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Abstract 

The graph traversal edit distance (GTED), introduced by Ebrahimpour Boroojeny et al. (2018), is an elegant distance 
measure defined as the minimum edit distance between strings reconstructed from Eulerian trails in two edge-
labeled graphs. GTED can be used to infer evolutionary relationships between species by comparing de Bruijn graphs 
directly without the computationally costly and error-prone process of genome assembly. Ebrahimpour Boroojeny 
et al. (2018) propose two ILP formulations for GTED and claim that GTED is polynomially solvable because the linear 
programming relaxation of one of the ILPs always yields optimal integer solutions. The claim that GTED is polynomi-
ally solvable is contradictory to the complexity results of existing string-to-graph matching problems. We resolve this 
conflict in complexity results by proving that GTED is NP-complete and showing that the ILPs proposed by Ebrahim-
pour Boroojeny et al. do not solve GTED but instead solve for a lower bound of GTED and are not solvable in polyno-
mial time. In addition, we provide the first two, correct ILP formulations of GTED and evaluate their empirical effi-
ciency. These results provide solid algorithmic foundations for comparing genome graphs and point to the direction 
of heuristics. The source code to reproduce experimental results is available at https://​github.​com/​Kings​ford-​Group/​
gtedn​ewilp/.
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Introduction
Graph traversal edit distance (GTED)  [1] is an elegant 
measure of the similarity between the strings repre-
sented by edge-labeled Eulerian graphs. For example, 
given two de Bruijn assembly graphs  [2], computing 
GTED between them measures the similarity between 
two genomes without the computationally intensive and 
possibly error-prone process of assembling the genomes. 

Using an estimation of GTED between assembly graphs 
of Hepatitis B viruses, Ebrahimpour Boroojeny et al.  [1] 
group the viruses into clusters consistent with their tax-
onomy. This can be extended to inferring phylogeny rela-
tionships in metagenomic communities or comparing 
heterogeneous disease samples such as cancer. There are 
several other methods to compute a similarity measure 
between strings encoded by two assembly graphs  [3–6]. 
GTED has the advantage that it does not require prior 
knowledge on the type of the genome graph or the com-
plete sequence of the input genomes. The input to the 
GTED problem is two unidirectional, edge-labeled Eule-
rian graphs, which are defined as:

Definition 1  (Unidirectional, edge-labeled Eulerian 
Graph). A unidirectional, edge-labeled Eulerian graph is 
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a connected directed graph G = (V ,E, ℓ,�) , with node 
set V, edge multi-set E, constant-size alphabet � , and sin-
gle-character edge labels ℓ : E → � , such that G contains 
an Eulerian trail that traverses every edge e ∈ E exactly 
once. The unidirectional condition means that all edges 
between the same pair of nodes are in the same direction.

Such graphs arise in genome assembly problems (e.g. 
the de Bruijn subgraphs). Computing GTED is the prob-
lem of computing the minimum edit distance between 
the two most similar strings represented by Eulerian 
trails in each input graph. A trail in a graph is a walk that 
contains distinct edges and may contain repeated nodes.

Problem  1  (Graph Traversal Edit Distance ( GTED
)  [1]). Given two unidirectional, edge-labeled Eulerian 
graphs G1 and G2 , compute

Here, trails(G) is the collection of all Eulerian trails in 
graph G, str(t) is a string constructed by concatenat-
ing labels on the Eulerian trail t = (e0, e1, . . . , en) , and 
edit(s1, s2) is the edit distance between strings s1 and s2.

Ebrahimpour Boroojeny et  al.  [1] claim that GTED is 
polynomially solvable by proposing an integer linear pro-
gramming (ILP) formulation of GTED and arguing that 
the constraints of the ILP make it polynomially solvable. 
This result, however, conflicts with several complexity 
results on string-to-graph matching problems. Kupfer-
man and Vardi [7] show that it is NP-complete to deter-
mine if a string exactly matches an Eulerian tour in an 
edge-labeled Eulerian graph. Additionally, Jain et  al.  [8] 
show that it is NP-complete to compute an edit distance 
between a string and strings represented by a labeled 
graph if edit operations are allowed on the graph. On the 
other hand, polynomial-time algorithms exist to solve 
string-to-string alignment  [9] and string-to-graph align-
ment [8] when edit operations on graphs are not allowed.

