deviation in the training set.

The corrected FGTED for each pair of graphs is calculated using the learned linear regression
model as follows.

correctedFGTED(G1,G2) = FGTED(G1,G2) + LR
(
SUD(G1) + SUD(G2)

)
The deviation of corrected FGTED from EMED has the same form as the deviation of uncor-
rected FGTED from EMED.

4.5.3 Data
We evaluate the use of string set universe diameters on two sequence sets:
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1. Simulated T-Cell Receptor (TCR) Repertoire. We simulate 50 sets of TCR sequences
and assign weights to each sequence using reference gene sequences of V, D and J genes
from Immunogenetics (IMGT) V-Quest sequence directory [81]. The number of sequences
in each set varies from 2 to 5. We then generate 225 pairs of TCR string sets. Each
TCR sequence is about 300 base pairs long. See Supplementary Materials for detailed
simulation process.

2. Hepatitis B Virus (HBV) Genomes. We collect 9 sets of HBV genomes from three hosts
— humans, bats and ducks — from the NCBI virus database [61]. We build 36 pairs of
HBV string sets. See Supplementary Materials for detailed string set construction process.

4.5.4 Procedures to generate data sets

Group 1 Group 2 Group 3 Group 4 Group 5

TRB V 5 34 63 92 121
TRB J 5 8 11 14 15
TRB D 3 3 3 3 3

Table 4.1: The number of unique V, J and D gene sequences in each reference gene group.

4.5.4.1 Synthetic Sets of T-cell Receptor Sequences

We construct five reference gene groups by sampling reference sequences obtained from the
IMGT database [81] that represent varied diversities of V, D, J gene repertoires. The number of
sequences in each group is shown in Table 4.1. We construct five TCR sequence groups, and each
group of TCR sequences are constructed using genes from one of the five reference gene groups.
To generate each TCR sequence, we randomly select a V, D and J gene from corresponding gene
group, and randomly introduce m ∈ {1, 3, 5, 8, 10} single-nucleotide mutations to each sequence
at random locations. This step is to simulate recombination and occurrences of junction single
nucleotide polymorphisms (SNPs). 500 sequences are generated in each TCR sequence group.

We construct 50 immune repertoires in five groups. Each repertoire group are constructed
using simulated TCR sequences from corresponding TCR sequence group. Within each group,
each sequence set contains 2–10 sequences with randomly assigned weights that sum to 100. 45
string set pairs are generated within each group.

4.5.4.2 Heterogeneous sets of Hepatitis B Virus genomes

We obtain 30 HBV genomes from each of three host species — human, bat, duck — from the
NCBI virus database [61]. We construct 3 string sets for each host species. For each string set,
we randomly select 5 HBV genomes from one host and randomly assign a weight to each string
so that the sum of string weights in each set is equal to 100.

We construct a partial order MSA graph on each string set [78]. We first conduct multiple
sequence alignment (MSA) for each string set using Clustal Omega [143]. Then for each column
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of the MSA, we create a node for each unique character and add an edge between two nodes if
the characters in node labels are adjacent in the input strings at that column. For each consecutive
stretch of gap characters, no nodes are created, but an edge is added between flanking columns
of the stretch of gaps. We also create a source node and a sink node that are connected to nodes
representing the first and last characters of the input strings. The MSA graphs created in this
process are all acyclic. We compute FGTED on MSA graphs by adding sink-to-source edges.

We also construct a de Bruijn graph [123] with k-mer size equal to 4 on TCR sequence sets,
which we refer to as dBG4 in the following sections. This k-mer size is reasonable as compared
to the average lengths of TCR sequences which is 350 base pairs and allows us to experiment
with graphs that are expected to have higher expressiveness. In dBG4, each node corresponds
to a k-mer, S[i : i + k], where S is a string from the ground truth string set, S. Each edge
corresponds to the overlap between two k-mers, S[i : i + k] and S[i + 1 : i + k + 1] for any
S ∈ S. In order to construct the alignment graph, we process the de Bruijn graphs such that each
node represents one character. We add a source node and a sink node to each dBG4 and connect
them to nodes that represent the first and the last character in each string, respectively.

4.5.5 Estimation of FGTED and GTED using LP relaxations of CCTED
As noted in Chapter 3, GTED can be solved using the ILP formulations (compact ILP) and
(exponential ILP). However, it is impossible to compute GTED exactly within a reasonable time
on graphs that represent strings of lengths of more than 100 characters. On the other hand, while
the value of CCTED between two graphs can be much smaller than GTED, when the solution of
CCTED has only one component, CCTED is equal to GTED.

In the following sections, we estimate FGTED and GTED by the LP relaxations of the ILP
in (3.5)-(3.8) that computes a lower bound on CCTED. We validate that the solutions to the LP
relaxation of CCTED in all of the input graph pairs have one connected component.

