
For Peer Review Only/Not for Distribution

Journal of Computational Biology: http://mc.manuscriptcentral.com/liebert/jcb

Creating and Using Minimizer Sketches in Computational
Genomics

Journal: Journal of Computational Biology

Manuscript ID JCB-2023-0094.R2

Manuscript Type: Review Article

Keyword: algorithms, computational molecular biology, genome analysis, next
generation sequencing, sequences

Manuscript Keywords (Search
Terms): minimizers, sketching, read mapping, k-mer counting, de Bruijn graphs

Abstract:

Processing large datasets has become an essential part of computational
genomics. Greatly increased availability of sequence data from multiple
sources has fueled breakthroughs in genomics and related fields but has
led to computational challenges processing large sequencing
experiments. The minimizer sketch is a popular method for sequence
sketching that underlies core steps in computational genomics such as
read mapping, sequence assembling, k-mer counting, and more. In most
applications, minimizer sketches are constructed using one of few
classical approaches. More recently, efforts have been put into building
minimizer sketches with desirable properties compared to the classical
constructions.
In this survey, we review the history of the minimizer sketch, the
theories developed around the concept, and the plethora of applications
taking advantage of such sketches. We aim to provide the readers a
comprehensive picture of the research landscape involving minimizer
sketches, in anticipation of better fusion of theory and application in the
future.

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF.
 You must view these files (e.g. movies) online.

jcb_document.bib

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

For Peer Review Only/Not for Distribution
Page 1 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution

Creating and Using Minimizer Sketches in

Computational Genomics

Hongyu Zheng2

hongyuz1@alumni.cmu.edu

Guillaume Marçais1

gmarcais@cs.cmu.edu

Carl Kingsford1∗

carlk@cs.cmu.edu

1Computational Biology Department, Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213

2 Computer Science Department, Princeton University

35 Olden St., Princeton, NJ 08544

∗To whom correspondence should be addressed.

June 21, 2023

Keywords: Minimizers, Sketching, Read mapping, K-mer counting, de Bruijn

graphs

1

Page 2 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Abstract: Processing large datasets has become an essential part

of computational genomics. Greatly increased availability of se-

quence data from multiple sources has fueled breakthroughs in ge-

nomics and related fields but has led to computational challenges

processing large sequencing experiments. The minimizer sketch is

a popular method for sequence sketching that underlies core steps

in computational genomics such as read mapping, sequence assem-

bling, k-mer counting, and more. In most applications, minimizer

sketches are constructed using one of few classical approaches. More

recently, efforts have been put into building minimizer sketches with

desirable properties compared to the classical constructions. In this

survey, we review the history of the minimizer sketch, the theo-

ries developed around the concept, and the plethora of applications

taking advantage of such sketches. We aim to provide the readers a

comprehensive picture of the research landscape involving minimizer

sketches, in anticipation of better fusion of theory and application

in the future.

Page 3 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

1 Introduction

Recently, many advances in computational biology have been made possible by

the increasing amount data generated from high-throughput sequencing experi-

ments. Processing these sequencing data and extracting biological insights from

them efficiently requires both improved computing infrastructures and novel

algorithms adapted to large-scale data analysis.

Minimizer sketches are a type of “sequence sketch” used to reduce the com-

putational needs of computational biology algorithms. In this context, we use

the term sequence sketches to refer to the collection of methods that generate

a small representation of a long sequence (See Section 2.2 for more discussion).

This small representation is designed to preserve some of the structure and in-

formation from the original string. By using these much smaller sketches, it is

possible to design algorithms that perform operations between sequences, such

as sequence search and sequence alignment, with reduced storage, memory or

computational costs.

1.1 Background

The history of minimizer sketches, especially its introduction to computational

biology, is worthy of discussion. This is also a story of how big data is playing an

increasing important role in computational genomics. The concept of minimizer

sketch for computational biology first appears in Roberts et al. (2004a) and

Roberts et al. (2004b), and an equivalent algorithm for document fingerprinting,

called winnowing, appears in Schleimer et al. (2003), all around the same time.

It is first used in computational biology to reduce memory requirements to

compute overlaps between sequencing reads: given a large set of sequences,

how can one determine which pair of sequences overlap without exhaustively

iterating and aligning every possible pair? One solution is to create a mapping

Page 4 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

from the constituent k-mers (substrings of fixed length k) to the sequences, and

only compare the sequences that have k-mers in common. Although this method

saves a lot of computation by avoiding aligning many pairs of sequences that

do not have any good alignment, it was considered memory prohibitive because

of the very large number of k-mers to store the mapping (potentially up to 4k

k-mers).

The conceptual idea behind minimizers is to sketch the sequence, or more

precisely speaking, to generate a set of k-mers for each sequence, a fingerprint,

that is much smaller than the original sequence. Applying a minimizer sketch

means selecting the minimal k-mer in each sliding window of a given sequence

(thus the name “minimizer”), and collecting the resulting subset of k-mers as

the fingerprint (see Section 2 for precise definitions). If the sketch/fingerprint of

two sequences has a large overlap, a sequence-level overlap is likely. This holds

because if the two sequences have a large overlap, the fingerprint (minimal k-

mers in sliding windows) on the overlapping part should be shared between the

fingerprints.

The idea of minimizer sketching was promising at the time, but one will

have to wait for a full decade before minimizer sketches become widely used

in computational genomics. There are a multitude of factors behind this de-

velopment. One such factor is the emergence of Next-Generation Sequencing

(NGS), such as those developed by Illumina, that supplanted Sanger sequencing

as the dominant sequencing technology. NGS sequencing offered shorter reads

than Sanger sequencing, but was more accurate, cheaper, and with much higher

throughput. The large increase in throughput and reduction of sequencing cost

per base lead to a significant increase in data size: typical sequencing depth

jumped from ≤ 10× coverage, to between 50× and 100× or more. This sharp

increase in available sequences and large data sets introduced unprecedented

Page 5 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

computational challenges.

The ever increasing availability of sequencing data from private and public

databases, like the Sequence Read Archive (SRA), the continuing plummeting

cost for NGS, the advent of third-generation sequencing and single-cell sequenc-

ing pose even more harsh challenges for computational efficiency. Minimizers

and sequence sketching methods have been key instruments in algorithmic de-

velopments of computational genomics during the NGS era as they allow great

memory and computation reduction with provably little or no cost in accu-

racy. The methods will likely continue to be a central component in the new

generation of core algorithms such as read mapping, sequence search, sequence

assembly, and k-mer counting. This review presents the theory underpinning

minimizers and many of the optimizations and variants proposed over time to

improve the original minimizer sketches.

1.2 Structure of this Review

We provide a comprehensive review of developments in computational genomics

around the design, analysis and application of minimizer sketches. Section 2

provides a formal definition of minimizer sketches, discusses their properties

and relationship to other sequence sketching methods. In Section 3, we focus

on the theory side of minimizer sketches, that is, how to design and analyze

a minimizer sketch. Contents in this section include various ways to set up a

minimizer sketch by choosing its parameters and the various metrics used to

analyze the performance of these sketches. In Section 4, we look at the applica-

tions of minimizer sketches, with focus on three representative scenarios: read

mapping (including sequence overlapping), sequence assembly, and an umbrella

term that we call k-mer dispatching, which covers the use case of minimizer

sketches for k-mer counting, sequence compression, and more general types of

Page 6 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

sequence comparison. In Section 5, we discuss extensions of minimizer sketches

as well as other newer methods that serve a similar purpose. We conclude with

some high-level discussion on where the field is heading next in Section 6.

2 Basics of Minimizer Sketches

2.1 Definition

A minimizer sketch scheme is defined by three parameters w, k and O: window

length, k-mer length, and k-mer ordering, respectively. w and k are two integers,

and O is a total ordering over all k-mers. We use Σ to denote the alphabet,

and σ = |Σ|. For most applications in computational genomics σ = 4, and we

assume σ remains a small constant even in theoretical analyses. A window of a

minimizer sketch scheme is a sequence of length w + k − 1, or alternatively, a

sequence of w k-mers. Given a sequence, the minimizer sketch is generated as

follows: for each window in the sequence, select the k-mer in the window that

is the lowest in the ordering O, breaking ties (when the k-mer with the lowest

ordering appears multiple times) by preferring the leftmost k-mer. The sketch

of the sequence is the collection of k-mers and associated locations that have

been selected in any window. Formally:

Definition 1 (Minimizer and Windows). A “minimizer sketch scheme” or sim-

ply a “minimizer scheme” is characterized by (w, k,O) where w and k are inte-

gers and O is a total order over Σk. A “window” is a string of length w+k−1,

consisting of exactly w overlapping k-mers. Given a window as input, the mini-

mizer selector outputs the location of the smallest k-mer according to O, breaking

ties by preferring the leftmost k-mer. The k-mer at this location is the “min-

imizer” of this window. The “minimizer sketch” Mw,k,O(S) of a sequence S

given (w, k,O) is the union of all k-mers selected in its constituent overlapping

Page 7 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

windows with their locations in the string.

Throughout this article, we use the term “minimizer sketch” for both the

scheme and the resulting sketch, when the context is clear whether the algorithm

or the collection of k-mer with locations is of interest.

Intuitively, minimizer sketches select only a small subset of the k-mers in S,

because adjacent windows likely share the same minimizer. See Figure 1 for an

example minimizer sketch with lexicographical order.

AACGTCGTATCCG

AACGTCG

ACGTCGT

 CGTCGTA

 GTCGTAT

 TCGTATC

 CGTATCC

 GTATCCG

AAC: 0

ACG: 1

CGT: 2,5

ATC: 8

Figure 1: Example minimizer sketch with w = 5, k = 3 and O being the lexi-
cographical order. Left-hand side: the sequence S = AACGTCGATCCG at the top,
each line below is a window of S with selected k-mer in red. Right-hand side:
Resulting sketch of S.

Basic Properties of Minimizer Sketches. Minimizer sketches satisfy the

following formal guarantees:

Lemma 1. Any minimizer sketch satisfies the following three properties:

• (Window) Minimizer sketches are guaranteed to select a k-mer at least

every w bases.

• (Local) If two sequences share a window (have an identical substring of

at least w + k − 1 bases), it is guaranteed that their minimizer sketch has

a common k-mer that could be used to locate the matching window in both

sequences.

Page 8 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

• (Forward) In a sequence, the minimizer picked by any window comes at

or after the position of any other minimizer picked in a previous window.

Proof. These properties are direct consequenes of the definition.

• Window Property. The minimizer sketch is required to select a k-

mer in any window, thus it cannot avoid selecting a k-mer for at least w

consecutive bases.

• Local Property. This can be seen by noting that the minimizer selection

criteria depends only on the sequence of the window (in particular the tie-

breaking rule is also only dependent on the window itself), and nothing

outside the window. Thus, if two sequences share a window, the k-mer

selected within this window appears in the sketch of both sequences, which

can then be used to recover the window match.

• Forward Property. Assume otherwise, that is, there are two adjacent

windows (differing by one base) and the k-mer x selected in the earlier

window comes after the k-mer y selected in the latter window. In this

case, y is also a k-mer in the earlier window, as otherwise y would be the

last k-mer in the latter window and x cannot come after y. Similarly, x

is also in the latter window. So in the former window we have x < y (no

equality due to tie-breaking rule) and in the latter window we have y < x,

leading to a contradiction.

The window property ensures that the sequence is sampled approximately

uniformly and that there is no long substrings without minimizer k-mers. This

property is the basis of applications that use minimizer sketches to break down

long sequences in chunks, for example to parallelize workloads (see Section 4.3).

The local property is the most important guarantee for applications such as

read mapping, ensuring that long identical substrings (at least as long as a

Page 9 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

window) between sequences can always be retrieved by comparing their mini-

mizer sketches. Finally, the forward property enables time and space efficient

implementation of minimizer sketches, by streaming the sequence and capturing

minimizer k-mers in the stream, as we will discuss later in this section.

Selecting w and k. The value of w and k are of utmost importance for a

minimizer sketch. Selection of these parameters are highly dependent on the

specific application of the minimizer sketch, and different guidelines exist for

different types of applications. For read mapping, the value of w presents a

tradeoff between efficiency and sensitivity: larger w means fewer k-mers sketched

and higher efficiency, but higher potential to miss long matches as only sequences

of length w+k−1 are guaranteed to share a k-mer. Many read mappers choose

a value between 10 and 100, depending on their intended usage (higher value for

lower sequencing error rate and longer sequences, for example). The value of k

is more nuanced and in general should be selected such that k-mer collisions are

not too frequent. Nowadays, read mappers commonly choose values between 10

and 25. We will discuss read mapping in more detail in Section 4.1. For k-mer

counting type of application, w0 and k0 (to distinguish from the k implied by the

task) should be selected such that a window is of the same length as the k-mers

for counting, and k0 should be selected such that the number of bins (σk0 max)

yields a reasonable overhead for parallelization. We will discuss k-mer counting

and other related use cases for minimizer sketches in Section 4.3.