We resolve the conflict among the results on complex-
ity of graph comparisons by revisiting the complexity 
of and the proposed solutions to GTED. We prove that 
computing GTED is NP-complete by reducing from the 
hamiltonian path problem, reaching an agreement 
with other related results on complexity. Further, we 
point out with a counter-example that the optimal solu-
tion of the ILP formulation proposed by Ebrahimpour 
Boroojeny et al. [1] does not solve GTED.

We give two ILP formulations for GTED. The first ILP 
has an exponential number of constraints and can be 
solved by subtour elimination iteratively  [10, 11]. The 

(1)
GTED(G1,G2) � min

t1 ∈ trails(G1)

t2 ∈ trails(G2)

edit(str(t1), str(t2)).

second ILP has a polynomial number of constraints and 
shares a similar high-level idea of the global ordering 
approach  [11] in solving the traveling salesman 
problem [12].

In Qiu and Kingsford  [13], Flow-GTED (FGTED), 
a variant of GTED is proposed to compare two sets 
of strings (instead of two strings) encoded by graphs. 
FGTED is equal to the edit distance between the most 
similar sets of strings spelled by the decomposition of 
flows between a pair of predetermined source and sink 
nodes. The similarity between the sets of strings recon-
structed from the flow decomposition is measured by 
the Earth Mover’s Edit Distance  [13, 14]. FGTED is 
used to compare pan-genomes, where both the fre-
quency and content of strings are essential to represent 
the population of organisms. Qiu and Kingsford  [13] 
reduce FGTED to GTED , and via the claimed polyno-
mial-time algorithm of GTED , argued that FGTED is 
also polynomially solvable. We show that this claim is 
false by proving that FGTED is also NP-complete.

While the optimal solution to the ILP proposed in 
Ebrahimpour Boroojeny et al. [1] does not solve GTED, 
it does compute a lower bound to GTED that we call 
closed-trail cover traversal edit distance ( CCTED ). We 
characterize the cases when GTED is equal to CCTED . 
In addition, we point out that solving this ILP formula-
tion finds a minimum-cost matching between closed-
trail decompositions in the input graphs, which may 
be used to compute the similarity between repeats in 
the genomes. Ebrahimpour Boroojeny et  al.  [1] claim 
their proposed ILP formulation is solvable in polyno-
mial time by arguing that the constraint matrix of the 
linear relaxation of the ILP is always totally unimodu-
lar. We show that this claim is false by proving that the 
constraint matrix is not always totally unimodular and 
showing that there exists optimal fractional solutions to 
its linear relaxation. We prove that, in fact, CCTED is 
also NP-complete.

We evaluate the efficiency of solving ILP formulations 
for GTED and CCTED on simulated genomic strings and 
show that it is impractical to compute GTED or CCTED 
on larger genomes.

In summary, we revisit two important problems in 
genome graph comparisons: Graph Traversal Edit Dis-
tance (GTED) and its variant FGTED. We show that 
both GTED and FGTED are NP-complete, and provide 
the first correct ILP formulations for GTED. We also 
show that the ILP formulation proposed by Ebrahim-
pour Boroojeny et  al.  [1], i.e. CCTED , is a lower bound 
to GTED and is also NP-complete. We evaluate the effi-
ciency of the ILPs for GTED and CCTED on genomic 
sequences. These results provide solid algorithmic foun-
dations for continued algorithmic innovation on the task 
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of comparing genome graphs and point to the direction 
of heuristics that estimate GTED and CCTED efficiently.

GTED and FGTED are NP‑complete
Conflicting results on computational complexity of GTED 
and string‑to‑graph matching
The natural decision versions of all of the computational 
problems described above and below are clearly in NP. 
Under the assumption that P  = NP , the results on the 
computational complexity of GTED and string-to-graph 
matching claimed in Boroojeny et al. [1] and Kupferman 
and Vardi [7], respectively, cannot be both true.

Kupferman and Vardi  [7] show that the problem of 
determining if an input string can be spelled by concat-
enating edge labels in an Eulerian trail in an input graph 
is NP-complete. We call this problem eulerian trail 
equaling word. We show in Theorem  1 that we can 
reduce ETEW to GTED , and therefore if GTED is polyno-
mially solvable, then ETEW is polynomially solvable. The 
complete proof is in Appendix "Reduction from Hamilto-
nian Path to GTED".