4.5.6 FGTED Deviates from EMED as the Expressiveness of the Genome
Graph Increases

We compute EMED and FGTED on string set pairs and genome graph pairs. The alignment
graphs are constructed using one thread, which on average takes 6 seconds for dBG4s, 8 seconds
for each MSA graph on TCR sequences, 9.43 minutes for each MSA graph on HBV genomes.
Optimization for LP with 10 threads takes on average 601 seconds for each dBG4, 1 hour for
each MSA graph of TCR sequence sets and 4 hours for each MSA graph on HBV genomes
(Figure S1).

We show that the deviation of FGTED from EMED is higher on genome graphs that are
more expressive. We compare the FGTED computed on dBG4s and MSA graphs constructed
with TCR sequences and the diameters of two types of graphs. DBG4 represents all sequences
with the same 5-mer distributions as the ground truth sequences. Therefore, as expected, we
observe larger sampled SUDs from dBG4 than the MSA graphs (Figure 4.4(a)). The deviation
of FGTED from EMED is also larger with dBG4s than the MSA graphs (Figure 4.4(b)). This
further illustrates the effect of graph construction approaches on the resulting expressiveness.
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Figure 4.4: Comparison between de Bruijn graphs and MSA graphs constructed with TCR se-
quence sets. (a) The distribution of diameters sampled in both types of graphs. Each box shows
the quartiles of the distribution, and the whiskers show the rest of the distribution. Each black
dot represent the diameter of one graph. (b) The correlation between FGTED and EMED with
different types of graphs. The red line denotes equality between FGTED and EMED.

4.5.7 Corrected FGTED More Accurately Estimates Distance Between Un-
seen String Sets Encoded With Genome Graphs

For each pair of string sets, we obtain the deviation of FGTED from EMED and sum of estimated
SUDs. We fit three linear regression models, LRdBG4, LRTCR and LRHBV , to predict deviation
from sum of SUDs on simulated TCR sequences and HBV genomes of different types of graphs
separately.

We evaluate the corrected and uncorrected FGTED by performing Pearson correlation exper-
iments. We fit LR models on half of the data and compute the corrected FGTED on the other
half as the test set. We evaluate the correlation between corrected and uncorrected FGTED and
EMED on the test set. Two-tail P-values are calculated for each correlation experiment to test
for non-correlation.

The LR models are evaluated with 10-fold cross validation. We randomly permute and split
data into 10 equal parts. In each of the 10 iterations, we use one part as the test set and the rest
as the training set. An average deviation is calculated across all iterations.

FGTED
Pearson Correlation

TCR (dBG4) TCR (MSA Graph) HBV (MSA Graph)

Uncorrected 0.75 0.74 0.99
Corrected 0.68 0.90 0.99

Table 4.2: Pearson correlation between EMED and corrected and uncorrected FGTED on sim-
ulated TCR and HBV sequences. Pearson correlation is calculated on a held-out set of data for
both simulated TCR and HBV that consist of 50% of data, and LR model is fit on the other half.

In Table 4.2 and Table 4.3, we show that using string set universe diameters, we are able to
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improve the correlation between FGTED and EMED on MSA graphs of both the simulated TCR
sequences and HBV genomes. On dBG4s, the correlation is reduced slightly by the correction.
All Pearson correlation experiments are statistically significant with P-values < 0.01. On HBV
genomes, since the correlation between uncorrected FGTED and EMED is approaching 1, no
significant improvement is observed. On the other hand, significant reduction in average devia-
tion is observed on both types of data. We are able to reduce the average deviation from 77.29 to
19.08 on de Bruijn Graphs with TCR sequences, from 32.74 to 9.13 on MSA graphs containing
simulated TCR sequences and from 140.12 to 54.87 on HBV genomes.

FGTED
Average Deviation

TCR (dBG4) TCR (MSA Graph) HBV (MSA Graph)

Uncorrected 77.29 32.74 140.12
Corrected 19.08 9.13 54.87

Table 4.3: Average deviation of corrected and uncorrected FGTED from EMED on simulated
TCR and HBV sequences. The average deviation is calculated over a 10-fold cross-validation of
the LR model.

One caveat of using SUDs for correcting distances between genome graphs is that this cor-
rection is not guaranteed to always improve the distance. Given two string sets, there is usually
an adversarial worst case where adjusting the distance using this approach reduces the accuracy
in estimating string sets distances. When EMED between true string sets are small, the corrected
FGTED may overestimate the EMED and result in a larger deviation. Nevertheless, we show
that corrected FGTED reduces the anticipated deviation from EMED.

4.5.8 The scalability of FGTED
We compare the running time in real time of computing FGTED between graphs constructed with
TCR sequences and HBV genomes (Figure 4.5). We ran all our experiments on a server with 24
cores (48 threads) of two Intel Xeon E5 2690 471 v3 @ 2.60GHz and 377 GB of memory. The
system was running Ubuntu 18.04 with Linux kernel 472 4.15.0.

4.6. Discussion
A genome graph’s string set universe diameter (SUD) provides information on the size and di-
versity of the represented string sets. We show that we can use SUDs to practically characterize
the discrepancy between FGTED and EMED and to obtain a more accurate distance between
unseen string sets encoded in genome graphs on average. While the results are obtained on
short genomic sequences due to the high computational cost of FGTED and GTED, this result is
encouraging.