Selecting O. As different orderings have no immediate impact on the three

important properties of minimizer sketches of Lemma 1, and the order choice

does not change the correctness of algorithms using minimizers, the selection of

O historically received less attention. The ordering of k-mers directly determines

which k-mers are included in the sketch and which ones are not, so it indeed

Page 10 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

has a salient impact, for example on the size of the sketch created. Common

ordering choices include:

• Lexicographical Ordering. The k-mers are ordered by first comparing

leftmost character, then the second in case a tie, and so on. For a DNA al-

phabet, AAA . . . A is the smallest k-mer and TTT . . . T is the largest. This

is very commonly used due to its simplicity and efficiency in comparing k-

mers. However, lexicographical ordering has a number of issues, including

over-representation for stretches of As in the sketch, overall larger sketch

size, and more. These issues were recognized very early on and remedies

of these issue includes prioritizing less frequent characters (Roberts et al.,

2004a,b), prioritizing k-mers with a certain prefix (Deorowicz et al., 2015),

and other tweaks (for example see Wood and Salzberg (2014) on XORing

k-mers).

• Frequency Ordering. Seen in Chikhi et al. (2015) and commonly adopted

in practice, the method assumes existence of a background k-mer distri-

bution (for example, empirical k-mer distribution in the latest human

reference genome), and the k-mers are ordered in a way such that less fre-

quent k-mers are given higher priority. Jain et al. (2020) propose a more

practical method that demotes (make larger in O and thus less likely to

be selected) frequent k-mers above a certain threshold in a probabilistic

way.

• Random Ordering. k-mers are ordered randomly for the sketch (al-

though consistent between sequences). A common choice of modern sketches,

this has a number of advantages including less bias towards certain bases,

highly efficient (using a hash function), and small sketch size.

Page 11 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

Due to the nature of genomic sequences, minimizers are often defined with

“canonical k-mers”. The canonical k-mer of m is either m itself or the reverse-

complement of m, whichever is smaller lexicographically, and the ordering O is

defined on canonical k-mers only. Using canonical k-mers allows for example

using minimizer sketches on sequencing reads where the sequenced strand is

unknown. Although the canonical k-mers are routinely used in practice, most

of the theory on minimizers, for simplicity reasons, uses normal k-mers and

ignores the restriction to canonical k-mers.

In Section 3, we will discuss some other more carefully crafted orderings that

improve upon the aforementioned sketches in certain ways.

Implementing a Minimizer Sketch. Depending on the ordering chosen,

implementing a minimizer sketch can be easy or hard. In most scenarios, the

ordering comes in the form of (or can be converted to) a hash function, in

which case the set of minimizer k-mer locations is computable in time linear

in the input sequence length (assuming the sequence is sufficiently long, and

computing the hash takes constant time) using a monotonic queue. We provide

a sample implementation of an algorithm to compute a minimizer sketch. This

algorithm has an amortized run time of O(|S|), an improvement over the näıve

algorithm (whose worst case run time is O(w|S|)).

The first part is to implement the monotonic queue. This is a data struc-

ture that maintains a set A of comparable elements, supporting the following

operations:

• Insert an element to A.

• Remove an element from A, in the exact order as they were inserted into

A (equivalently, remove the current oldest element in A).

• Query the current minimum in A.

Page 12 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Intuitively, if two elements x and y are consecutively added to A with x > y,

x can never be the current minimum and can be discarded. Thus, we only need

to keep track of elements that are not useless by this rule, which form a queue

that is monotonic in both value and time of insertion (thus the name). We use

a deque (double-ended queue, allowing adding and removing elements on both

ends of the queue) as the underlying data structure.

Algorithm 1: Insert(X,T) inserts an item to the monotonic queue.

input : Item X and time T

1 while Rightmost item in deque is larger than X do

2 Remove rightmost item and time in deque;

3 end

4 Append (X,T) to right end of deque;

Algorithm 2: Fetch(T) removes old items and returns the current min-

imum.
input : Time T

output: Minimal item X ′ with time T ′ satisfying T ′ ≥ T

1 while Leftmost time in deque is lower than T do

2 Remove leftmost item and time in deque;

3 end

4 Return leftmost item in deque;

Due to the tie-breaking rule favoring leftmost k-mers, the monotonic queue

needs to favor item with lower time (that is, if there are two items with same

value but different time, the item with lower time shall be selected). Thus, the

item removal rule in Insert reads strictly larger-than. Removal of items from

the monotonic queue is performed at query time (Algorithm 2).

In using the monotonic queue, it is necessary that time (the parameter T)

only increases between calls to Insert and between calls to Fetch. (In some

other implementations, the monotonic queue is parameterized by a fixed “win-

Page 13 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

dow length”. It’s equivalent to using our approach but subtracting the window

length from T during Fetch calls.) If this condition holds, then the item in

the queue are in increasing order for both the value of the item and the time

of insertion. Based on this time monotonicity condition, we can prove the cor-

rectness and efficiency of monotonic queues (explanations are also available in

Jain et al. (2020) and Carruthers-Smith (2011) under a different name).

Lemma 2. Assume the time monotonicity condition holds. Each time Fetch(T)

is invoked, the item returned is the minimal item with insert time no less than

T , assuming such item exists.

Proof. Assume Fetch(T) returns (X0, T0), and the correct answer is (X1, T1)

instead with X1 < X0 and T1 ≥ T .

• If T1 > T0, the item (X0, T0) would have been removed during Insert(X1, T1),

and cannot be selected during Fetch(T).

• If T1 < T0, the item (X1, T1) would not have been removed during Fetch(T ′)

for any T ′ ≤ T . If the item is removed during Insert(X2, T2) for some

item (X2, T2), we have T2 > T1 and X2 < X1, so (X1, T1) is not the correct

answer. This implies (X1, T1) is still in the deque at the end of Fetch(T),

and will be selected over (X0, T0) because it is to the left of (X0, T0) in

the deque.

The case where X1 = X0 and T1 < T0 can be proved in a similar way.

Lemma 3. Assume the time monotonicity condition holds. Making N calls to

the monotonic queue takes O(N) time.

Proof. As the functions have no other loops other than line 2 for both Algo-

rithm 1 and Algorithm 2, it is sufficient to show these two lines are executed

at most N times during N calls. The only way to add an item to the deque is

Page 14 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

through line 4 in Algorithm 1, which happens exactly once per Insert call, thus

at most N items would have entered the deque. Line 2 for both Algorithm 1

and Algorithm 2 remove one item from the deque, thus they are executed at

most N times total.

Lemma 3 implies Insert and Fetch have amortized constant run time.

We now implement a minimizer sketch, assuming that the hash functions is

easily calculated. We achieve this by sliding a minimizer window from left to

right, maintain a monotonic queue with the k-mers in the current window.

Algorithm 3: Pseudocode for Implementing a Minimizer Sketch

input : Three integers w, k,N and a sequence S of length N

output: The minimal k-mer in each of the sliding windows of length w,

for a total of N − w − k values

1 for i← {0, 1, . . . N − k}

2 Calculate X to be the hash of the ith k-mer of S;

3 Call Insert(X, i);

4 if i ≥ (w − 1) then

5 Append the k-mer represented by Fetch(i− w + 1) to output;

6 end

7

Parallelization. Parallelization of minimizer sketching is also simple, as one

can simply divide the sequence into segments and sketch each segment in par-

allel. However, there are some intricacies when it comes to minimizer k-mers at

the boundary of segments. A safe method to parallelize minimizer sketch is to

split the input sequence into segments with overlaps that are a full window long.

This way, minimizer k-mers inside the intersection of segments may be counted

twice (we can easily de-duplicate given the forward property in Lemma 1), but

no undercounting is possible.

Page 15 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

2.2 Relationship to Related Concepts

Other Sequence Sketches. Minimizer can be broadly categorized as a se-

quence sketch in a compressive manner: the size of the resulting sketch is usually

smaller than the sequence itself. Methods like BWT (Burrows and Wheeler,

1994) and FM-Index (Ferragina and Manzini, 2000) are sometimes also called

compressive sequence sketches, but with a critical distinction: minimizer sketches

do not aim to preserve the whole sequence but only parts of it, while BWT and

FM-Index can be used to recover the full sequence. A common alternative to

minimizer sketching is by downsampling k-mers, that is, select all k-mers that

are present in a predefined set. We will discuss this line of work in Section 5.2.

In addition, for those interested in sequence sketching in general, Rowe (2019)

and Marçais et al. (2019) present more thorough reviews for different families

of sequence sketching methods.

MinHash. MinHash (Broder, 1997) and minimizer sketches bear some simi-

larity other than their name, but they are also sufficiently different in essence.

The positional information of the selected k-mers is usually included in a mini-

mizer sketch. Even if a minimizer sketch does not explicitely include the position

information, because of the shifting window procedure to create the sketch, the

original position of a k-mer in the sequence has an effect on whether a k-mer is

selected. With MinHash, the sketch is created over an unordered collection of

elements and there is no notion of position.

An important use case for MinHash is estimation of distance between sets.

Minimizer sketches can be can be used for distance estimation by discarding

positional information, but as we will discuss in Section 4.4, they are rather

ineffective for that specific purpose.

Page 16 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Locality Sensitive Hashes (LSH). Conceptually speaking, minimizer sketches

are also “locality sensitive”. Minor changes in the underlying sequence usually

only bring modest changes to the resulting minimizer sketch; if a base in the se-

quence gets changed, minimizer k-mers only change in windows that include the

base by the locality as in Lemma 1 (also see Marçais et al. (2018); Shaw and Yu

(2022); Edgar (2021); Hoang et al. (2022a) for some more discussion on this spe-

cific topic). However, there are certain difficulties classifying minimizers directly

in the LSH framework, as minimizer sketch consists of k-mers alongside their

locations, but a typical LSH has a fixed value domain. Moreover, the correctness

and performance of algorithms using minimizer sketches is based on the prop-

erties given in Lemma 1, not based on bounds of k-mer collision probabilities

as commonly done in analysis of LSH.

3 Theories of Minimizer Sketches

In this section we discuss works on the theoretical front of minimizer sketches.

Many theoretical developments of minimizer sketches are tightly connected to

(and for many, largely motivated by) applications. With this idea in mind, we

organize this section by trying to answer the following questions:

• What is a good minimizer sketch?

• How to build a good minimizer sketch?

Both questions can be discussed in varying contexts: in the asymptotic con-

text (in the limit of large w and k) and practical ones (tailored for parameter

configurations commonly seen in existing applications); in expectation where

the sequence S is a random sequence; and in the sequence-specific case where

the input sequence is fixed (e.g., the human reference genome). Minimizer

sketches are also a useful mathematical construct. For example, in samSAMi

Page 17 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

(Grabowski and Raniszewski, 2013), minimizer sketches are used to build a re-

duced representation of suffix arrays that allows for efficient searching. However,

most theoretical work focuses on improving minimizer sketches themselves.

We organize this section by first discussing theoretical developments around

the concept of density (a direct measure of how sparse minimizer sketches pick k-

mers) in Section 3.1, followed by discussion of alternative metrics in Section 3.2

and a brief perspective on open problems in Section 3.3.

3.1 Density and Related Techniques

Introduction. Minimizer sketches are used in a very diverse set of contexts.

Because of this, there is hardly a unifying measure of “goodness” for a minimizer

sketch. Being a sequence sketch, compactness (i.e., relative size) of the sketch

naturally comes first as an important metric. In general a compact sketch is

considered beneficial as it leads to less data to store in memory and less data to

process. There is a long line of work formalizing what it means to be compact,

and what makes a compact minimizer sketch, as we describe below.

Definition of Density. The density of a minimizer sketch measures, either

on average or on a specific sequence, the size of the sequence sketch. Formally

speaking:

Definition 2 (Density). Given a minimizer sketch and a sequence S, the “spe-

cific density” of the sketch on S is defined as
|Mw,k,O(S)|

|S|−k+1 , the number of selected

locations in the sketch divided by the number of k-mers in S. The “expected den-

sity” (sometimes abbreviated as density) is the specific density of a sufficiently

long random string.

The task of building a good minimizer sketch in this context refers to the

task of producing an ordering O given w and k (and when targeting specific

Page 18 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

density, also given the sequence S) that has a low density.

AACGTCGTATCCG

AACGTCG

 ACGTCGT

 CGTCGTA

 GTCGTAT

 TCGTATC

 CGTATCC

 GTATCCG

AACGTCGTATCCG

AACGTCG

ACGTCGT

 CGTCGTA

 GTCGTAT

 TCGTATC

 CGTATCC

 GTATCCG

AAC: 0

ACG: 1

CGT: 2,5

ATC: 8

TCG: 4

TCC: 9

A<C<G<T

T<G<C<A

Figure 2: Comparing two minimizer sketches that are identical in w, k and S,
only differing in the lexicographical ordering O. Left: A < C < G < T , identical
to Figure 1. Middle: T < G < C < A and all other parameters intact. Right:
Resulting sketches for both setups.

As a concrete example, consider the lexicographical minimizer sketch and

sequence S as presented in Figure 1. There are 11 k-mers in S, and 5 of them

are present in the sketch, resulting in a specific density of 5/11. However, as

presented in Figure 2, a different choice of O can lead to a very different sketch

and the resulting specific density; here, we get a specific density of 2/11 instead,

which is better in this context.