Problem 2  (Eulerian Trail Equaling Word [7]). Given a 
string s ∈ �∗ , an edge-labeled Eulerian graph G, find an 
Eulerian trail t of G such that str(t) = s.

Theorem 1  If GTED ∈ P then ETEW ∈ P.

Proof sketch  We first convert an input instance 〈s,G〉 of 
ETEW into an input instance 〈G1,G2〉 to GTED by (a) cre-
ating graph G1 that only contains edges that reconstruct 
string s and (b) modifying G into G2 by extending the 
anti-parallel edges so that G2 is unidirectional. We show 
that if GTED(G1,G2) = 0 , there must be an Eulerian trail 
in G that spells s, and if GTED(G1,G2) > 0 , G must not 
contain an Eulerian trail that spells s. 	�  �

Hence, an (assumed) polynomial-time algorithm for 
GTED solves ETEW in polynomial time. This contradicts 
Theorem 6 of Kupferman and Vardi  [7] of the NP-com-
pleteness of ETEW (under P  = NP).

Reduction from Hamiltonian Path to GTED and FGTED
We resolve the contradiction by showing that GTED 
is NP-complete. The details of the proof are in Appen-
dix Reduction from Hamiltonian Path to GTED.

Theorem 2  GTED is NP-complete.

Proof sketch  We reduce from the hamiltonian path 
problem, which asks whether a directed, simple graph 
G contains a path that visits every vertex exactly once. 
Here simple means no self-loops or parallel edges. The 

reduction is almost identical to that presented in Kup-
ferman and Vardi [7], and from here until noted later in 
the proof the argument is identical except for the techni-
calities introduced to force unidirectionality (and another 
minor change described later).

Let �G = (V ,E)� be an instance of hamiltonian path, 
with n = |V | vertices. We first create the Eulerian closure 
of G, which is defined as G′ = (V ′,E′) where

Here, each vertex in V is split into vin and vout , and w is a 
newly added vertex. E′ is the union of the following sets 
of edges and their labels:

•	 E1 = {(vin, vout) : v ∈ V } , labeled a,
•	 E2 = {(uout , vin) : (u, v) ∈ E} , labeled b,
•	 E3 = {(vout , vin) : v ∈ V } , labeled c,
•	 E4 = {(vin,uout) : (u, v) ∈ E} , labeled c,
•	 E5 = {(uin,w) : u ∈ V } , labeled c,
•	 E6 = {(w,uin) : u ∈ V } , labeled b.

G′ is an Eulerian graph by construction but contains 
anti-parallel edges. We further create G′′ from G′ by 
adding dummy nodes so that each pair of antiparal-
lel edges is split into two parallel, length-2 paths with 
labels x#, where x is the original label.

We also create a graph C that has the same number of 
edges as G′′ and spells out a string

We then argue that G has a Hamiltonian path if and only 
if G′′ spells out the string q, which uses the same line of 
arguments and graph traversals as in Kupferman and 
Vardi  [7]. We then show that GTED(G′′,C) = 0 if and 
only if G′′ spells q. 	�  �

Following a similar argument, we show that FGTED is 
also NP-complete, and its proof is in Appendix FGTED 
is NP-complete.

Theorem 3  FGTED is NP-complete.

Revisiting the correctness of the proposed ILP 
solutions to GTED
In this section, we revisit two proposed ILP solutions to 
GTED by Boroojeny et al. [1] and show that the optimal 
solution to these ILP is not always equal to GTED.

Alignment graph
The previously proposed ILP formulations for GTED are 
based on the alignment graph constructed from input 

(2)V ′ = {vin, vout : v ∈ V } ∪ {w}.

(3)q = a#(b#a#)n−1(c#)2n−1(c#b#)|E|+1.
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graphs. The high-level concept of an alignment graph 
is similar to the dynamic programming matrix for the 
string-to-string alignment problem [9].

Definition 2  (Alignment graph). Let G1, G2 be two uni-
directional, edge-labeled Eulerian graphs. The alignment 
graph A(G1,G2) = (V ,E, δ) is a directed graph that has 
vertex set V = V1 × V2 and edge multi-set E that equals 
the union of the following: 

Vertical edges	� [(u1,u2), (v1,u2)] for (u1, v1) ∈ E1 and 
u2 ∈ V2,

Horizontal edges	� [(u1,u2), (u1, v2)] for u1 ∈ V1 and 
(u2, v2) ∈ E2,

Diagonal edges	� [(u1,u2), (v1, v2)] for (u1, v1) ∈ E1 and 
(u2, v2) ∈ E2.