The corrected FGTED can be used to compute a more accurate distance between heteroge-
neous samples represented by genome graphs in applications such as immune repertoire analy-
sis and cancer subtyping. This opens up avenues for more comprehensive heterogeneous sam-
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Figure 4.5: The time taken in the two steps to compute FGTED with dBG4s and MSA graphs.
The orange part shows the running time to construct the alignment graph between input genome
graphs. The blue part shows the running time to construct and solve the LP formulations. The
length of each bar is the average running time for each graph. The error bars represent the
standard deviations. Y-axis is in log-scale.

ple comparison methods. However, FGTED, as well as GTED, is not scalable to mammalian
genomes due to the quadratic size of the alignment graph and time it takes to solve the LP for-
mulations. Algorithms that compute FGTED faster or efficient approximation genome graph
comparison methods [101, 102, 124] are needed for comparing large heterogeneous string sets.

SUDs may also be used to characterize the diversity of strings represented by reference
genome graphs that are used in sequence-to-graph alignment [132, 147]. In sequence-to-graph
alignment, it is often desired that a more diverse set of strings than the original reference string
set is represented by the graph. Here, SUDs could be used as a measure to control the right
amount of variation in the string set universe of created genome graphs.

Another future direction is to use expressiveness as a regularization term in the objective
function to construct better genome graphs. To ensure efficiency of genome graphs in storing
sequences, we can construct genome graphs that minimize their sizes [117, 126]. However,
reducing the size of a genome graph may result in graphs that are highly expressive, and the
distance between these genome graphs will deviate further from distances between true string
sets. Adding a SUD term to the objective may address this problem.
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Chapter 5

Discussion and Conclusion

5.1. Summary of contributions
In this dissertation, we establish algorithmic foundations for constructing and comparing genome
graphs by addressing the challenges posed by the discrepancies between the strings in their plain,
linear representation and the graph structures. We contribute to both the theoretical and practical
aspects.

In Chapter 2, we develop an algorithmic framework that leverages decades of work in string
compression to the graph representation of pangenomes. This framework directly addresses
the problem of minimizing the size of the genome graph which eventually leads to a type of
genome graphs that are space efficient. On the theoretical side, draw the connection between
the elements in an EPM-compressed form and a genome graph and show that the proposed
framework constructs a small genome graph as long as it is given a small compressed string. We
also identify that, while the choice of the sources in string compression problems does not affect
the size of the compressed form, it affects the size of the constructed genome graph. We address
this discrepancy by introducing and solving the source assignment problem. On the practical
side, we implement a proof-of-concept framework that constructs a genome graph using the
relative Lempel-Ziv algorithm, and we achieve a significant improvement in both the speed and
space efficiency in the constructed genome graphs.

In Chapter 3, we address the property of time efficiency of genome graph comparison by
revisiting the problem of genome graph traversal edit distance and the previously proposed al-
gorithms for it. We first point out the conflict between the previous result on the complexity of
GTED and other sequence-to-graph comparison problems and prove that GTED is in fact NP-
complete. We then show that the previously proposed algorithm for GTED does not solve GTED
but solves for a lower bound of GTED and a variant of GTED, the Closed-trail Cover Traversal
Edit Distance problem. Further, we characterize the CCTED problem and show that CCTED
between two genome graphs is equal to GTED when the solution to the ILP of CCTED does not
find one strongly connected component. This result set allows us to check if the estimated GTED
is accurate when we use CCTED to estimate GTED. We also characterize the ILP for CCTED
and point out that it cannot be solved in polynomial time as opposed to the claim in Boroojeny
et al. [16]. The reason that the previous GTED ILP formulations fail to model GTED correctly
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is that they allow strictly disjoint strongly connected components in the alignment graph. There-
fore, we propose two corrected ILP formulations, that eliminate disjoint SCCs in two ways. The
first ILP has an exponential number of constraints for each strongly connected subgraph, which
can be added iteratively. The second ILP, compact ILP, has a polynomial number of constraints
that enforces a partial ordering on all selected edges. We evaluate the efficiency of both proposed
ILPs and show that the exponential ILP is faster to solve than the compact ILP in when CCTED
equal to GTED. When GTED is greater than CCTED, the compact ILP is faster than the expo-
nential ILP. This is because the iterative process of adding constraints would align pairs of all
possible strongly connected subgraphs that result in the current CCTED value before moving to
the next value in the alignment graph, which could easily be exponential. The ILP formulation
for CCTED is the fastest to solve. However, our empirical results, combined with the previous
result in Boroojeny et al. [16] suggest that none of the ILPs for solving the traversal edit distances
are practical to be applied to pangenomic studies due to their slow speed.