3.1.1 Average Case: Expected Density

Many of the previous studies focus on the expected density including Schleimer et al.

(2003), Zheng et al. (2021b), Zheng et al. (2020), Marçais et al. (2017) and

Marçais et al. (2018). Through this line of work, it has been established that

the expected density of a random minimizer sketch is 2/(w + 1) under mild

conditions (Zheng et al., 2020). For the extreme conditions, when the k-mers

are much longer than windows (k ≫ w), the optimal density of 1/w can be

achieved by a carefully constructed minimizer sketch, and when the reverse holds

(w ≫ k), there are no minimizer sketches of density O(1/w) (Marçais et al.,

2018; Zheng et al., 2020). Additionally, when k > w (or when k ≈ w), a care-

Page 19 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

ful construction of the k-mer ordering leads to a minimizer sketch of density

1.68/(w + 1) (Zheng et al., 2020). Here, we briefly present a result in this line

of work, which involves a number of useful concepts that are also relevant later

this section.

Lemma 4. When k > (3 + ϵ) logσ w for an arbitrarily small constant of ϵ, a

random (w, k)−minimizer sketch has expected density of 2/w + o(1/w).

We provide a proof outline here; see Zheng et al. (2020) for a complete proof.

Before the sketch, we need some more technical tools from the classical liter-

ature. These can be found in earlier papers (for example see Roberts et al.

(2004b); Schleimer et al. (2003)), and are paraphrased into the presented form

in Zheng et al. (2020).

Definition 3 (Charged context). A “context” of a minimizer sketch is a sub-

string of length (w + k) (equivalently, the union of two adjacent windows). A

context becomes a “charged context” for a fixed minimizer sketch, if the mini-

mizer selector selects different k-mers in its two constituent windows.

Lemma 5. A context is charged for a minimizer sketch (w, k,O), if and only

if the minimal k-mer in the context (breaking ties by favoring leftmost k-mer)

is the first or the last k-mer.

Proof. If the smallest k-mer is neither the first or last one, it belongs to both

windows and is the selected minimizer in both windows.

Lemma 6. For any sequence S and any minimizer sketch (w, k,O) such that

S is at least w + k bases long, the number of selected k-mers in S equals the

number of charged contexts in S plus 1.

Proof. A direct consequence of the Forward property of Lemma 1.

Page 20 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Corollary 1. The expected density of a minimizer sketch equals the probability

that a random context (a random string of length w + k) is a charged one.

We are now ready to prove Lemma 4.

Proof. A context has w + 1 k-mers, and the probability that any two k-mers

in the window are equal to each other is σ−k. Thus, by union bound, the

probability that all k-mers are unique is at least 1− (w + 1)2σ−k = 1− o(1/w).

Thus, up to o(1/w) error, we only need to calculate the probability for a charged

context assuming unique k-mers. For these contexts, the probability that the

context is charged for a random minimizer sketch is exactly 2/(w + 1), as the

ordering between all k-mers is completely random and there is a 1/(w + 1)

chance for each k-mer to be minimal.

Universal Hitting Sets. Another method for constructing low-density min-

imizer sketches revolves around using universal hitting sets Orenstein et al.

(2016). These are set of k-mers that must appear at least once in any win-

dow. It is straightforward to construct minimizer sketches from a universal

hitting set (see Definition 5) with density guarantees, and consequently, build-

ing minimizer sketches with low density can be done by building small universal

hitting sets as a proxy.

The concept is first proposed in Orenstein et al. (2016), and construction of

UHSes has since been refined in multiple ways (Pellow et al., 2017; Ekim et al.,

2020; DeBlasio et al., 2019; Hoang et al., 2022b). Here, we highlight some re-

sults developed from this line of work, and leave theoretical developments in

this front to Section 3.1.2. The core technical tool is the universal hitting set

(aka a universal set) and its connection to minimizers:

Definition 4 (Universal Hitting Sets). A “(w, k)−universal hitting set” U is

a set of k-mers, such that any sequence of w k-mers contains at least a k-mer

Page 21 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

from U .

In other words, a universal hitting set is a set of unavoidable words: every

string containing at least a w k-mer ”hits” (i.e., intersects) the set.

Definition 5 (Compatible Minimizer Sketches). Given a (w, k)−universal hit-

ting set U , a minimizer sketch (w, k,O) is said to be “compatible” with U if and

only if O satisfies x <O y for any x ∈ U and y /∈ U .

Lemma 7. Let (w, k,O) be a minimizer sketch compatible with U . The expected

density of the minimizer sketch is upper bounded by |U |/σk.

Proof. By definition of a universal hitting set, any window of the compatible

minimizer sketch contains some k-mers from the set. This implies only k-mers

in U could be selected by the compatible minimizer sketch. Assume the worst-

case scenario, that is, whenever a k-mer in U appears in the sequence, it is

selected by the minimizer sketch. In a random sequence, each k-mer is also a

random k-mer and the probability that the k-mer belongs to U is |U |/σk, so

the expected density is exactly |U |/σk in the worst case.

The importance of compatible minimizer sketches is that it allows us to

encode an order on the k-mers with desirable properties (as per Lemma 7) by

only encoding a set. Encoding a total order on the k-mers is more memory

consuming: there are σk! possible orders on k-mers, taking a super-exponential

amount of memory to fully encode (≈ kσk bits). In other words, to create an

order giving guaranteed low density, it is not necessary to record a total order

between the k-mers; recording the relative order between a few classes of k-mers

is sufficient.

Constructing Universal Hitting Sets. A recurring theme in heuristic

construction of universal hitting sets is to start from a base set and add k-mers

Page 22 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

as necessary until all sequences of length L are covered by a k-mer of the set.

The k-mer to be added to the set is selected using a set of heuristics; We show

a simple example.

Algorithm 4: Pseudocode for Finding a UHS

input : Integers w, k

output: A (w, k)− universal hitting set

1 Initialize output set U with a base set;

2 while U is not a valid (w, k)−UHS do

3 for Each remaining k-mer x

4 Count the number of distinct window sequences that contain x

but not any k-mer in U ;

5

6 Add the k-mer with the largest window count to U ;

7 end

The base set can be the empty set. More commonly the base is a “mini-

mum decycling set” (see Definition 6), that is a minimal size set of k-mers that

intersects any infinitely long sequences. Starting from a decycling set makes

sense as a universal hitting set must also be decycling, and there exists a simple

construction for one such set. Then the algorithm extends this set until every

path of length L is hit.

While useful in practice, the method above has multiple shortcomings. First,

there is no guarantee that the generated set is close to optimal. Second, the

above algorithm does not scale: the number of k-mers grows exponentially with

k, so the algorithm runs very slowly at even modest values of k.

Other heuristics find the longest sequence that is not hit by the set and

adds k-mers from this sequence to the set. PASHA (Ekim et al., 2020) proposes

to parallelize the above algorithm using some approximations, while another

method to incrementally expand universal hitting sets with short k-mers to

Page 23 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

universal hitting sets with long k-mers is proposed in DeBlasio et al. (2019).

3.1.2 Theory of Universal Hitting Sets

In this section, we take a detour and discuss theoretical development behind

the concept of universal hitting sets. This work is tied to the development of

minimizer sketches, but many are of independent interest.

For computational complexity of optimizing universal hitting sets, we first

define a “sequence-specific hitting set” for a sequence S as a set of k-mers that

intersects with each window of length w in S. It is known from Orenstein et al.

(2016) that finding the minimal sequence-specific hitting set for any sequence

S of a given length L is NP-hard. However, Definition 4 requires the Universal

Hitting Set to hit every possible window of a fixed length. This is equivalent to

a sequence-specific hitting set for the de Bruijn sequence of order w+k−1 (the

window length) with L = σw+k−1. It is unknown whether efficient algorithms

for sequence-specific hitting set exist when the input sequence is restricted to

de Bruijn sequences.

Besides the hardness in optimization, Universal Hitting Sets are of interest

on their own, linking string algorithms (unavaoidable word sets), graph theory

via de Bruijn graphs, minimizers and other sketching methods (see Section 5),

through the following concept:

Definition 6 (Decycling set). A set of k-mers A is called a decycling set if any

sufficiently long string contains a k-mer in A. In other words, the longest string

not containing any k-mer in A is finitely long.

Decycling sets can also be seen as universal hitting sets with a sufficiently

long (but finite) window length. The name “decycling” comes from the fact that

these sets are also “decycling” on a de Bruijn graph. Any sequence corresponds

to a path in a de Bruijn graph (and conversely), and an infinitely long sequence

Page 24 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

must contain cycles from the graph. Consequently, a decycling set must intersect

every cycle of the de Bruijn graph.

More formally, the following lemma and theorem state the existence and size

of minimal decycling sets:

Lemma 8. Any decycling set of k-mers over an alphabet of size σ must contain

at least Nσ,k = 1
k

∑
i|k φ(i)σk/i k-mers, where φ(i) is Euler’s totient function.

(Nσ,k is also known as the number of necklaces or the number of Lyndon words).

Proof. We separate k-mers into equivalence classes by rotation, that is, if two k-

mers a and b satisfy that a = b[i : k]b[0 : i], a and b are equivalent. The number

of equivalence classes is exactly Nσ,k (Weisstein, 1995) and each class form a

cycle in the de Bruijn graph. The decycling set must contain one k-mer from

each equivalence class, as each class correspond to an infinitely long repeating

sequence.

Theorem 1. (Mykkeltveit, 1972) For any σ and k, there exists a decycling set

of size Nσ,k.

Consequently, minimal decycling sets must be of size Nσ,k. The proof of

Mykkeltveit (1972) is constructive and leads to a practical algorithm to con-

struct one decycling set for each k. Champarnaud et al. (2004) gives an alter-

nate construction of a minimum decycling set.

Many relevant questions remain open regarding minimal decycling sets and

the link between decycling sets and universal hitting sets. Zheng et al. (2021b)

gives bounds on the remaining path length of the Mykkeltveit set (the longest

string one can write down without hitting a k-mer in a Mykkeltveit set), between

Ω(k2) and O(k3). Similar bounds for other minimum decycling sets or what

range of window is possible with minimum decycling sets are not known.

As discussed above, many of the methods for constructing universal hitting

sets take a patchwork approach: start with a minimal decycling set as the base,

Page 25 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

add k-mers to the set until it becomes a universal hitting set for the proper

parameter L. Interestingly, as recently shown in Pellow et al. (2023), using the

Mykkeltveit set as the base set and adding k-mers in random ordering (resulting

in a universal hitting set of arbitrary size), the resulting compatible minimizer

sketch achieves superior density even to sequence-specific methods with prior

knowledge of the reference sequence. The surprising result may be attributed

to certain structures of minimal decycling sets that are currently unexplored.

The concept of a universal hitting set has also been previously explored in

combinatorics, as a special case of non-avoidable words (Lothaire and Lothaire,

2002; Evdokimov and Kitaev, 2004; Higgins, 2011; Saker and Higgins, 2002; Higgins and Saker,

2006; Bell, 2005; Burstein and Kitaev, 2005). Non-avoidable words take a more

general definition, where the set contains strings of variable length, including

wildcards in several cases. This flexibility also implies that the problem of min-

imizing size of a universal hitting set does not have a well-defined equivalent

in the world of non-avoidable words. Nevertheless, structural results regard-

ing non-avoidable words would be useful for future research in k-mer sets and

sketching in general.

3.1.3 Sequence-Specific Density

A more recent line of work focuses on calculating the density on a specific se-

quence (Pellow et al., 2017; Zheng et al., 2021a; Ekim et al., 2020; DeBlasio et al.,

2019; Orenstein et al., 2016; Hoang et al., 2022b).

Universal Hitting Sets. We have described universal hitting sets in de-

tail in Section 3.1.1. Many of the proposed methods for building universal

hitting sets are able to prioritize k-mer inclusion from a reference sequence,

making them sequence-specific methods. Overall, these methods are able to

reduce density by up to 30 percent (compared to a random minimizer sketch;

Page 26 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

for examples, see Hoang et al. (2022b)) in some practical scenarios on a human

reference genome.

Polar Sets. Polar sets (Zheng et al., 2021a) are another example of con-

struction of an order for low density minimizer sketches using a set with interest-

ing properties. In a polar set for a sequence S, the k-mers, like polar opposites,

repel each other and are guaranteed not to be too close to one another. More

precisely:

Definition 7 (Polar set). Given a sequence S, a (w, k)−polar set A is a set of

k-mers such that if the ith and jth k-mers of S are both in A, then |j − i| ≥ w.

In other words, k-mers in the polar set are spread well apart in a sequence,

while a universal hitting set makes the opposite guarantee that k-mers need

to be close together. Compatible minimizer sketches (Definition 5) are simi-

larly defined over polar sets and an analogue of Lemma 7 exists for polar sets,

guaranteeing that a well chosen polar set leads to a minimizer sketch with low

density.

Zheng et al. (2021a) relaxes the definition of polar sets, shows that finding

a polar set of optimal size is also NP-complete, and gives a heuristic algorithm

to find polar sets. The heuristic is based on the following idea: if a sequence is

not-repetitive and every k-mer is unique, it is trivial to find an optimal polar

set by taking every wth k-mer from S. Given a sequence with repeated k-mers,

the heuristic starts by selecting k-mers every wth bases and then updating the

set to be a proper polar set.