 Each edge is associated with a cost by the cost function 
δ : E → R.

Each diagonal edge e = [(u1,u2), (v1, v2)] in an align-
ment graph can be projected to (u1, v1) and (u2, v2) in G1 
and G2 , respectively. Similarly, each vertical edge can be 

projected to one edge in G1 , and each horizontal edge 
can be projected to one edge in G2.

An example of an alignment graph is shown in 
Fig.  1b.  The horizontal edges correspond to gaps in 
strings represented by G1 , vertical edges correspond to 
gaps in strings represented by G2 , and diagonal edges 
correspond to the matching between edge labels from 
the two graphs. In the rest of this paper, we assume that 
the costs for horizontal and vertical edges are 1, and the 
costs for the diagonal edges are 1 if the diagonal edge 
represents a mismatch and 0 if it is a match. The cost 
function δ can be defined to capture the cost of match-
ing between edge labels or inserting gaps. This defini-
tion of alignment graph is also a generalization of the 
alignment graph used in string-to-graph alignment [8].

We define that the edge projection function, πi , pro-
jects an edge from the alignment graph to an edge in 
the input graph Gi . If the alignment edge is a vertical 
or horizontal edge, it is projected to one edge in only 
one input graph. We also define that the path projec-
tion function, �i , projects a trail in the alignment graph 
to a trail in the input graph Gi . For example, let a trail 
in the alignment graph be p = (e1, e2, . . . , em) , and 
�i(p) = (πi(e1),πi(e2), . . . ,πi(em)) is a trail in Gi.

Fig. 1  a An example of two edge labeled Eulerian graphs G1 (top) and G2 (bottom). b The alignment graph A(G1,G2) . The cycle with red edges 
is the path corresponding to GTED(G1,G2) . Red solid edges are matches with cost 0 and red dashed-line edge is mismatch with cost 1
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The first previously proposed ILP for GTED
Lemma 1 in Ebrahimpour Boroojeny et al. [1] provides 
a model for computing GTED by finding the minimum-
cost trail in the alignment graph. We reiterate it here 
for completeness.

Lemma 1  [1]. For any two edge-labeled Eulerian graphs 
G1 and G2,

where δ(c) is the total edge cost of c, and �i(c) is the pro-
jection from c to Gi.

An example of such a minimum-cost trail is shown 
in Fig.  1b for input graphs in Fig.  1a. Ebrahimpour 
Boroojeny et al. [1] provide the following ILP formula-
tion and claim that it is a direct translation of Lemma 1:

where

Here, E is the edge set of A(G1,G2) . A is the negative 
incidence matrix of A(G1,G2) of size |V | × |E| . Ii(e, f ) is 
an indicator function that is 1 if edge e in E projects to 
edge f in the input graph Gi (and 0 otherwise). We define 
the domain of each xe to include all non-negative inte-
gers. However, due to constraints (7), the values of xe are 
limited to either 0 or 1. We describe this ILP formulation 
with the assumption that both input graphs have closed 
Eulerian trails, which means that each node has equal 
numbers of incoming and outgoing edges. We show that 
any input graph that contains open Eulerian trails can be 
converted to a graph with closed Eulerian trails in sec-
tion "New ILP solutions to GTED".

The edges where xe = 1 in optimal solutions to the 
ILP in (5)–(8) form a subgraph of the alignment graph. 
The ILP in  (5)–(8) allows the solutions that form in 

(4)GTED(G1,G2) = minimizec δ(c)

subject to c is a trail inA(G1,G2),

�i(c) is an Eulerian trail in Gi for i = 1, 2,

(5)minimize
x∈N|E|

∑

e∈E

xeδ(e)

(6)subject to Ax = 0

(7)
∑

e∈E

xeIi(e, f ) = 1 for i = 1, 2 and for all f ∈ Ei,

(8)

Aue =







−1 if e = (u, v) ∈ E for some vertex v ∈ V
1 if e = (v,u) ∈ E for some u ∈ V
0 otherwise.

disjoint cycles in the alignment graph. However, the 
projection of such disjoint cycles does not correspond 
to a single string represented by either of the input 
graphs. Therefore, when solutions to the ILP in (5)–(8) 
form disjoint cycles in the alignment graph, the optimal 
objective value of the ILP is not equal to GTED.