In Chapter 4, we address the property of expressiveness of the genome graphs and study its
effect on genome graph comparisons. We propose a distance metric between two collections of
genomes, the Earth Mover’s Edit Distance, that measures the global similarities between strings
that takes into account both the composition and the string content. Based on EMED, we pro-
pose a distance metric for pangenome comparison by extending the GTED metric to flow-GTED,
which is the minimum Earth Mover’s Edit Distance between sets of strings reconstructed from
flow decompositions of the input genome graphs. We point out that genome graphs constructed
using one set of strings are more expressive than the string representation and can usually repre-
sent a larger collection of sets of strings. When we do not know the complete true strings due to
limitations in sequencing technology and compare genome graphs constructed from sequencing
reads (e.g. assembly graphs), we may get a metric that is far from the true distance between
the genomes we compare. We show that GTED and FGTED always underestimate the distance
between sets of strings encoded in the genome graph. To address the negative side effect of the
expressiveness of the genome graph, we formally characterize the expressiveness and use it as
a correction factor to offset expressiveness by sampling Eulerian tours or flow decompositions
in the input genome graphs. To evaluate the improvement of graph comparison corrected by
expressiveness, we first compute an estimate of FGTED using the adapted CCTED and correct
the estimated distance using expressiveness on simulated TCR repertoires and Hepatitis B Virus
genomes. We show that by using expressiveness as a correction factor, we can obtain a better
estimation of the edit distance between input pan-genomes.

5.2. Limitations
In Chapter 2, we explored the connection between EPM-compression algorithms and genome
graphs, but our analysis mainly focuses on relative Lempel-Ziv algorithm in empirical experi-
ments. While the Lempel-Ziv algorithms [169] do not belong to EPM-compression scheme, they
are used widely in genomics to compress indexing structures. The connection between genome
graphs and other compression schemes is to be explored. Additionally, the complexity of the
source assignment problem and whether this problem can be solved by an empirically efficient
algorithm are to be determined.
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In Chapter 3, the proposed ILPs to solve GTED are not scalable even to small, prokaryotic
genomes. The proposed ILPs are only evaluated on very small genome graphs and on limited
cases. For example, differences in the running time of different ILPs are not evaluated on larger
genomes graphs (with > 150 edge).

In Chapter 4, we estimate the expressiveness by sampling from the genome graph using
random walks. However, it is unknown if the sampling is biased toward a set of strings that
may be selected with higher probability due to the graph structure. Additionally, GTED is only
one formulation of comparing graphs. The robustness of string universe diameter as a correction
factor could be further confirmed by using it to correct other graph comparison or pangenome
comparison methods. Further, the corrected FGTED is only evaluated on a few sets of HBV
genomes.

5.3. Future directions
We propose future directions that build upon the research presented in this dissertation and aim
to improve the practicality of implemented algorithms and developed theories on the essential
properties of the genome graphs.

5.3.1 Practical auxiliary indexing structures of RLZ-graph
In Chapter 2, the RLZ-graph data structure could be more practical if it had accompanied sequence-
to-graph alignment algorithms and a coordinate system. Both of these functions could be adapted
from literature on RLZ-compressed strings to RLZ-graph.

A genome graph defines the space of the pan-genomic analysis and thus should support the
coordinate query that returns the location and the identifier of the sample genome given a path or
a node in the genome graph [27]. The coordinate query is specified by the following problem.

Problem 7 (Coordinate system query). Given a genome graph G = (V,E, ℓ) that encodes
a set of genomic strings S and a query node identifier n ∈ V , find the set of identifier-location
pairs L = {(i, j)}, where for each (i, j) ∈ L, ℓ(n) = S[i][j : j + len(ℓ(n))]. Here, S[i] is string
i in string set S and S[i][j : j + len(ℓ(n))] is the substring starting at location j with length
equal to the length of ℓ(n) in S[i].

Problem 7 has a counterpart in relative Lempel-Ziv compressed strings. Ferrada et al. [43]
develop an indexing structure that enables random access in RLZ-compressed strings, which,
given the location in the input string S, returns the character that corresponds to S[i] without
decompression through a bit-vector Bp that stores the start location of each phrase in the input
string. The bit vector, B, implemented in RLZ-graph stores the starting location of each node
in the reference string. By combining Bp, B and the sequence of pointers in the compressed
form, we have a set of operations that can transform a location in the input string to a node
in the graph (Figure 5.1). This correspondence is the reverse operation to the one described in
Problem 7. To answer the coordinate system query, we can build a dictionary that stores the
correspondence between pointers and the reference string. Given a location i in the reference
string R, the dictionary returns a set of phrases that represents substring at R[i]. By using the
select operations in B and Bp, we can get from a node to the phrases and the location in the input
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Figure 5.1: Auxilary structure for building a coordinate system on RLZ-graphs. T is the input
string, t is the sequence of pointers/phrases from RLZ factorization, R is the reference string, and
G is the RLZ-graph. Green arrows represents constant-time queries to obtain pointers, substrings
from the reference string, and nodes using bit vectors Bp, pointers, and B, respectively. Red
arrows represent the operation that returns a set of pointers given a substring on the reference
string.

strings (Figure 5.1). Since in RLZ-graph, the input strings are concatenated into one string with
the special character “$” as the boundary between strings, we can use another bit-vector to store
the location of the “$” characters to get the sample identifier.