Learning Orders. More recently, DeepMinimizer (Hoang et al., 2022b)

proposes a more drastic departure from the aforementioned approaches for se-

quence specific minimizer sketches. Instead of trying to find a special subset of

k-mers, a scoring function π over k-mers is learned via deep learning. Like in

Page 27 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

the case of polar sets, the goal is to create an order that selects, as much as

possible, k-mers that are w bases apart. Because density is not a differentiable

objective, it cannot be optimized directly with back-propagation methods. In-

stead, DeepMinimizer uses two neural networks to optimize a proxy objective,

and the total ordering O is generated by comparing scores of k-mers.

DeepMinimizer is shown to produce low-density minimizer sketches in some

range of parameters (more specifically, large w and small k) and with very

repetitive sequences (e.g., the centromere regions of chromosomes), that previ-

ous methods are less effective against.

3.2 Other Metrics

Density is a straightforward measure for performance of minimizer sketches, but

as discussed before, it does not capture every desirable aspect of a minimizer

sketch. Several alternative metrics have since been proposed to augment density,

and the most interesting candidates are the notions of preservation and balance.

3.2.1 Preservation

Minimizer sketches are known for their robustness: the set of sampled k-mers

remains relatively stable in the presence of sequence mutations, as we have dis-

cussed briefly in Section 2.2. On the other hand, being a k-mer-based method

(see Section 5 for a discussion of non-k-mer based methods), minimizer sketches

are inherently susceptible to mutations because one base change in a k-mer re-

sults in a totally different k-mer, and a base change in a window can change

the selected k-mer. While many sequencing methods produce high fidelity se-

quences with low error rate, there exist sequencing protocols with high error

rates (for lower cost, longer sequences, etc.) and mutation rates (especially in

cancer samples; see Blanca et al. (2022) for some perspective) must be taken

Page 28 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

into account. Therefore, we are interested in the ability of minimizer sketches

to preserve k-mer matches in presence of sequence differences.

The concept of k-mer preservation comes from multiple applications includ-

ing sequence assembly and phylogeny reconstruction. There are no agreed upon

definition of preservation. Here, we present one definition from Hoang et al.

(2022a).

Definition 8 (Preservation). Let S be a random string, and S′ be mutated

copy of S, and (w, k,O) be a fixed minimizer sketch. Let M∗ = Mw,k,O(S) ∩

Mw,k,O(S′) be the set of shared minimizers between S and S′. The “preservation

rate” is defined as |M∗|
|S|−k+1 , the number of shared minimizers over the number

of k-mers in S.

Commonly S′ is randomly mutated following a specific distribution, such as

i.i.d. mutation per base, although this is not relevant to our discussion here.

AACGTCGTATCCG

AACGTCG

ACGTCGT

 CGTCGTA

 GTCGTAT

 TCGTATC

 CGTATCC

 GTATCCG

AACATCGTATCCG

AACATCG

 ACATCGT

 CATCGTA

 ATCGTAT

 TCGTATC

 CGTATCC

 GTATCCG

Figure 3: Example for calculating preservation, with setup identical to those in
Figure 1. Left-hand side: The original sequence S, its windows, and selected
minimizer k-mers. Right-hand side: The mutated sequence S′ (the single mu-
tated base is marked in purple), its windows, and selected minimizer k-mers
(those different from S are marked in purple). The preservation rate is 2/11.

Figure 3 shows a toy example of calculating preservation of a minimizer

sketch. We assume the only possible mutation of S is to change the fourth base

to A. The preservation rate of the lexicographical minimizer sketch on S is

2/11, as 2 minimizer k-mers (out of 5 in S) remain in S′, and S has a total of

11 k-mers. This is also a good example of how seeming minor changes in the

Page 29 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

sequence might change the resulting minimizer sketch, in particular when w is

small compared to k: a single base change affects k overlaping k-mers.

A similar measure of preservation is found in Sahlin (2021) with a different

divisor. Edgar (2021), Shaw and Yu (2022) and Dutta et al. (2022) measure

preservation by counting number of bases covered by a common minimizer k-

mer instead of counting k-mers. Frith et al. (2020) focuses on shorter sequences

and evaluate preservation by whether a pair of sequences with predetermined

distance share a minimizer k-mer. However, these metrics are highly similar

in essence, as they all evaluate the robustness of minimizer sketches against

mutations in the sequence.

Unlike existing studies on density and specific density, the studies on build-

ing minimizer sketches with improved preservation is largely validated via ex-

periments. In Shaw and Yu (2022), a more tractable formula for preservation

is provided and several methods, including some non-minimizer methods, are

compared for their preservation metric. This is further extended in Dutta et al.

(2022). Hoang et al. (2022a) also evaluate preservation on minimizer sketches

and its generalizations, as we will discuss later in Section 5.

3.2.2 Balance

Distance Balance. Minimizer sketches are bound by the window property

(they must select a k-mer every w bases), so we want the k-mers to be selected as

sparsely as possible within the limits of window property. One way to quantify

the efficiency is the number of k-mers picked by a sketch as we have seen in

Section 3.1. Alternatively, we can also measure how spread apart the selected

k-mers are; more spread apart minimizer k-mers means more efficient sketches.

This balance, or evenness in some contexts, is usually presented by gathering

the distance between adjacent minimizer k-mers, then plotting the distribution

and analyzing its properties such as skewness. This idea has been mentioned

Page 30 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

in Edgar (2021) and Frith et al. (2020) (a key construct in Shaw and Yu (2022),

the probability vector, is also tightly connected to this concept) and has been

qualitatively evaluated, although there are few works that explicitly set out to

build such “balanced” minimizer sketches. The polar set method as mentioned

in Section 3.1 explicitly enforces a minimum distance between minimizer k-mers,

but only on some parts of the sequence.

Relatedly, a distinct line of research focuses solely on the idea of maximizing

spread between k-mers in a mathematically rigorous way. The concept of min-

imal overlapping words has been previously studied in Blackburn (2015) and

Levenshtein (1970), and is connected to computational genomics in Frith et al.

(2020). Frith et al. (2023) is a further extension over this line of work, which

also proposes a number of different measurements for sequence sketches.

Bucket Balance. For k-mer counting, de Bruijn graph construction and some

other applications (see Section 4.3), minimizer sketches are used to bucket (or

rather, partition) k-mers such that adjacent k-mers are likely to fall within

the same bucket. In these scenarios, buckets should not be overwhelmingly

large compared to others, and a guarantee that buckets have approximately the

same size would also be very helpful. There are several specialized methods for

constructing minimizer sketches that specifically aim to improve bucket balance,

especially in comparison to lexicographical minimizer sketches which is known to

have bad bucket balance (the homopolymer of As bucket is likely overwhelmingly

large, assuming A is the lowest character in the ordering). Explicit mentions

of this objective can be seen in Nyström-Persson et al. (2021), Ben-Ari et al.

(2021), Flomin et al. (2022), Efe (2018), and Marçais et al. (2017).

Page 31 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

3.3 Open Questions

The theoretical development of minimizer sketches and related concepts are far

from complete. In this section, we list a number of open directions for future

work.

• A non-asymptotic lower bound on density for a minimizer sketch as a

function of k and w. This is especially useful in the case of k = Θ(logσ w),

which is common in practice and very hard in the sense that current

designs are not able to improve performance.

• Similarly, a more refined upper bound of preservation for a minimizer

sketch as a function of k and w in the average case, as well as better

designs targeting preservation with performance guarantees.

• As minimizer sketches are used in many different contexts, other measure-

ments of efficiency is desirable. For example, currently, most analyses on

preservation of minimizer sketches only focus on mutation by substitu-

tion. However, insertion and deletion are also common in genomic data.

Thus, a similar measurement of robustness against indels may be of inter-

est. Dutta et al. (2022) and Frith et al. (2023) both propose a number of

different measures.

• A more efficient algorithm to design sequence-specific minimizer sketches

with lower density (or other related metrics), while remaining efficient to

implement, is also wanted. Several existing methods, such as those using

an iteratively constructed Universal Hitting Set, require using a lookup

table to query membership of a k-mer (such as whether the k-mer is in

the UHS) during sketching. For large value of k, the lookup table may

become a limiting factor for efficiency, and designs circumventing such

limitation may be desirable.

Page 32 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

• Due to the nature of genomic sequences, many application using minimizer

sketches only use canonical k-mers, defined as the set of k-mers that are

not larger than its reverse-complement. It is mostly unknown how existing

theories regarding minimizer performance applies to canonical minimizers.

• Structures and designs of decycling sets, which underpin many methods in

this section and elsewhere (such as open syncmers in Section 5), are also

largely unexplored, which may motivate research in sequence sketches in

general.

• Lastly, in Section 5 we will discuss extensions and alternatives of minimizer

sketches. Most of these new concepts are also accompanied by new and

exciting theoretical problems regarding their performance.

We believe interesting lines of research will emerge from these open direc-

tions.

4 Applications of Minimizer Sketches

Minimizer sketches are extremely versatile and fit into many major algorithmic

building blocks in computational genomics. This section is split into four parts.

We will first discuss three major categories of using minimizer sketches, then list

other uses that may be less known. Before discussing the methods, it should be

noted that many of the tools we discuss in this section are highly complex. While

they use minimizer sketches, the use of the sketch might only be a small part

of the full picture, and in many cases is a more routine (less novel) component

of the method. Thus, we encourage readers to look at individual papers if they

are interested in more details.

Page 33 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

4.1 Read Mapping

Minimizer sketches were first proposed for read overlapping (see our discussion

in Section 1), and later popularized by their extensive uses in read mapping

(among other use cases). While there are some differences, the essential idea

of sketching multiple sequences and comparing their k-mer contents remains

the same. In this section, we discuss this line of work in greater detail. We

start with the problem setup, how the minimizer sketches play a natural part

in solving the problem, then discuss the plethora of existing methods that take

this route.

4.1.1 The Problem

The common setup is as follows (for read mappers): we are given a long refer-

ence sequence with preprocessing allowed. Then, a stream of short sequences

will arrive, with the expectation that these sequences are approximately subse-

quences of the reference sequence (differences are common). The objective is to

find potential matches against the long reference as fast as possible.

There are many variants to this problem statement, depending on the exact

scenario. For example, in RNA-seq, commonly we need to find split matches:

that is, the reads (short sequences) might be split into several segments and each

need to be mapped onto the reference to different locations, but the mapped

segments should (usually) not be too far away from each other. Resolving

differences like the aforementioned in an efficient way is a key challenge for

many modern read mappers. However, the solution usually lies outside the

scope of sequence sketches, so we will not discuss these in length here.

Page 34 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

4.1.2 The Recipe

Minimizer sketches are a natural fit for read mapping. The common pattern

works as follows: we first fix a minimizer sketch (w, k,O) and build the sketch

on the reference sequence in preprocessing. Commonly, the reference sketch is

indexed using the k-mer as key, so given a k-mer in the sketch, it is easy to fetch

the location of its appearances on the reference sequence. For each incoming

read (the short sequences), do the following: using the same minimizer sketch

(w, k,O), sketch the read sequence. For each k-mer x in the read sketch, check

if it is also in the reference sketch. Each appearance of x in the reference sketch

indicates a possible match between reference and read, using the location of x

as the anchor. Figure 4 provides an example of this approach and shows the

potential speedup.

This seed-and-extend approach has been used for a long time, although

using minimizer sketch for the seeding part is a relatively recent invention.

Properties of minimizer sketches (see Lemma 1) translate to guarantees over

the seeding process. The window property establishes an uniform lower bound

of seed coverage on the reference and the read sequences. The local property

ensures that credible sequence matches (exact matches as long as minimizer

windows) will always be recovered regardless of the sequence and the ordering.

......

Figure 4: Example of using minimizer sketch for read mapping. Left-hand side
presents the original sequence, the original read and the set of potential map-
pings. Right-hand side presents their minimizer k-mers as colored blocks, and
the set of potential mappings that has at least a minimizer match. The second
mapping has two minimizer matches, and is usually considered the mapping with
highest quality.

Page 35 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

After getting the set of anchor matches, a number of different techniques

(direct extension, accelerated anchor chaining (Li and Birol, 2018), etc.) can be

used to derive the final mapping, which fall out of scope of our discussion.

4.1.3 Examples

Mapping to Sequences. Minimap (Li, 2016) is one of the most frequently

used read mappers that uses minimizer sketches with random ordering for

quickly finding seed matches. This simple approach has proven to be very power-

ful and has been adopted by several other works (for examples see Naznooshsadat et al.