We give an example of disjoint cycles in the ILP for-
mulated based on an input alignment graph. Construct 
two input graphs as shown in Fig.  2a. Specifically, G1 

spells circular permutations of TTT​GAA​ and G2 spells 
circular permutations of TTT​AGA​. It is clear that 
GTED(G1,G2) = 2 under Levenshtein edit distance. On 
the other hand, as shown in Fig. 2a, an optimal solution 
in A(G1,G2) contains two disjoint cycles with nonzero 
xe values that have a total edge cost equal to 0. This 
solution is a feasible solution to the ILP in  (5)–(8). It 
is also an optimal solution because the objective value 
is zero, which is the lower bound on the ILP in (5)–(8). 
This optimal objective value, however, is smaller than 
GTED(G1,G2) . Therefore, the ILP in  (5)–(8) does not 
solve GTED since it allows the solution to be a set of 
disjoint components.

The second previously proposed ILP formulation of GTED
We describe the second proposed ILP formulation of 
GTED by Ebrahimpour Boroojeny et al. [1].

Following Ebrahimpour Boroojeny et  al.  [1], we use 
simplices, a notion from geometry, to generalize the 
notion of an edge to higher dimensions. A k-simplex 
is a k-dimensional polytope which is the convex hull of 
its k + 1 vertices. For example, a 1-simplex is an undi-
rected edge, and a 2-simplex is a triangle. We use the 
orientation of a simplex, which is given by the ordering 
of the vertex set of a simplex up to an even permuta-
tion, to generalize the notion of the edge direction [15, 
p.  26]. We use square brackets [·] to denote an ori-
ented simplex. For example, [v0, v1] denotes a 1-sim-
plex with orientation v0 → v1 , which is a directed 
edge from v0 to v1 , and [v0, v1, v2] denotes a 2-simplex 
with orientation corresponding to the vertex ordering 
v0 → v1 → v2 → v0 . Each k-simplex has two possible 
unique orientations, and we use the signed coefficient 
to connect their forms together, e.g. [v0, v1] = −[v1, v0].

For each pair of graphs G1 and G2 and their alignment 
graph A(G1,G2) , we define an oriented 2-simplex set 
T (G1,G2) which is the union of:
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•	 [(u1,u2), (v1,u2), (v1, v2)] for all (u1, v1) ∈ E1 and 
(u2, v2) ∈ E2 , or

•	 [(u1,u2), (u1, v2), (v1, v2)] for all (u1, v1) ∈ E1 and 
(u2, v2) ∈ E2,

We use the boundary operator  [15, p.  28], denoted by ∂ , 
to map an oriented k-simplex to a sum of oriented (k − 1)

-simplices with signed coefficients.

where v̂i denotes the vertex vi is to be deleted. Intuitively, 
the boundary operator maps the oriented k-simplex to a 
sum of oriented (k − 1)-simplices such that their vertices 
are in the k-simplex and their orientations are consistent 
with the orientation of the k-simplex. For example, when 
k = 2 , we have:

We reiterate the second ILP formulation proposed in 
Ebrahimpour Boroojeny et  al.  [1]. Given an alignment 
graph A(G1,G2) = (V ,E, δ) and the oriented 2-simplex 
set T (G1,G2),

(9)∂[v0, v1, . . . , vk ] =

p
∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vk ],

(10)
∂[v0, v1, v2] = [v1, v2] − [v0, v2] + [v0, v1]

= [v1, v2] + [v2, v0] + [v0, v1].