The auxiliary data structure developed for the coordinate system query can also be used
to answer the read mapping query, which asks where in the genome graph and corresponding
sample strings a query string is mapped. The read mapping query is defined in the following
problem.

Problem 8 (Read mapping query). Given a genome graph G = (V,E, ℓ) that encodes a set
of strings S, a query string q and a threshold t, find the set of identifier-location-length pairs
L = {(i, j, k)} such that for each (i, j) ∈ L,

edit(str(q), str(S[i][j : j + k − 1])) ≤ t.

Problem 8 is a generalization of sequence-to-pangenome mapping that could be answered by
first aligning a query string to a genome graph and using the coordinate system of the genome
graph to convert the alignment back to the coordinate in the set of genomes. While existing
read mapping indexing structures [71, 87, 132, 145, 146, 166] could be applied to RLZ-graph
directly, it might be more space- and time-efficient to adapt existing indexing structures designed
for sequence query [30, 40, 46] in RLZ-compressed strings to the RLZ-graph.

By adapting existing algorithmic innovations for RLZ-compressed strings, the RLZ-graph
could be more practical and scalable to pan-genomic analysis on thousands of eukaryotic genomes.

The compression-to-graph framework can be further improved to reduce the graph size by hi-
erarchical compression. Hierarchical compression was applied to string compression and shows
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significant improvement in compression ratio without compromising the speed of alignment sig-
nificantly [13, 114]. Additionally, a hierarchical genome graph representation of the genome
graph can be used to encode the phylogeny relationship between the genome graphs [27].

5.3.2 Faster pan-genome comparisons
In chapter 3, unfortunately, we show that the family of traversal edit distance problems are ei-
ther NP-hard (GTED) or at least very difficult to solve efficiently on larger genomes via integer
linear programming (both GTED and CCTED). This result, however, is in concordance with
complexity results on many sequence-to-graph matching problems. Sequence-to-graph match-
ing has been sped up by the seed-and-extend techniques. A future direction of work is to speed
up the traversal distance computation by reducing it to sequence-to-graph traversal distance com-
putation and applying the seed-and-extend techniques.

In traversal edit distance computation, by solving an ILP based on an alignment graph, two
sets of strings are found directly from the string universes of two input graphs, which requires
exploring a huge feasible space. One way to reduce the feasible space is to shift to an iterative
scheme and find sets of strings that are closer in each iteration.

An iterative framework. Given a pair of genome graphs, G1 and G2, we first sample a set of
strings S1 from SU(G1). We then find S2 ∈ SU(G2) such that emedit(S1, S2) is minimized.
Then, find S ′

1 ∈ SU(G1) such that emedit(S ′
1, S2) is minimized. Repeat the process of finding

the closest string set to the previously found string set until the Earth Mover’s Edit Distance
has converged. This process is described by a pseudo-code in Algorithm 2. It is open whether
the proposed framework yields a solution that approximates FGTED within a factor for general
genome graphs or for certain types of genome graphs. Although the sequence-to-graph matching
under traversal edit distance is also NP-complete as shown in Chapter 3, reducing graph-to-graph
matching to sequence-to-graph matching reduces the size of the problem and therefore may speed
up traversal edit distance computation.

Algorithm 2: An iterative framework to estimate FGTED
1: Input Two genome graphs G1 and G2.
2: S1 ← sample(G1)
3: FGTED′ ← inf
4: while true do
5: S2 = argminS∈SU(G2) emedit(S1, S)
6: if edit(S1, S2) ≥ FGTED′ then return the converged estimate FGTED′

7: else
8: FGTED′ = emedit(S1, S2)
9: S1 = argminS∈SU(G1) emedit(S, S2)

10: end if
11: end while
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Heuristics to estimate traversal edit distance between a string set and a genome graph.
Since sequence-to-graph matching is NP-complete with the Eulerian constraint, we propose a
heuristic to estimate the traversal edit distance between a string and a genome graph, which is
defined by minS∈SU(G) emedit(S1, S) given a string set S1 and a genome graph G.

An Eulerian tour in a graph can be defined by a set of pairings between edges at each node
with more than one unique out-neighbors [153]. A node, v, is an out-neighbor of u if edge (u, v)
is in the graph. Similarly, a node w is an in-neighbor of u if edge (w, u) is in the graph. For a
node with in-neighbors set I and out-neighbors set O, an edge matching is M ∈ I ×O such that
each edge in I is matched once with one edge in O. A pair of matched edges, (e1, e2), defines a
traversal ordering where e2 is traversed immediately after e1 in an Eulerian trail. Such a matching
always exists if the graph is an Eulerian graph. A set of edge matchings for all nodes is called
valid if the traversal orders defined by the matching results in an Eulerian tour.

The set of valid edge matchings defines an Eulerian tour. Given a string s, we can estimate
the traversal edit distance between s and G by finding the minimum-cost valid edge matching
with a cost function based on the local similarity between s and each in-out edge pairs in G.