(2020); Dilthey et al. (2019); de Sena Brandine and Smith (2021), each with

specialization outside the sketching methods). Minimap2 (Li and Birol, 2018;

Li, 2021) improves upon Minimap in various aspects. On the use of minimizers,

Minimap2 does not index the original sequence but the HPC (HomoPolymer-

Collapsed) version of it, with runs of same character collapsed into one single

character. It also culls frequent minimizer k-mers, which is a common idea

present in most of the read mappers using minimizer sketches. This has been

shown to empirically improve the performance. Chromap (Zhang et al., 2021)

further builds upon this idea with optimizations to fit the use case of chromatin

profiling. MashMap (Jain et al., 2018), an approximate mapper specialized for

long reads, uses a hierarchical minimizer sketch (several minimizer sketches with

different parameters) to quickly adapt to different read lengths without sacri-

ficing too much time. Winnowmap (Jain et al., 2020) uses a slightly modified

version of minimizer sketches called “robust minimizers” (which we will discuss

in more detail in Section 5) and uses a stochastic two-layer k-mer ordering to

demote frequent k-mers. Notably, it removed the k-mer culling step (ignoring

the most common k-mers in genomes), claiming that step might lead to loss of

information. lra (Ren and Chaisson, 2021) also refines the baseline approach in

multiple ways. It filters out minimizer k-mers by discarding k-mers with high

Page 36 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

frequency both globally and locally, and a second round of minimizer sketches

is used to refine anchor chain matches.

Mapping to Graphs. The same idea of indexing reference sequences is appli-

cable to indexing sequence graphs. Sequence-to-graph mapping is a young and

exciting research area, with many proposed methods centering around the idea

of extending seeds obtained from minimizer matches. GraphAligner (Rautiainen and Marschall,

2020) introduces minimizer sketches to sequence graph mapping using a rela-

tively unmodified minimizer sketch: sequences present in the sequence graph are

sketched and indexed using minimizers, and their indices are used to find poten-

tial seed locations. Pandora (Colquhoun et al., 2021) takes a slightly different

route, and directly produces a sketch of the sequence graph using minimizer

k-mers as nodes of the sequence graph instead; reads are then walked over the

“local sketch graph” consisting of minimizer k-mers to quickly perform quasi-

mapping. Giraffe (Sirn et al., 2021), now part of vg toolkit (Garrison et al.,

2018), is specialized to matching sequences against gene variation graphs. As

the size of the variation graph can be huge and the matches can be ambiguous,

Giraffe employs multiple rounds of minimizer seed truncation (discarding repeti-

tive minimizer k-mers) and clustering (grouping together minimizer k-mers close

enough to each other), to reduce the workload for the seed extension part. GED-

MAP (Büchler et al., 2023) is a tool for aligning short reads to pan-genome. It

constructs the pan-genome reference by first collapsing short variants (such as

indels) as wildcards, then linearizes the remaining graph structure for modelling

structural variants. On the linear reference, minimizer k-mers can be similarly

defined and an algorithm is provided to efficiently find all minimizers, followed

by a standard implementation of seed-and-extend for read mapping.

Page 37 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

4.2 Sequence Assembly

Sequence assembly is another important pillar of computational biology, and

minimizer sketches also play a role in many modern assemblers. The general

task of sequence assembly can be described as follows. Given a set of sequencing

reads, the goal is to reconstruct the genome sequence (sometimes multiple se-

quences considering haplotypes, sometimes a sequence graph) that these reads

were sequenced from. There are two (classic) paradigms of sequence assem-

bly: OLC (Overlay-Layout-Consensus) and de Bruijn graph walking. Minimizer

sketches are used to facilitate assemblers falling into either category. For exam-

ple, k-mer counting in the sequencing reads is a common first step of assembly

pipeline, and minimizers are commonly used for that task (see Section 4.3).

4.2.1 Minimizers in OLC Assemblers

For OLC (Overlap-Layout-Consensus) assemblers, minimizer sketches are used

to quickly group reads that are likely to overlay each other due to shared min-

imizers, somewhat similar to how reads are quickly located onto reference se-

quences in read mapping (Section 4.1). The pioneering papers on minimizer

sketches (Roberts et al., 2004a,b) apply minimizer sketches to quickly perform

sequence overlapping. Minimus (Sommer et al., 2007) is another method to di-

rectly incorporate minimizer sketches into read overlapping in a rather straight-

forward manner. In addition to overlapping, ntJoin (Coombe et al., 2020) is a

scaffolding tool that constructs a directed graph representing connections be-

tween minimizer k-mers in assembled segments, and then traverses the graph to

quickly sort out orientations and positioning of these segments (usually consid-

ered to be part of the layout phase in the OLC paradigm). While SparseAssem-

bler (Ye et al., 2012) does not directly use minimizer sketches, it uses fixed

interval sampling (as discussed later in Section 5) which is a minimizer-like

Page 38 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

sampling scheme.

4.2.2 Minimizers in Other Assemblers

Sequence assemblers designed for second generation short reads typically do not

use the OLC paradigm and either use de Bruijn graph based assembling or hy-

brid approaches. The construction of the de Bruijn graph from sequencing reads

is the central step in this paradigm. Minimizer sketches perimit parallelizing

this step (see Section 4.3).

LJA (Bankevich et al., 2022) is a new assembler for HiFi reads (Wenger et al.,

2019) consisting of multiple novel components, and the first step in the algo-

rithm is to construct a sparse de Bruijn graph over HPC reads (HPC stands for

HoloPolymer Compressed as in Minimap2 (Li and Birol, 2018)). This is facili-

tated by using minimizer k-mers as vertices with edges denoting adjacency in the

originating sequence. Another assembler named WENGAN (Di Genova et al.,

2021) is designed for hybrid sequencing libraries, and the first step of the al-

gorithm is to build a de Bruijn graph by assembling short reads, followed by

pseudo-alignment over synthesized segments from long reads using minimizers

in a similar way as Minimap2.

4.3 k-mer Dispatching

Parallelization is essential to big data analysis, which is increasingly the norm

today for computational genomics. As such, parallelization primitives are im-

portant for computational genomics, especially those operating over k-mers.

Minimizer sketches serve as an important tool for parallelization in computa-

tional biology, most prominently in k-mer counters. In this section, we first dis-

cuss how minimizer sketches work in accelerating a k-mer counter, then present

how the underlying idea of k-mer dispatching finds use in other scenarios.

Page 39 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

4.3.1 k-mer Counting: Dispatching k-mers with Minimizers

Setup and Parallelization. Given a sequence S and parameter k, the task

of k-mer counting is to produce a table with all k-mers in S alongside their

frequencies. The ordering of k-mers in the table is irrelevant as long as each k-

mer appears at most once. A näıve algorithm counting k-mers one by one is both

slow and memory-intensive. We now present two attempts for parallelization.

• Split S into different segments: send each segment to a different pro-

cess (potentially running on a different machine), perform k-mer counting

on each segment individually, then collect the tabulation and merge the

counts.

• Split k-mers into different buckets: the set of all k-mers is partitioned into

disjoint sets (by a hash function or a simpler criteria such as the identity

of the first 3 characters), and each process handles counting of k-mers in

the assigned set. A main process would then stream the sequence S and

dispatch k-mers to the responsible processes. The resulting tabulation is

simply concatenated from all processes, because each k-mer is counted

only in a single process.

However, the first method takes up too much memory during the collection

phase (because of merging tables that can be as large as |S|), and the sec-

ond method takes up too much time during dispatching (each character in the

original sequence is sent k times to the subprocesses).

Parallelization with Minimizers. Minimizer sketches provide an elegant

approach to parallelize k-mer counting, with the advantages of both methods

described above. To start, choose a minimizer sketch (w0, k0,O0) such that a

window of the resulting minimizer is a k-mer (formally w0 + k0 − 1 = k). The

method consists of splitting k-mers into different buckets, while ensuring that

Page 40 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

if two k-mers have the same minimizer (the k0-mer selected by the minimizer,

by treating the k-mer as a window), they belong to the same bucket.

The main process streams the k-mers of S and dispatches them to the process

responsible for counting that k-mer. However, because k-mers are now bucketed

by their minimizers, it is very likely k-mers close to each other share the same

k0-mer minimizer, and thus would be sent to the same process. Consecutive

k-mers that share a k0-minimizer are merged into a “super-k-mer” and passing

super-k-mers reduces the communication overhead.

As an example, let k = 10, let S[i : j] denote the sequence sisi+1 . . . sj−2sj−1,

and assume S[0 : 10] through S[4 : 14] all share the same minimizer. Instead

of sending these 5 k-mers (50 characters), the main process sends S[0 : 14] (14

characters) to the counting process, reducing communication by 3 times in this

specific case. The remainder of the algorithm is mostly the same as the second

method, as final tabulation is done by concatenation.

This saving is typical: as discussed before, the density of a random (w0, k0)-

minimizer is around 2/w0 (see Section 3.1), meaning two minimizer k0-mers are

apart by w0/2 bases on average. For example, using k0 = 7 when counting

21-mers gives w0 = 15 and w0/2 = 7.5 consecutive k-mers are sent at once in

average. See Figure 5 for an example of this algorithm; in this specific example,

the sequence S has 13 5-mers (65 characters), but by using minimizer 2-mers

only 32 characters need to be sent to the buckets.

4.3.2 Examples of k-mer Dispatching

From the string algorithms viewpoint, the minimizer dispatching method is par-

titioning k-mers into σk0 buckets (most commonly for computational genomics

σ = 4), with the property that k-mers that are close to each other on the order-k

de Bruijn graph are likely to fall within the same bucket, and every instance of a

k-mer is sent to the same bucket. This property is useful in many applications,

Page 41 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

CGCACGCCAACGCACGC

CGCACGCC

 CGCCA

 GCCAACGC

 ACGCA

 CGCACGC

2 CGCAC

2 GCACG

2 CACGC

1 ACGCC

1 ACGCA

Bucket AC

1 CGCCA

Bucket CA

1 GCCAA

1 CCAAC

1 CAACG

1 AACGC

Bucket AA

Figure 5: Example of minimizer-assisted k-mer counting. For counting 5-mers,
we use k0 = 2 and lexicographical order, implying w0 = 4. Left-top shows
the sequence S and its windows (5-mers) grouped into super-k-mers by shared
minimizer. Super-k-mers are sent to buckets and the results of 5-mer counting
are shown in each bucket. The final tabulation is obtained by concatenation.

and thus, the idea of minimizer dispatching k-mers has been independently dis-

covered many times in diverse contexts. Here, we only briefly discuss the use

case for each context. Refer to Section 3.2.2 for a discussion on how to build a

minimizer sketch specifically for this task.

• k-mer counting. We have discussed how this works in the previous sec-

tion, and the idea is first proposed by MSPKCounter (Li, 2015) and

is later followed by a number of improved protocols (see Petrillo et al.

(2019); Shibuya et al. (2022); Erbert et al. (2017); Marchet et al. (2020);

Mercado et al. (2021) for examples; they share the same underlying idea,

but implement it differently). KMC2 (Deorowicz et al., 2015) also pro-

pose to exclude k-mers fitting certain patterns to improve basket balance,

which is carried over to its successor KMC3 (Kokot et al., 2017).

• Building de Bruijn graphs (Li et al., 2013; Qiu and Luo, 2017; Nyström-Persson et al.,

2021; Marchet et al., 2021; Rautiainen and Marschall, 2021; Ben-Ari et al.,

2021; Khan et al., 2022). Similar to k-mer counting, breaking the input

sequence into buckets allows building subgraphs in parallel and then re-

constructing the de Bruijn graph. Holley and Melsted (2020) operates

over colored de Bruijn graphs that support edits, so a number of more

Page 42 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

advanced data structures are needed, however the core idea remains the

same. BCALM and BCALM2 (Chikhi et al., 2015, 2016) are methods to

generate maximal paths in the de Bruijn graph in order to compactly store

de Bruijn graphs, and these methods rely on careful walking between min-

imizer bins to ensure correctness. Rengasamy et al. (2018) does not build

a full de Bruijn graph, but uses a similar idea in one of its steps.

• Sequence compression (Patro and Kingsford, 2015; Grabowski et al., 2015;

Wang et al., 2017; Liu et al., 2019; Zhang et al., 2020; Liu and Li, 2021).

By dispatching k-mers into buckets by minimizers, each bucket is effi-

ciently compressed due to the sequence similarity inside the bucket. Ad-

ditionally, BIC (Wang et al., 2017) uses a read error-correction method to

find sequences that are similar to each other but differ in minimizer k-mers;

these differences are treated as “errors” that are corrected at compression

and recovered at decompression. In minicom (Liu et al., 2019), the reads

in a bucket are further pairwise compared, anchored at the minimizer,

then reordered to achieve maximum compression.

• Caching and indexing. Kraken (Wood and Salzberg, 2014) and Kraken 2

(Wood et al., 2019) are tools to quickly identify metagenomic taxonomy

from a underlying k-mer database. As the database is huge, it cannot

fully reside within memory. The authors propose to organize the database

storage by minimizers. When querying the constituent k-mers in a string,

it is likely all k-mers sharing the same minimizer have been loaded into

memory, so no disk read is required if the current k-mer shares the same

minimizer as the previous one, greatly reducing cache miss rate. Kraken 2

further improves upon Kraken by only storing minimizers instead of the

full k-mers. CONSULT (Rachtman et al., 2021) is a contamination re-

moval tool that contains a coarse k-mer lookup table, and the first step

Page 43 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

is to reduce k-mers to their minimizers similar to how Kraken 2 works.

Blight (Marchet et al., 2021) implements an exact k-mer key-value lookup,

and the first step is also to split k-mers into minimizer buckets.