Entries in x and y correspond to 1-simplices and 
2-simplices in E and T (G1,G2) , respectively. [∂] is a 
|E| × |T (G1,G2)| boundary matrix where each entry [∂]i,j 
is the signed coefficient of the oriented 1-simplex (the 
directed edge) in E corresponding to xi in the bound-
ary of the oriented 2-simplex in T (G1,G2) correspond-
ing to yj . The index i,  j for each 1-simplex or 2-simplex 
is assigned based on an arbitrary ordering of the 1-sim-
plices in E or the 2-simplices in T (G1,G2) . An example 
of the boundary matrix is shown in Fig. 3. δ(e) is the cost 
of each edge. xinit ∈ R

|E| is a vector where each entry 
corresponds to a 1-simplex in E with |E1| + |E2| nonzero 
entries that represent one Eulerian trail in each input 
graph. xinit is a feasible solution to the ILP. Let s1 be the 
source of the Eulerian trail in G1 , and s2 be the sink of the 
Eulerian trail in G2 . Each entry in xinit is defined by

If the Eulerian trail is closed in Gi , si can be any vertex in 
Vi . An example of xinit is shown in Fig. 2b.

We provide a complete proof in Appendix "Equivalence 
between two ILPs proposed by [1]" that the ILP in  (5)–
(8) is equivalent to the ILP in  (11)–(12). Therefore, the 

(11)
minimize

x∈N|E|,y∈Z|T (G1,G2)|

∑

e∈E

xeδ(e)

subject to x = xinit + [∂]y

(12)

x
init
e =

{

1 if e = [(u1, s2), (v1, s2)] or e = [(s1,u2), (s1, v2)],

0 otherwise.

Fig. 2  a The subgraph in the alignment graph induced by an optimal solution to the ILP in (5)–(8) and the ILP in (11)–(12) with input graphs 
on the left and top. The red and blue edges in the alignment graph are edges matching labels in red and blue font, respectively, and are part 
of the optimal solution to the ILP in (5)–(8). The cost of the red and blue edges are zero. b The subgraph induced by xinit with s1 = u1 and s2 = v1 
according to the ILP in (11)–(12). The rest of the edges in the alignment graph are omitted for simplicity
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example we provided in section "The first previously pro-
posed ILP for GTED" is also an optimal solution to the 
ILP in  (11)–(12) but not a solution to GTED. Thus, the 
ILP in (11)–(12) does not always solve GTED.

New ILP solutions to GTED
To ensure that our new ILP formulations are applicable 
to input graphs regardless of whether they contain an 
open or closed Eulerian trail, we add a source node s and 
a sink node t to the alignment graph. Figure 4 illustrates 
three possible cases of input graphs. 

1.	 If only one of the input graphs has closed Eulerian 
trails, wlog, let G1 be the input graph with open 
Eulerian trails. Let a1 and b1 be the start and end of 
the Eulerian trail that have odd degrees. Add edges 
[s, (a1, v2)] and [(b1, v2), t] to E for all nodes v2 ∈ V2 
(Fig. 4a). Let the labels on the newly added edges be 
the empty character ǫ.

2.	 If both input graphs have closed Eulerian trails, let a1 
and a2 be two arbitrary nodes in G1 and G2 , respec-
tively. Add edges [s, (a1, v2)] , [s, (v1, a2)] , [(a1, v2), t] 
and [(v1, a2), t] for all nodes v1 ∈ V1 and v2 ∈ V2 to E 
(Fig. 4b).

3.	 If both input graphs have open Eulerian trails, add 
edges [s, (a1, a2)] and [t, (b1, b2)] , where ai and bi 
are start and end nodes of the Eulerian trails in Gi , 
respectively (Fig. 4c).

According to Lemma 1, we can solve GTED(G1,G2) by 
finding a trail in A(G1,G2) that satisfies the projection 
requirements. This is equivalent to finding a s-t trail in 
A(G1,G2) that satisfies constraints:

where Ii(e, f ) = 1 if the alignment edge e projects to f in 
Gi , and xuv is the ILP variable for edge (u, v) ∈ E . An opti-
mal solution to GTED in the alignment graph must start 
and end with the source and sink node because they are 
connected to all possible starts and ends of Eulerian trails 
in the input graphs.

Since a trail in A(G1,G2) is a flow network, we use 
the following flow constraints to enforce the equal-
ity between the number of in- and out-edges for each 
node in the alignment graph except the source and sink 
nodes.