Problem 9 (Min-cost edge matching problem). Given an edge-labeled Eulerian graph G =
(V,E, ℓ) and a string s, find a set of valid edge matchingM such that the total cost:

cost(M, s) =
∑

Mv∈M

∑
(ei,ej)∈Mv

editl(ℓ(ei) · ℓ(ej), s),

where Mv is the min-cost matching for edges adjacent to v, is minimized.
Here, ℓ(ei) · ℓ(ej) is the concatenated labels on ei and ej , editl is the minimum cost to align

the string ℓ(ei) · ℓ(ej) to a substring of s.
The min-cost edge matching problem is a variant of the minimum reload cost Eulerian tour

problem [8] where the input graph is an Eulerian graph with no edge labels, and the matching cost
is predetermined. The minimum reload cost Eulerian tour problem is proven to be NP-complete.

An approximation heuristics to the min-cost edge matching problem is by finding the min-
cost s-t trails iteratively in the line graph of the input graph. The line graph L(G) of a graph G is
constructed by creating a node for each edge in G and connecting two nodes if the corresponding
edges are adjacent. Starting with an input Eulerian graph G and a string s, we first compute the
editl for all pairs of adjacent edges. Obtain L(G) where each node ve corresponds to edge e in
G. The cost of each edge (ve1 , ve2) in L(G) is equal to the cost of matching e1 and e2. Repeat the
following procedure iteratively until the remaining graph is empty. We choose a pair of source
and sink nodes, s and t. We find a s-t trail with minimum cost and remove it from L(G). If t
is still reachable from s, repeat the process of finding a min-cost s-t trail and removing it from
L(G). If t is no longer reachable from s, choose a new pair of s and t and repeat the process
of finding and removing a min-cost s-t trail. When L(G) is empty, collapse all selected shortest
paths into edges and obtain a new graph L(G)′. Repeat the process described above until the
final graph contains only one edge, which has the edge label that spells a string constructed from
an Eulerian trail in the original graph G.

The running time of finding a min-cost trail between two nodes under reload cost, or pair-edge
cost is polynomial [8], and therefore the approximation heuristics described above is polynomial.
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It is open whether such a heuristics could find a lower bound on the solution to Problem 9 within
a constant or a polynomial factor of the optimal distance between a string and a graph.

5.3.3 Integrating expressiveness evaluation and pan-genome construction
As mentioned in Chapter 1, expressiveness is a desired feature of a pan-genome representation as
it allows the representation to encode a larger population of genomes that enables flexibility and
sensitivity. However, too much expressiveness hinders the accuracy of pan-genomic operations.
Therefore, a pan-genome construction method that controls not only the size but also expressive-
ness is beneficial for more accurate representations of a pangenome. We describe the Genome
graph size and expressiveness optimization problem as follows:

Problem 10 (Genome graph size and expressiveness optimization problem). Given a set of
strings S and a threshold t, construct a genome graph G such that

G = argmin
G

size(G) + α · |express(G)− t|

subject to S ∈ SU(G).

Here, size(G) is the combined space taken by storing nodes, edges and node labels. express(G)
is a quantity representing the level of expressiveness of G. α is a scaling factor. SU(G) is the
string universe of G, which is equal to the collection of all sets of strings G encodes, which is
defined in Chapter 4 Section 4.4.3. In Chapter 4, express(G) is defined as the maximum distance
between string sets encoded by a genome graph, which is computed by sampling.

Alternative definitions of expressiveness could be used to reduce the false positive rate of
aligning a read to a panel of reference genomes in a population. A read mapped to the genome
graph is a false positive mapping if this read comes from a genome that does not belong to the
genome population encoded by the genome graph. For example, aligning a bacterial genomic
segment to a human genome is a false positive alignment. This type of false positive alignment
error could be reduced by restricting the deviation of strings encoded in the genome graph from
the genomes that are used to construct the genome graph.

Given a set of founding strings S and a genome graph G constructed based on S, the expres-
siveness of G can be defined as maxS′∈SU(G) emedit(S ′, S). The use of the founding strings and
comparing them with the “peripheral” strings in the genome graph is analogous to the concept
of core and accessory genomes in metagenomics, where the core genome is the set of gene se-
quences shared among the community of microbes and the accessory genome is the set of genes
unique to some subsets of microbes. By restricting the expressiveness based on the founding
strings, we restrict the variability of strings encoded by the genome graph, and only store strings
that are closely related to the founding strings in the genome graph.