4.4 Other Use Cases

We briefly discuss some other interesting use cases of minimizer sketches that

do not neatly fit into any of the above categories. A common trait of these use

cases is they are using minimizer sketch as a method to sample k-mers from a

sequence, then use the k-mer set as a proxy for sequence comparison.

4.4.1 Sequence Similarity Estimation

As discussed in Section 2.2, minimizer sketches are not locality-sensitive hashes

(LSHs). Nevertheless, minimizer sketches are essentially methods to determin-

istically sample k-mers from a sequence. To estimate sequence similarity, one

can use the set of collected minimizer k-mers from a string as an estimate of the

complete k-mer set for that sequence, as seen in Wu et al. (2020) and Li et al.

(2020). Further, Jain et al. (2018) proposes to estimate sequence identity from

potential mappings by using MinHash estimate (as seen in Ondov et al. (2016))

over the set of minimizer k-mers. This idea is also present in Dilthey et al.

(2019). isONclust (Sahlin and Medvedev (2020)) takes a different route where

size of minimizer anchor chain matches is used to estimate the portion of aligned

sequences. However, as pointed out in Belbasi et al. (2022) and also empirically

shown in Baharav et al. (2020), this might introduce biases when estimating

simple Jaccard distance. MinMer (Kille et al., 2023) is an extension of mini-

mizer sketches used in MashMap3 achieving significantly reduced bias for Jac-

card similarity, which we will further discuss in Section 5.1.

Page 44 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

4.4.2 Polishing and Quality Control

Several polishing and quality control methods use minimizers extensively; the

set of minimizer matches between sequences are smaller than full k-mer matches,

but usually representative enough for filtering purposes. HyPo (Kundu et al.,

2019) uses well supported minimizers to split long unpolished sequences into

chunks. MiniScrub (LaPierre et al., 2019) extensively uses minimizer k-mers

as features for learning a quality control model. Minirmd (Liu et al., 2020)

uses minimizer matches to detect and de-duplicate highly similar reads. WEN-

GAN (Di Genova et al., 2021) uses minimizers to index paired-end sequence

collections to polish assemblies from hybrid reads (in addition to using it during

the primary assembly).

4.4.3 Sequence Membership Query

Further, for similar reasons as in Section 4.4.1, minimizer sketches work as

efficient samples for large-scale sequence indexing. Raptor (Seiler et al., 2021)

uses minimizer k-mers as representative samples to quickly match sequences

against large sequence databases. Needle (Darvish et al., 2022) further improves

upon this idea to perform quantification (counting appearances) of transcript

sequences in large collections of experiments by counting minimizer k-mers of

the transcripts as a proxy. SPUMONI 2 (Ahmed et al., 2023) is a tool for

sequence classification, which can be seen as a generalization of membership

query against a pangenome. The tool works by representing all sequences using

its minimizers and performing classification on the resulting minimizer alphabet.

This results in more compact representation and more efficient execution, which

is crucial for applications such as Nanopore adaptive sampling (Martin et al.,

2022) where non-target reads are discarded during sequencing.

Page 45 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

5 Extensions and Alternatives

Minimizer sketches are widely useful in many contexts as we have shown in

Section 4, but they may not naturally fit into every application. Thus, to develop

sketches better suited towards specific needs, many alternatives to minimizer

sketches have been proposed. We divide these extensions into three groups.

The first two groups are k-mer-based and are split by whether or not they still

hold the window property (see Definition 1 and Lemma 1). We discuss potential

non-k-mer-based methods at the end of this section.

5.1 Windowed Methods

Methods in this section still guarantee that a selection is made in every window.

Local Schemes. Local schemes and forward schemes (Schleimer et al., 2003;

Marçais et al., 2018) are strict generalizations of minimizer sketches. Local

schemes are defined as an arbitrary function mapping a window sequence to a

location on the window. Thus, any sketching methods that satisfy the window

property are at least a local scheme. Forward schemes are local schemes that

satisfy the forward property in Definition 1. Thus, any sketching methods that

satisfy all three properties in Lemma 1 are forward schemes. Currently, there

is some interest (Marçais et al., 2018; Zheng et al., 2021b) in understanding

the design space of local and forward schemes compared to that of minimizer

sketches.

Robust Winnowing. As mentioned before, minimizer sketches are known for

not working well in repeats. Because of the tie-breaking rule favoring leftmost

location, any minimizer sketch has to pick almost every k-mer in a homopoly-

mer (stretches of the same character). There is a modified tie-breaking rule

called Robust Winnowing proposed by Schleimer et al. (2003) and first used

Page 46 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

by Jain et al. (2020) that avoids such degeneracy. In Jain et al. (2020) and

Jain et al. (2022), it has been shown that such methods allow for dropping the

common practice of masking high-frequency k-mers while being highly effective

in speeding up long read mapping. However, from the theoretical perspective,

this rule has a side effect: the local guarantee no longer holds as knowing the

window content alone is no longer sufficient to determine minimizer picks.

Fixed Interval Sampling. There is a very simple way to achieve optimal

density (Section 3.1) if we do not care about the local guarantee at all: sim-

ply select every w k-mer in the sequence S, which drops the local guarantee as

simply inserting a base anywhere before the window changes all the picks af-

ter it. Almutairy and Torng (2018) and Khiste and Ilie (2015) use this idea to

find maximal exact matches (MEMs) without error between two long sequences.

Relatedly, Kutzner et al. (2020) propose a method to extend fixed interval sam-

pling or minimizer sketches to variable-length seeds including MEMs. These

methods are in general greatly constrained as they cannot deal with insertions

or deletions at all.

MinMers. MinMers (Kille et al., 2023) is another generalization of minimizer

sketches by selecting the minimal s k-mers in a window, instead of a single one.

MinMers satisfies the window and local property as defined in Lemma 1, but it

is not guaranteed to be “forwarding” in the sense a k-mer may be selected in

two disjoint windows, but not in a in-between window (which is impossible for a

regular minimizer sketch). Thus, Algorithm 2 cannot be used for this case, and

an efficient algorithm is proposed in Kille et al. (2023) to efficiently construct

and query a MinMer sketch using a heap.

This sketch is used for estimation of Jaccard similarity in the same way as

described in Section 4.4.1. The MinMer sketch guarantees that the s globally

Page 47 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

minimal k-mers are always included, and it is known that a MinHash estimator

using s smallest hash values has an expected error of O(1/
√
s) (see for example

Cohen (2014) for more discussion). Thus, the authors argue that with suitable

choice of s, MinMer is an asymptotic unbiased estimator for Jaccard distance

between sequences. Further, MinMer sketch is also built into a new tool named

MashMap3 in the same manuscript for fast approximate sequence mapping.

5.2 Non-windowed Methods

Methods in this section no longer guarantee that a selection exists in every

window (for many, the entire concept of a window is deprecated), but they still

operate based on the concept of k-mers.

Direct k-mer Downsampling. A simple yet elegant way of sampling k-mers

is to completely ignore contexts and select solely based on the k-mer itself. More

precisely, a priority set of k-mer is generated first (randomly in most cases). A

k-mer is selected if it is in the priority set regardless of the context (as opposed

to a minimizer sketch; the window length w is obsolete). This idea has been

proposed several times under different names (Ekim et al., 2021; Edgar, 2021;

Wood et al., 2019; Dutta et al., 2022).

Using downsampled k-mers as nodes (called Universal Minimizers) in a

greatly simplified assembly graph, mdbg (Ekim et al., 2021) achieves impres-

sive speedup in sequence assembly. Branchwater (Irber et al., 2022) uses the

same technique under the name FracMinHash, and the resulting sketch serve as

indexes in sourmash (Brown and Irber, 2016) for large-scale, massively parallel

search of petabyte-scale sequence collections. Kraken 2 (Wood et al., 2019) and

MashMap3 (Dutta et al., 2022) also include an optional downsampling over a

minimizer sketch to further reduce memory usage.

Page 48 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Open Syncmers. Open Syncmers (Edgar, 2021) are a new class of k-mer

selection methods that operate in a somewhat similar fashion to the Miniception

algorithm (Zheng et al., 2020), with an additional parameter t.

• Construct a (regular) minimizer sketch (w0, k0,O0) whose window are k-

mers.

• For a given k-mer, apply the minimizer selector on the k-mer as a window.

• If the minimizer selects the tth k0−mer, the whole k-mer is selected in the

Open Syncmer scheme.

It can be seen as an instance of direct k-mer downsampling as described in the

last paragraph, where no sequence contexts are considered in selecting a k-mer.

Follow-up works show that open syncmer has great potential in areas like read

mapping and taxonomy classification (Shaw and Yu, 2022; Dutta et al., 2022;

Sahlin, 2022). Open syncmers also do not satisfy the local guarantee, and when

t > 1, open syncmers also naturally avoids over-sampling in low complexity

regions. In fact, Edgar (2021) strongly argued against the local guarantee as a

requirement for sequence sketches, suggesting that such guarantee provides no

protection against sequence mutations.

Masked Minimizers / Parameterized Syncmers. Masked Minimizers,

proposed in Hoang et al. (2022a), and Parameterized Syncmer Schemes (PSS)

as proposed in Dutta et al. (2022) are a generalization of both minimizers and

open syncmers.

Observe that if an open syncmer with parameters (w0, k0,O0, t) selects a

k-mer, the tth k0-mer was selected by a minimizer with parameters (w0, k0,O0).

In other words, if we treat open syncmers as methods to select k0-mers, it is

like a minimizer sketch followed by a very specific selection process as follows:

Page 49 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

• Construct a (regular) minimizer sketch (w0, k0,O0) whose window are k-

mers.

• Collect all k0-mers from the above minimizer sketch.

• A k0-mer x is selected if and only if the (unique) window with x as its tth

k0-mer has x as its minimizer.

Masked minimizers introduce a mask parameter ν ∈ {0, 1}w that replaces t

in open syncmers, and generalizes the open syncmer selection process as follows:

• The first two steps are identical to the previous description.

• A k0-mer x is selected if and only if there exists some index t ∈ [0, w − 1]

with ν[t] = 1 such that the window with x as its tth k0-mer has x as its

minimizer.

In Dutta et al. (2022), a set of locations S = {xi} ⊆ [0, w−1] plays the same role

as ν. An open syncmer is simply a masked minimizer with ν being a one-hot vec-

tor (equivalently a parameterized syncmer with S containing a single element),

and a (regular) minimizer is a masked minimizer with ν being a vector of all

ones. As masked minimizers are generalizations of open syncmers, they also

may not satisfy the window guarantee depending on the mask ν. Dutta et al.

(2022) proposes to modify the parameterized syncmer sketches by forcing a min-

imizer selection when a window contains no selected k-mers, thus recovering the

window guarantee at the expense of selecting more k-mers.

Relatedly, Hoang et al. (2022a) also propose a metric called generalized

sketch score to evaluate masked minimizers. When applied to (regular) mini-

mizers, it reduces to relative conservation (Preservation in Definition 8 divided

by Specific Density in Definition 1). It is shown that certain constructions

of masked minimizers improve the generalized sketch score compared to open

syncmers and (regular) minimizers. Dutta et al. (2022) proposes to evaluate

Page 50 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

parameterized syncmers using a variety of performance measurements from

preservation to percentile of gaps length in sketches, and presents tractable

formula for several measurements assuming random sequence and random sub-

stitution. These measurements are also used to perform hyperparameter opti-

mization for parameterized syncmers and integrate into existing mappers (min-

imap2 (Li and Birol, 2018) and Winnowmap2 (Jain et al., 2022)), with down-

sampling and canonicalization (as we briefly discuss in Section 3.3). Improve-

ment in long-read mapping performance is observed via experiment on simulated

and real data.

5.3 Non-k-mer-based methods

All methods we discussed up to this point select k-mers from an input sequence.

There are also a multitude of methods that aim to replace k-mers, including k-

mers with wildcards (Ning et al., 2001; Binda et al., 2015; Wood et al., 2019),

bidirectional anchors (Loukides and Pissis, 2021), and more classical ones such

as variable length matches (related to unavoidable words as discussed in Sec-

tion 3.1). Among these methods, the Strobemer (Sahlin, 2021, 2022) is a par-

ticularly interesting candidate because they are essentially built by chaining

minimizer k-mers together. The expectation is that such a primitive is more

robust to mutations than raw k-mers or k-mers with wildcards as minimizer

sketches are already robust to mutations. It remains to be seen if a minimizer

sketch over strobemers is possible, and if they can replace k-mers in more ap-

plications.

6 Conclusion

We have provided an extensive review of the theory and application of the

minimizer sketches, and related methods. Thanks to their extreme versatility

Page 51 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

and good performance gains, minimizers sketches have found their way into

many algorithms and software packages.

Minimizers provide strong guarantees (e.g., the window guarantee). On the

one hand these guarantees help prove the correctness of algorithms using min-

imizers, on the other hand, they make developing well performing minimizer

schemes difficult. The current research trend is to relax these guarantees, ei-

ther abandon them entirely or have probabilistic guarantees, or to use machine

learning methods to optimize minimizer schemes.

We believe minimizer and related sketching methods will continue to en-

hance bioinformatics pipelines thanks to continuous rigorous theoretical ad-

vancements.