(13)

∑

(u,v)∈E

xuvIi((u, v), f ) = 1 for all (u, v) ∈ E, f ∈ Gi, u �= s, v �= t,

Fig. 3  a A graph that contains an unoriented 2-simplex with three unoriented 1-simplices. b, c The same graph with two different ways of orienting 
the simplices and the corresponding boundary matrices

Fig. 4  Modified alignment graphs based on input types. a G1 has open Eulerian trails while G2 has closed Eulerian trails. b Both G1 and G2 have 
closed Eulerian trails. c Both G1 and G2 have open Eulerian trails. Solid red and blue nodes are the source and sink nodes of the graphs with open 
Eulerian trails. “s” and “t” are the added source and sink nodes. Colored edges are added alignment edges directing from and to source and sink 
nodes, respectively
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Constraints (13) and (16) are equivalent to constraints (7) 
and (6), respectively. Therefore, we rewrite the ILP in (5)–
(8) in terms of the modified alignment graph.

As we show in section "The first previously proposed ILP 
for GTED", constraints  (13)–(16) do not guarantee that 
the ILP solution is one trail in A(G1,G2) , thus allowing 
several disjoint covering trails to be selected in the solu-
tion and fails to model GTED correctly. We show in sec-
tion  "Closed-trail cover traversal edit distance" that the 
solution to this ILP is a lower bound to GTED.

According to Lemma 1 in Dias et al. [11], a subgraph of 
a directed graph G with source node s and sink node t is a 
s-t trail if and only if it is a flow network and every strongly 
connected component (SCC) of the subgraph has at least 
one edge outgoing from it. Thus, in order to formulate an 
ILP for the GTED problem, it is necessary to devise con-
straints that prevent disjoint SCCs from being selected 
in the alignment graph. In the following, we describe two 
approaches for achieving this.

Enforcing one trail in the alignment graph via constraint 
generation
Section 3.2 of Dias et al. [11] proposes a method to design 
linear constraints for eliminating disjoint SCCs, which can 
be directly adapted to our problem. Let C be the collection 
of all strongly connected subgraphs of the alignment graph 
A(G1,G2) . We use the following constraint to enforce that 
the selected edges form one s-t trail in the alignment graph:

(14)
∑

(s,u)∈E

xsu = 1

(15)
∑

(v,t)∈E

xvt = 1

(16)
∑

(u,v)∈E

xuv =
∑

(v,w)∈E

xvw for all v ∈ V

(lower bound ILP)

minimize
x∈N|E|

∑

e∈E

xeδ(e)

subject to constraints (13)−(16).

(17)

If
∑

(u,v)∈E(C)

xuv = |E(C)|, then
∑

(u,v)∈ε+(C)

xuv ≥ 1 for all C ∈ C,

where E(C) is the set of edges in the strongly con-
nected subgraph C and ε+(C) is the set of edges (u,  v) 
such that u belongs to C and v does not belong to C. 
∑

(u,v)∈E(C) xuv = |E(C)| indicates that C is in the sub-
graph of A(G1,G2) constructed by all edges (u,  v) with 
positive xuv , and 

∑

(u,v)∈ε+(C) xuv ≥ 1 guarantees that 
there exists an out-going edge of C that is in the subgraph.

We use the same technique as Dias et al.  [11] to lin-
earize the “if-then” condition in  (17) by introducing a 
new variable β for each strongly connected component:

To summarize, given any pair of unidirectional, edge-
labeled Eulerian graphs G1 and G2 and their alignment 
graph A(G1,G2) = (V ,E, δ) , GTED(G1,G2) is equal to 
the optimal solution of the following ILP formulation:

This ILP has an exponential number of constraints 
as there is a set of constraints for every strongly con-
nected subgraph in the alignment graph. To solve this 
ILP more efficiently, we can use the procedure similar 
to the iterative constraint generation procedure in Dias 
et al. [11] (Algorithm 1). Initially, solve the ILP with only 
constraints (13)–(16). Create a subgraph, G′ , induced by 
edges with positive xuv . For each disjoint SCC in G′ that 
does not contain the sink node, add constraints (18)–(21) 
for edges in the SCC and solve the new ILP. Iterate until 
no disjoint SCCs are found in the solution.