The challenges of solving the genome graph size and expressiveness optimization problem is
the complexity to quantify the expressiveness of a genome graph and the complexity to solve the
problem. The definition of expressiveness could change based on the application of the genome
graph and it is interesting to properly define and compute the expressiveness of genome graphs.
Similar to the complexity of Problem 1 in Chapter 2, the NP-completeness of Problem 10 is
open.
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5.4. Conclusion
In this dissertation, we draw connections between pangenome representations and well-studied
computational problems in strings and graph theory, such as string compression and flow de-
composition. We propose algorithmic frameworks using these connections and address the foun-
dational properties of genome graphs that are essential to efficient and accurate pangenomic
analyses but are not well characterized by existing research. The compression-to-graph frame-
work makes pangenome representation more scalable and allows more reference genomes to be
incorporated in a pangenome reference, which increases the sensitivity of read mapping. We
explore the connections between genome graph comparison problems and optimal traversal find-
ing problems, which enable us to provide corrected complexity analysis and new algorithms for
comparing genome graphs. We use the connection between flow decomposition and genome
graphs to adapt genome graph comparisons from graphs that contain single genomes to graphs
that contain multiple genomes and enable comparison between mixtures of genomes that are
more commonly seen in biomedical applications. By characterizing genome graph expressive-
ness, we contribute to a genome graph comparison framework that is more robust to unwanted
variations among genomes stored in the graph. This work will enable faster, more accurate,
and more interpretable pan-genomic analyses in an era where joint use of large collections of
sequencing data is becoming essential.
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Puglisi. A faster grammar-based self-index. In International Conference on Language
and Automata Theory and Applications, pages 240–251. Springer, 2012. 2.10

[48] Travis Gagie, Simon J Puglisi, and Daniel Valenzuela. Analyzing relative Lempel-Ziv
reference construction. In International Symposium on String Processing and Information
Retrieval, pages 160–165. Springer, 2016. 2.7.1

[49] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in bwt-
runs bounded space. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1459–1477. SIAM, 2018. 1.2.1

[50] Erik Garrison and Andrea Guarracino. Unbiased pangenome graphs. Bioinformatics, 39
(1):btac743, 2023. 1.2.2

[51] Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga, Eric T
Dawson, William Jones, Shilpa Garg, Charles Markello, Michael F Lin, Benedict Paten,
and Richard Durbin. Variation graph toolkit improves read mapping by representing ge-
netic variation in the reference. Nature Biotechnology, 36(9):875–879, 2018. 1.2.2, 2.1,
2.1, 2.8, 2.8.2, 4.1

[52] Erik Garrison, Andrea Guarracino, Simon Heumos, Flavia Villani, Zhigui Bao, Lorenzo
Tattini, Jörg Hagmann, Sebastian Vorbrugg, Santiago Marco-Sola, Christian Kubica, et al.

100



Building pangenome graphs. bioRxiv, pages 2023–04, 2023. 1.2.2

[53] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice:
Plug and play with succinct data structures. In 13th International Symposium on Experi-
mental Algorithms, (SEA 2014), pages 326–337, 2014. 2.7.2

[54] Catherine Grasso and Christopher Lee. Combining partial order alignment and progres-
sive multiple sequence alignment increases alignment speed and scalability to very large
alignment problems. Bioinformatics, 20(10):1546–1556, 2004. 1.3.3

[55] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 855–864, 2016. 1.3.2

[56] Cristian Groza, Tony Kwan, Nicole Soranzo, Tomi Pastinen, and Guillaume Bourque. Per-
sonalized and graph genomes reveal missing signal in epigenomic data. Genome biology,
21(1):1–22, 2020. 1.2.2

[57] Andrea Guarracino, Moses Njagi Mwaniki, Santiago Marco-Sola, and Erik Garrison.
Whole-chromosome pair-wise alignment using the hierarchical wavefront algorithm,
2021. URL https://github.com/ekg/wfmash. 1.3.1

[58] Andrea Guarracino, Silvia Buonaiuto, Leonardo Gomes de Lima, Tamara Potapova,
Arang Rhie, Sergey Koren, Boris Rubinstein, Christian Fischer, Jennifer L Gerton, et al.
Recombination between heterologous human acrocentric chromosomes. Nature, 617
(7960):335–343, 2023. 1.1

[59] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https:
//www.gurobi.com. 3.7.1

[60] Kevin Hadi, Xiaotong Yao, Julie M Behr, Aditya Deshpande, Charalampos Xan-
thopoulakis, Huasong Tian, Sarah Kudman, Joel Rosiene, Madison Darmofal, Joseph
DeRose, et al. Distinct classes of complex structural variation uncovered across thou-
sands of cancer genome graphs. Cell, 183(1):197–210, 2020. 1.2.2

[61] Eneida L Hatcher, Sergey A Zhdanov, Yiming Bao, Olga Blinkova, Eric P Nawrocki,
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[68] Juha Kärkkäinen, Dominik Kempa, and Simon J Puglisi. Hybrid compression of bitvectors
for the FM-index. In 2014 Data Compression Conference, pages 302–311. IEEE, 2014.
2.4.1

[69] Jamshed Khan and Rob Patro. Cuttlefish: fast, parallel and low-memory compaction of
de bruijn graphs from large-scale genome collections. Bioinformatics, 37(Supplement 1):
i177–i186, 2021. 1.2.2

[70] Bryce Kille, Advait Balaji, Fritz J Sedlazeck, Michael Nute, and Todd J Treangen. Multi-
ple genome alignment in the telomere-to-telomere assembly era. Genome Biology, 23(1):
182, 2022. 1.3.1