Acknowledgements

Funding: This work was partially supported through a grant from the US Na-

tional Science Foundation (1937540) to C.K. and a grant from the US National

Institutes of Health (R01HG012470) to C.K. and G.M.

Conflict of Interest: C.K. is a co-founder and CEO of Ocean Genomics, Inc.

G.M. is VP of Software Development at Ocean Genomics, Inc.

References

Ahmed O. Y, Rossi M, Gagie T, et al. SPUMONI 2: improved classification

using a pangenome index of minimizer digests. Genome Biol, 24:122, 2023.

doi: 10.1186/s13059-023-02958-1.

Almutairy M and Torng E. Comparing fixed sampling with minimizer sampling

when using k-mer indexes to find maximal exact matches. PLOS ONE, 13

(2):e0189960, 2018. doi: 10.1371/journal.pone.0189960.

Page 52 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Baharav T. Z, Kamath G. M, David N. T, et al. Spectral Jaccard Similarity:

A new approach to estimating pairwise sequence alignments. Patterns, 1(6):

100081, 2020. doi: 10.1016/j.patter.2020.100081.

Bankevich A, Bzikadze A. V, Kolmogorov M, et al. Multiplex de Bruijn graphs

enable genome assembly from long, high-fidelity reads. Nat Biotechnol, 40(7):

1075–1081, 2022. doi: 10.1038/s41587-022-01220-6.

Belbasi M, Blanca A, Harris R. S, et al. The minimizer Jaccard estimator is

biased and inconsistent. Bioinformatics, 38(Supplement 1):i169–i176, 2022.

doi: 10.1093/bioinformatics/btac244.

Bell J. P. Unavoidable and almost unavoidable sets of words. Int. J. Algebra

Comput., 15:717–724, 2005. doi: 10.1142/S0218196705002463.

Ben-Ari Y, Flomin D, Pu L, et al. Improving the efficiency of de Bruijn graph

construction using compact universal hitting sets. In Proceedings of the 12th

ACM Conference on Bioinformatics, Computational Biology, and Health In-

formatics, 2021. doi: 10.1145/3459930.3469520.

Blackburn S. R. Non-overlapping codes. IEEE Trans Inf Theory, 61(9):4890–

4894, 2015. doi: 10.1109/TIT.2015.2456634.

Blanca A, Harris R. S, Koslicki D, et al. The statistics of k-mers from a sequence

undergoing a simple mutation process without spurious matches. J Comput

Biol, 29(2):155–168, 2022. doi: 10.1089/cmb.2021.0431.

Broder A. Z. On the resemblance and containment of documents. In Pro-

ceedings. Compression and Complexity of SEQUENCES 1997, pages 21–29.

IEEE, 1997. doi: 10.1109/SEQUEN.1997.666900.

Brown C. T and Irber L. C. sourmash: a library for MinHash sketching of DNA.

J. Open Source Softw., 1:27, 2016. doi: 10.21105/joss.00027.

Page 53 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

Büchler T, Olbrich J and Ohlebusch E. Efficient short read mapping to a

pangenome that is represented by a graph of ED strings. Bioinformatics,

page btad320, 2023. doi: 10.1093/bioinformatics/btad320.

Burrows M and Wheeler D. A block-sorting lossless data compression algorithm.

In Digital SRC Research Report. Citeseer, 1994.

Burstein A and Kitaev S. On unavoidable sets of word patterns. SIAM J Discret

Math, 19(2):371–381, 2005. doi: 10.1137/S0895480104445678.

Binda K, Sykulski M and Kucherov G. Spaced seeds improve k-mer-based

metagenomic classification. Bioinformatics, 31(22):3584–3592, 2015. doi: 10.

1093/bioinformatics/btv419.

Carruthers-Smith K. Sliding window minimum implementations, 2011. URL

https://github.com/keegancsmith/Sliding-Window-Minimum/. [Last Ac-

cessed: Jun 21, 2023].

Champarnaud J.-M, Hansel G and Perrin D. Unavoidable sets of con-

stant length. Int J Algebra Comput, 14(2):241–251, 2004. doi: 10.1142/

S0218196704001700.

Chikhi R, Limasset A, Jackman S, et al. On the representation of de Bruijn

graphs. J Comput Biol, 22(5):336–352, 2015. doi: 10.1089/cmb.2014.0160.

Chikhi R, Limasset A and Medvedev P. Compacting de Bruijn graphs from

sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–

i208, 2016. doi: 10.1093/bioinformatics/btw279.

Cohen E. All-distances sketches, revisited: HIP estimators for massive graphs

analysis. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, pages 88–99, 2014. doi:

10.1145/2594538.2594546.

Page 54 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Colquhoun R. M, Hall M. B, Lima L, et al. Pandora: nucleotide-resolution

bacterial pan-genomics with reference graphs. Genome Biol, 22:267, 2021.

doi: 10.1186/s13059-021-02473-1.

Coombe L, Nikoli V, Chu J, et al. ntJoin: Fast and lightweight assembly-guided

scaffolding using minimizer graphs. Bioinformatics, 36(12):3885–3887, 2020.

doi: 10.1093/bioinformatics/btaa253.

Darvish M, Seiler E, Mehringer S, et al. Needle: a fast and space-efficient

prefilter for estimating the quantification of very large collections of expres-

sion experiments. Bioinformatics, 38(17):4100–4108, 2022. doi: 10.1093/

bioinformatics/btac492.

de Sena Brandine G and Smith A. D. Fast and memory-efficient mapping of

short bisulfite sequencing reads using a two-letter alphabet. NAR Genom

Bioinform, 3(4):lqab115, 2021. doi: 10.1093/nargab/lqab115.

DeBlasio D, Gbosibo F, Kingsford C, et al. Practical universal k-mer sets

for minimizer schemes. In Proceedings of the 10th ACM International Con-

ference on Bioinformatics, Computational Biology and Health Informatics,

pages 167–176, 2019. doi: 10.1145/3307339.3342144.

Deorowicz S, Kokot M, Grabowski S, et al. KMC 2: Fast and resource-frugal

k-mer counting. Bioinformatics, 31(10):1569–1576, 2015. doi: 10.1093/

bioinformatics/btv022.

Di Genova A, Buena-Atienza E, Ossowski S, et al. Efficient hybrid de novo

assembly of human genomes with WENGAN. Nat Biotechnol, 39:422–430,

2021. doi: 10.1038/s41587-020-00747-w.

Dilthey A. T, Jain C, Koren S, et al. Strain-level metagenomic assignment and

Page 55 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

compositional estimation for long reads with MetaMaps. Nat Commun, 10

(1):3066, 2019. doi: 10.1038/s41467-019-10934-2.

Dutta A, Pellow D and Shamir R. Parameterized syncmer schemes improve

long-read mapping. PLoS Comput Biol, 18(10):e1010638, 2022. doi: 10.1371/

journal.pcbi.1010638.

Edgar R. Syncmers are more sensitive than minimizers for selecting conserved k-

mers in biological sequences. PeerJ, 9:e10805, 2021. doi: 10.7717/peerj.10805.

Efe K. Robust k-mer partitioning for parallel counting. In Proceedings of the

11th International Joint Conference on Biomedical Engineering Systems and

Technologies (BIOSTEC 2018), volume 3, pages 146–153, 2018. doi: 10.5220/

0006638801460153.

Ekim B, Berger B and Chikhi R. Minimizer-space de Bruijn graphs: whole-

genome assembly of long reads in minutes on a personal computer. Cell Syst,

12(10):958–968, 2021. doi: 10.1016/j.cels.2021.08.009.

Ekim B, Berger B and Orenstein Y. A randomized parallel algorithm for ef-

ficiently finding near-optimal universal hitting sets. In Schwartz R, editor,

International Conference on Research in Computational Molecular Biology,

pages 37–53. Springer, 2020. doi: 10.1007/978-3-030-45257-5 3.

Erbert M, Rechner S and Müller-Hannemann M. Gerbil: a fast and memory-

efficient k-mer counter with GPU-support. Algorithms Mol Biol, 12(1):9,

2017. doi: 10.1186/s13015-017-0097-9.

Evdokimov A. A and Kitaev S. Crucial words and the complexity of some

extremal problems for sets of prohibited words. J. Comb. Theory, Ser. A,

105:273–289, 2004. doi: 10.1016/j.jcta.2003.12.003.

Page 56 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Ferragina P and Manzini G. Opportunistic data structures with applications.

In Proceedings 41st Annual Symposium on Foundations of Computer Science,

pages 390–398. IEEE, 2000. doi: 10.1109/SFCS.2000.892127.

Flomin D, Pellow D and Shamir R. Data set-adaptive minimizer order reduces

memory usage in k-mer counting. J Comput Biol, 29(8):825–838, 2022. doi:

10.1089/cmb.2021.0599.

Frith M. C, Noé L and Kucherov G. Minimally overlapping words for sequence

similarity search. Bioinformatics, 36(22-23):5344–5350, 2020. doi: 10.1093/

bioinformatics/btaa1054.

Frith M. C, Shaw J and Spouge J. L. How to optimally sample a sequence

for rapid analysis. Bioinformatics, 39(2):btad057, 2023. doi: 10.1093/

bioinformatics/btad057.

Garrison E, Sirén J, Novak A. M, et al. Variation graph toolkit improves read

mapping by representing genetic variation in the reference. Nat Biotechnol,

36(9):875–879, 2018. doi: 10.1038/nbt.4227.

Grabowski S, Deorowicz S and Roguski L. Disk-based compression of data from

genome sequencing. Bioinformatics, 31(9):1389–1395, 2015. doi: 10.1093/

bioinformatics/btu844.

Grabowski S and Raniszewski M. Sampling the suffix array with minimizers.

In Iliopoulos C, Puglisi S and Yilmaz E, editors, String Processing and In-

formation Retrieval, pages 287–298. Springer International Publishing, 2013.

doi: 10.1007/978-3-319-23826-5 28.

Higgins P. M. The length of short words in unavoidable sets. Int. J. Algebra

Comput., 21:951–960, 2011. doi: 10.1142/S0218196711006522.

Page 57 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

Higgins P. M and Saker C. J. Unavoidable sets. Theor. Comput. Sci., 359:

231–238, 2006.

Hoang M, Marcais G and Kingsford C. Masked minimizers: Unifying sequence

sketching methods. bioRxiv, 2022a. doi: 10.1101/2022.10.18.512430.

Hoang M, Zheng H and Kingsford C. Differentiable learning of sequence-specific

minimizer schemes with DeepMinimizer. J Comput Biol, 29(12):1288–1304,

2022b. doi: 10.1089/cmb.2022.0275.

Holley G and Melsted P. Bifrost: highly parallel construction and indexing of

colored and compacted de Bruijn graphs. Genome Biol, 21:249, 2020. doi:

10.1186/s13059-020-02135-8.

Irber L. C, Pierce-Ward N. T and Brown C. T. Sourmash branchwater enables

lightweight petabyte-scale sequence search. bioRxiv, 2022. doi: 10.1101/2022.

11.02.514947.

Jain C, Dilthey A. T, Koren S, et al. A fast approximate algorithm for mapping

long reads to large reference databases. J Comput Biol, 25(7):766–779, 2018.

doi: 10.1089/cmb.2018.0036.

Jain C, Rhie A, Hansen N. F, et al. Long-read mapping to repetitive reference

sequences using Winnowmap2. Nat Methods, 19(6):705–710, 2022. doi: 10.

1038/s41592-022-01457-8.

Jain C, Rhie A, Zhang H, et al. Weighted minimizer sampling improves long

read mapping. Bioinformatics, 36(Supplement 1):i111–i118, 2020. doi: 10.

1093/bioinformatics/btaa435.

Khan J, Kokot M, Deorowicz S, et al. Scalable, ultra-fast, and low-memory

construction of compacted de Bruijn graphs with Cuttlefish 2. Genome Biol,

23:190, 2022. doi: 10.1186/s13059-022-02743-6.

Page 58 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Khiste N and Ilie L. E-MEM: efficient computation of maximal exact matches

for very large genomes. Bioinformatics, 31(4):509–514, 2015. doi: 10.1093/

bioinformatics/btu687.

Kille B, Garrison E, Treangen T, et al. Minmers are a generalization of min-

imizers that enable unbiased local Jaccard estimation. bioRxiv, 2023. doi:

10.1101/2023.05.16.540882.

Kokot M, Dlugosz M and Deorowicz S. KMC 3: counting and manipu-

lating kmer statistics. Bioinformatics, 33:27592761, 2017. doi: 10.1093/

bioinformatics/btx304.

Kundu R, Casey J and Sung W.-K. HyPo: super fast & accurate polisher for

long read genome assemblies. bioRxiv, 2019. doi: 10.1101/2019.12.19.882506.

Kutzner A, Kim P.-S and Schmidt M. A performant bridge between fixed-size

and variable-size seeding. BMC Bioinformatics, 21:328, 2020. doi: 10.1186/

s12859-020-03642-y.

LaPierre N, Egan R, Wang W, et al. De novo Nanopore read quality im-

provement using deep learning. BMC Bioinformatics, 20:552, 2019. doi:

10.1186/s12859-019-3103-z.