[71] Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, and Steven L
Salzberg. Graph-based genome alignment and genotyping with HISAT2 and HISAT-
genotype. Nature Biotechnology, 37(8):907–915, 2019. 5.3.1

[72] Carl Kingsford, Michael C Schatz, and Mihai Pop. Assembly complexity of prokaryotic
genomes using short reads. BMC Bioinformatics, 11(1):21, 2010. 4.1

[73] Orna Kupferman and Gal Vardi. Eulerian paths with regular constraints. In Piotr Fal-
iszewski, Anca Muscholl, and Rolf Niedermeier, editors, 41st International Symposium
on Mathematical Foundations of Computer Science (MFCS 2016), volume 58 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 62:1–62:15, Dagstuhl, Ger-
many, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-
016-3. 1.3.3, 1.4.1, 3.1, 3.2.1, 4, 3.2.1, 3.2.2, 3.2.2

[74] Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel. Relative Lempel-Ziv compression
of genomes for large-scale storage and retrieval. In Edgar Chavez and Stefano Lonardi,
editors, String Processing and Information Retrieval, pages 201–206, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg. 1.2.1, 2.1, 2.7.1, 2.7.1, 2.10

[75] Shanika Kuruppu, Simon J Puglisi, and Justin Zobel. Optimized relative Lempel-Ziv
compression of genomes. In Proceedings of the Thirty-Fourth Australasian Computer
Science Conference-Volume 113, pages 91–98. Australian Computer Society, Inc., 2011.
2.7.3, 2.9

[76] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to
document distances. In International Conference on Machine Learning, pages 957–966.
PMLR, 2015. 4.1

[77] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-
efficient alignment of short dna sequences to the human genome. Genome Biology, 10(3):
1–10, 2009. 1.2.1

102



[78] Christopher Lee, Catherine Grasso, and Mark F Sharlow. Multiple sequence alignment
using partial order graphs. Bioinformatics, 18(3):452–464, 2002. 4.5.4.2

[79] Heewook Lee and Carl Kingsford. Kourami: graph-guided assembly for novel human
leukocyte antigen allele discovery. Genome Biology, 19(1):1–16, 2018. 4.1

[80] Marie-Paule Lefranc. IMGT, the international ImMunoGeneTics information system.
Cold Spring Harbor Protocols, 2011(6):595–603, 2011. 3.7.2

[81] Marie-Paule Lefranc and Gérard Lefranc. The immunoglobulin factsbook. Academic
Press, 2001. 1, 4.5.4.1

[82] Li Lei, Eugene Goltsman, David Goodstein, Guohong Albert Wu, Daniel S Rokhsar, and
John P Vogel. Plant pan-genomics comes of age. Annual Review of Plant Biology, 72:
411–435, 2021. 1.1

[83] Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet Physics Doklady, volume 10, pages 707–710. Soviet Union, 1966.
4.2.1, 4.4.3.1

[84] Elizaveta Levina and Peter Bickel. The Earth Mover’s distance is the mallows distance:
Some insights from statistics. In Proceedings Eighth IEEE International Conference on
Computer Vision. ICCV 2001, volume 2, pages 251–256. IEEE, 2001. 4.1

[85] Heng Li. A statistical framework for SNP calling, mutation discovery, association map-
ping and population genetical parameter estimation from sequencing data. Bioinformatics,
27(21):2987–2993, 2011. 2.8.1

[86] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences. Bioinformatics, 32(14):2103–2110, 2016. 2.8.1

[87] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34
(18):3094–3100, 2018. 1.3.1, 5.3.1

[88] Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–
wheeler transform. Bioinformatics, 25(14):1754–1760, 2009. 1.2.1

[89] Heng Li, Xiaowen Feng, and Chong Chu. The design and construction of reference
pangenome graphs with minigraph. Genome Biology, 21(1):265–283, 2020. 1.2.2, 1.4.4,
2.1, 4.1

[90] Yilong Li, Nicola D Roberts, Jeremiah A Wala, Ofer Shapira, Steven E Schumacher, Kiran
Kumar, Ekta Khurana, Sebastian Waszak, Jan O Korbel, James E Haber, et al. Patterns
of somatic structural variation in human cancer genomes. Nature, 578(7793):112–121,
2020. 1.1, 3.7.3

[91] Wen-Wei Liao, Mobin Asri, Jana Ebler, Daniel Doerr, Marina Haukness, et al. A draft
human pangenome reference. Nature, 617(7960):312–324, May 2023. ISSN 1476-4687.
doi: 10.1038/s41586-023-05896-x. URL https://doi.org/10.1038/s41586-023-05896-x.
1.2.2

[92] Oksana Lukjancenko, Trudy M Wassenaar, and David W Ussery. Comparison of 61 se-
quenced Escherichia coli genomes. Microbial Ecology, 60:708–720, 2010. 1.1, 1.3

103

https://doi.org/10.1038/s41586-023-05896-x


[93] Altti Ilari Maarala, Ossi Arasalo, Daniel Valenzuela, Veli Mäkinen, and Keijo Heljanko.
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