Levenshtein V. I. Maximum number of words in codes without overlaps. Prob-

lemy Peredachi Informatsii, 6(4):88–90, 1970.

Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy

long sequences. Bioinformatics, 32(14):2103–2110, 2016. doi: 10.1093/

bioinformatics/btw152.

Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics,

37(23):4572–4574, 2021. doi: 10.1093/bioinformatics/btab705.

Page 59 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

Li H and Birol I. Minimap2: Pairwise alignment for nucleotide sequences.

Bioinformatics, 34(18):3094–3100, 2018. doi: 10.1093/bioinformatics/bty191.

Li K, Lu Y, Deng L, et al. Deconvolute individual genomes from metagenome

sequences through short read clustering. PeerJ, 8:e8966, 2020. doi: 10.7717/

peerj.8966.

Li Y. MSPKmerCounter: a fast and memory efficient approach for k-mer count-

ing. arXiv, 2015. doi: 10.48550/arXiv.1505.06550.

Li Y, Kamousi P, Han F, et al. Memory efficient minimum substring par-

titioning. Proceedings of the VLDB Endowment, 6(3):169–180, 2013. doi:

10.14778/2535569.2448951.

Liu Y and Li J. Hamming-shifting graph of genomic short reads: Efficient

construction and its application for compression. PLoS Comput Biol, 17(7):

e1009229, 2021. doi: 10.1371/journal.pcbi.1009229.

Liu Y, Yu Z, Dinger M. E, et al. Index suffix–prefix overlaps by (w, k)-minimizer

to generate long contigs for reads compression. Bioinformatics, 35(12):2066–

2074, 2019. doi: 10.1093/bioinformatics/bty936.

Liu Y, Zhang X, Zou Q, et al. Minirmd: accurate and fast duplicate removal

tool for short reads via multiple minimizers. Bioinformatics, 37(11):1604–

1606, 2020. doi: 10.1093/bioinformatics/btaa915.

Lothaire M and Lothaire M. Algebraic combinatorics on words, volume 90.

Cambridge University Press, 2002.

Loukides G and Pissis S. P. Bidirectional string anchors: A new string sampling

mechanism. 29th Annual European Symposium on Algorithms, 204(64), 2021.

doi: 10.4230/LIPIcs.ESA.2021.64.

Page 60 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Marçais G, Solomon B, Patro R, et al. Sketching and sublinear data structures

in genomics. Annu Rev Biomed Data Sci, 2:93–118, 2019. doi: 10.1146/

annurev-biodatasci-072018-021156.

Marçais G, DeBlasio D and Kingsford C. Asymptotically optimal minimizers

schemes. Bioinformatics, 34(13):i13–i22, 2018. doi: 10.1093/bioinformatics/

bty258.

Marçais G, Pellow D, Bork D, et al. Improving the performance of minimizers

and winnowing schemes. Bioinformatics, 33(14):i110–i117, 2017. doi: 10.

1093/bioinformatics/btx235.

Marchet C, Iqbal Z, Gautheret D, et al. REINDEER: efficient indexing of

k-mer presence and abundance in sequencing datasets. Bioinformatics, 36

(Supplement 1):i177–i185, 2020. doi: 10.1093/bioinformatics/btaa487.

Marchet C, Kerbiriou M and Limasset A. Blight: efficient exact associative

structure for k-mers. Bioinformatics, 37(18):2858–2865, 2021. doi: 10.1093/

bioinformatics/btab217.

Martin S, Heavens D, Lan Y, et al. Nanopore adaptive sampling: a tool for

enrichment of low abundance species in metagenomic samples. Genome Biol,

23:11, 2022. doi: 10.1186/s13059-021-02582-x.

Mercado C. C, Fajardo A. R, Manalili S. K, et al. Multiprocessing im-

plementation for building a DNA q-gram index hash table. In Com-

putational Science and Technology, pages 179–191. Springer, 2021. doi:

10.1007/978-981-33-4069-5 16.

Mykkeltveit J. A proof of Golomb’s conjecture for the de Bruijn graph. J Comb

Theory, Series B, 13(1):40–45, 1972. doi: 10.1016/0095-8956(72)90006-8.

Page 61 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

Naznooshsadat E, Elham P and Ali S.-Z. FAME: fast and memory efficient

multiple sequences alignment tool through compatible chain of roots. Bioin-

formatics, 36(12):3662–3668, 2020. doi: 10.1093/bioinformatics/btaa175.

Ning Z, Cox A. J and Mullikin J. C. SSAHA: a fast search method for large DNA

databases. Genome Res, 11(10):1725–1729, 2001. doi: 10.1101/gr.194201.

Nyström-Persson J, Keeble-Gagnère G and Zawad N. Compact and evenly

distributed k-mer binning for genomic sequences. Bioinformatics, 37(17):

2563–2569, 2021. doi: 10.1093/bioinformatics/btab156.

Ondov B. D, Treangen T. J, Melsted P, et al. Mash: fast genome and

metagenome distance estimation using MinHash. Genome Biol, 17:132, 2016.

doi: 10.1186/s13059-016-0997-x.

Orenstein Y, Pellow D, Marçais G, et al. Compact universal k-mer hitting sets.

In Algorithms in Bioinformatics, Lecture Notes in Computer Science, pages

257–268. Springer, Cham, 2016. doi: 10.1007/978-3-319-43681-4 21.

Patro R and Kingsford C. Data-dependent bucketing improves reference-free

compression of sequencing reads. Bioinformatics, 31(17):2770–2777, 2015.

doi: 10.1093/bioinformatics/btv248.

Pellow D, Filippova D and Kingsford C. Improving Bloom filter performance

on sequence data using k-mer Bloom filters. J Comput Biol, 24(6):547–557,

2017. doi: 10.1089/cmb.2016.0155.

Pellow D, Pu L, Ekim B, et al. Efficient minimizer orders for large values of k

using minimum decycling sets. bioRxiv, 2023. doi: 10.1101/2022.10.18.512682.

Petrillo U. F, Sorella M, Cattaneo G, et al. Analyzing big datasets of genomic

sequences: fast and scalable collection of k-mer statistics. BMC Bioinformat-

ics, 20(4):138, 2019. doi: 10.1186/s12859-019-2694-8.

Page 62 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Qiu S and Luo Q. Parallelizing big de Bruijn graph construction on heteroge-

neous processors. In 2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS), pages 1431–1441, Atlanta, GA, USA, 2017.

IEEE. doi: 10.1109/ICDCS.2017.250.

Rachtman E, Bafna V and Mirarab S. CONSULT: accurate contamination re-

moval using locality-sensitive hashing. NAR Genom Bioinform, 3(3):lqab071,

2021. doi: 10.1093/nargab/lqab071.

Rautiainen M and Marschall T. GraphAligner: rapid and versatile

sequence-to-graph alignment. Genome Biol, 21:253, 2020. doi: 10.1186/

s13059-020-02157-2.

Rautiainen M and Marschall T. MBG: Minimizer-based sparse de Bruijn

graph construction. Bioinformatics, 37(16):2476–2478, 2021. doi: 10.1093/

bioinformatics/btab004.

Ren J and Chaisson M. J. lra: A long read aligner for sequences and contigs.

PLoS Comput Biol, 17(6):e1009078, 2021. doi: 10.1371/journal.pcbi.1009078.

Rengasamy V, Kandemir M. T, Medvedev P, et al. Parallel read partitioning for

concurrent assembly of metagenomic data. In 2018 IEEE 25th International

Conference on High Performance Computing, pages 324–333, Bengaluru, In-

dia, 2018. doi: 10.1109/HiPC.2018.00044.

Roberts M, Hayes W, Hunt B. R, et al. Reducing storage requirements for

biological sequence comparison. Bioinformatics, 20(18):3363–3369, 2004a.

doi: 10.1093/bioinformatics/bth408.

Roberts M, Hunt B. R, Yorke J. A, et al. A preprocessor for shotgun assembly

of large genomes. J Comput Biol, 11(4):734–752, 2004b. doi: 10.1089/cmb.

2004.11.734.

Page 63 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

Rowe W. P. M. When the levee breaks: a practical guide to sketching algorithms

for processing the flood of genomic data. Genome Biol, 20:199, 2019. doi:

10.1186/s13059-019-1809-x.

Sahlin K. Effective sequence similarity detection with strobemers. Genome Res,

31(11):2080–2094, 2021. doi: 10.1101/gr.275648.121.

Sahlin K. Strobealign: flexible seed size enables ultra-fast and accurate read

alignment. Genome Biol, 23(1):260, 2022. doi: 10.1186/s13059-022-02831-7.

Sahlin K and Medvedev P. De novo clustering of long-read transcriptome data

using a greedy, quality value-based algorithm. J Comput Biol, 27(4):472–484,

2020. doi: 10.1089/cmb.2019.0299.

Saker C. J and Higgins P. M. Unavoidable sets of words of uniform length. Inf.

Comput., 173:222–226, 2002. doi: 10.1006/inco.2001.3123.

Schleimer S, Wilkerson D. S and Aiken A. Winnowing: Local algorithms for

document fingerprinting. In Proceedings of the 2003 ACM SIGMOD Inter-

national Conference on Management of Data, pages 76–85, New York, NY,

USA, 2003. ACM. doi: 10.1145/872757.872770.

Seiler E, Mehringer S, Darvish M, et al. Raptor: A fast and space-efficient

pre-filter for querying very large collections of nucleotide sequences. iScience,

24(7):102782, 2021. doi: 10.1016/j.isci.2021.102782.

Shaw J and Yu Y. W. Theory of local k-mer selection with applications to

long-read alignment. Bioinformatics, 38(20):4659–4669, 2022. doi: 10.1093/

bioinformatics/btab790.

Shibuya Y, Belazzougui D and Kucherov G. Space-efficient representation of

genomic k-mer count tables. Algorithms Mol Biol, 17(1):5, 2022. doi: 10.

1186/s13015-022-00212-0.

Page 64 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
Minimizers in Genomics

Sirn J, Monlong J, Chang X, et al. Pangenomics enables genotyping of known

structural variants in 5202 diverse genomes. Science, 374(6574):abg8871,

2021. doi: 10.1126/science.abg8871.

Sommer D. D, Delcher A. L, Salzberg S. L, et al. Minimus: a fast, lightweight

genome assembler. BMC Bioinformatics, 8(1):64, 2007. doi: 10.1186/

1471-2105-8-64.

Wang R, Bai Y, Cheng Q, et al. A bucket index correction based method for

compression of genomic sequencing data. In 2017 IEEE International Con-

ference on Bioinformatics and Biomedicine (BIBM), pages 634–637, Kansas

City, MO, USA, 2017. doi: 10.1109/BIBM.2017.8217727.

Weisstein E. W. Necklace. From MathWorld—A Wolfram Web Resource, 1995.

URL https://mathworld.wolfram.com/Necklace.html. [Last Accessed:

Jun 21, 2023].

Wenger A. M, Peluso P, Rowell W. J, et al. Accurate circular consensus long-

read sequencing improves variant detection and assembly of a human genome.

Nat Biotechnol, 37(10):1155–1162, 2019. doi: 10.1038/s41587-019-0217-9.

Wood D. E, Lu J and Langmead B. Improved metagenomic analysis with Kraken

2. Genome Biol, 20(1):257, 2019. doi: 10.1186/s13059-019-1891-0.

Wood D. E and Salzberg S. L. Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol, 15(3):R46, 2014. doi:

10.1186/gb-2014-15-3-r46.

Wu J, Deng L, Wang L, et al. Improve spark-based application performance

using minimizer. In 2020 IEEE 9th Data Driven Control and Learning

Systems Conference (DDCLS), pages 595–599, Liuzhou, China, 2020. doi:

10.1109/DDCLS49620.2020.9275184.

Page 65 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only/Not for Distribution
H. Zheng, G. Marçais, C. Kingsford

Ye C, Ma Z. S, Cannon C. H, et al. Exploiting sparseness in de novo genome as-

sembly. BMC Bioinformatics, 13:S1, 2012. doi: 10.1186/1471-2105-13-S6-S1.

Zhang H, Song L, Wang X, et al. Fast alignment and preprocessing of

chromatin profiles with Chromap. Nat Commun, 12(1):6566, 2021. doi:

10.1038/s41467-021-26865-w.

Zhang W, Lin M and Ross K. A. Efficient search over genomic short read

data. In 32nd International Conference on Scientific and Statistical Database

Management, Vienna, Austria, 2020. doi: 10.1145/3400903.3400907.

Zheng H, Kingsford C and Marçais G. Improved design and analysis of practical

minimizers. Bioinformatics, 36(Supplement 1):i119–i127, 2020. doi: 10.1093/

bioinformatics/btaa472.

Zheng H, Kingsford C and Marais G. Sequence-specific minimizers via po-

lar sets. Bioinformatics, 37(Supplement 1):i187–i195, 2021a. doi: 10.1093/

bioinformatics/btab313.

Zheng H, Kingsford C and Marais G. Lower density selection schemes via small

universal hitting sets with short remaining path length. J Comput Biol, 28

(4):395–409, 2021b. doi: 10.1089/cmb.2020.0432.

Page 66 of 65

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