(18)
∑

(u,v)∈E(C)

xuv ≥ |E(C)|βC for all C ∈ C

(19)

∑

(u,v)∈E(C)

xuv − |E(C)| + 1− |E(C)|βC ≤ 0 for all C ∈ C

(20)
∑

(u,v)∈ε+(C)

xuv ≥ βC for all C ∈ C

(21)βC ∈ {0, 1} for all C ∈ C

(exponential ILP)

minimize
x∈{0,1}|E|

∑

e∈E

xeδ(e)

subject to constraints (13)−(16) and

constraints (18)−(21).
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Algorithm 1  Iterative constraint generation algorithm to solve (exponential ILP)

A compact ILP for GTED with polynomial number 
of constraints
In the worst cases, the number of iterations to 
solve  (exponential ILP) via constraint generation is 
exponential. As an alternative, we introduce a compact 
ILP with only a polynomial number of constraints. The 
intuition behind this ILP is that we can impose a partially 
increasing ordering on all the edges so that the selected 
edges forms a s-t trail in the alignment graph. This idea 
is similar to the Miller-Tucker-Zemlin ILP formulation of 
the travelling salesman problem (TSP) [12].

We add variables duv that are constrained to provide a 
partial ordering of the edges in the s-t trail and set the 
variables duv to zero for edges that are not selected in 
the s-t trail. Intuitively, there must exist an ordering of 
edges in a s-t trail such that for each pair of consecutive 
edges (u, v) and (v, w), the difference in their order vari-
able duv and dvw is 1. Therefore, for each node v that is 
not the source or the sink, if we sum up the order vari-
ables for the incoming edges and outgoing edges respec-
tively, the difference between the two sums is equal to the 
number of selected incoming/outgoing edges. Lastly, the 
order variable for the edge starting at source is 1, and the 
order variable for the edge ending at sink is the number 
of selected edges. This gives the ordering constraints as 
follows:

(22)If xuv = 0, then duv = 0 for all (u, v) ∈ E

(23)

∑

(v,w)∈E

dvw −
∑

(u,v)∈E

duv =
∑

(v,w)∈E

xvw for all v ∈ V \ {s, t}

(24)
∑

(s,u)∈E

dsu = 1

We enforce that all variables xe ∈ {0, 1} and de ∈ N for all 
e ∈ E.

The “if-then” statement in Eq.  (22) can be linearized 
by introducing an additional binary variable yuv for each 
edge [11, 16]:

Here, yuv is an indicator of whether xuv ≥ 0 . The coeffi-
cient |E| is the number of edges in the alignment graph 
and also an upper bound on the ordering variables. 
When yuv = 1 , duv ≤ 0 , and yuv does not impose con-
straints on xuv . When yuv = 0 , xuv ≥ 1 , and yuv does not 
impose constraints on duv.

Correctness of (compact ILP) for GTED
To show that the optimal objective value of (compact ILP) 
is equal to GTED, we show that the optimal solutions 
to (compact ILP) always form one connected component.

Lemma 2  Let xe and de be ILP variables. Let G′ be a sub-
graph of A(G1,G2) that is induced by edges with xe = 1

. If xe and de satisfy constraints (13)–(25) for all e ∈ E , G′ 
is connected with one trail from s to t that traverses each 
edge in G′ exactly once.

Proof  We prove the lemma in 2 parts: (1) all nodes 
except s and t in G′ have an equal number of in- and out-
edges, (2) G′ contains only one connected component.

(25)
∑

(v,t)∈E

dvt =
∑

(u,v)∈E

xuv

(26)−xuv − |E|yuv ≤ −1

(27)duv − |E|(1− yuv) ≤ 0

(28)yuv ∈ {0, 1}.



Page 10 of 24Qiu et al. Algorithms for Molecular Biology           (2024) 19:17 

The first statement holds because the edges of G′ form 
a flow from s to t, and is enforced by constraints (16).

We then show that G′ does not contain isolated sub-
graphs that are not reachable from s or t. Due to con-
straint (16), the only possible scenario is that the isolated 
subgraph is strongly connected. Suppose for contradic-
tion that there is a strongly connected component, C, in 
G′ that is not reachable from s or t.

The sum of the left hand side of constraint (23) over all 
vertices in C is

However, the right-hand side of the same constraints is 
always positive. Hence we have a contradiction. There-
fore, G′ has only one connected component. 	�  �

Due to Lemma  1 and Lemma  2, given input graphs G1 
and G2 and the alignment graph A(G1,G2) , GTED(G1,G2) 
is equal to the optimal objective of

Closed‑trail cover traversal edit distance
While the (lower bound ILP) and the ILP in (11)–(12) do 
not solve GTED, the optimal solution to these ILPs is a 
lower bound of GTED. These ILP formulations also solve 
an interesting variant of GTED, which is a local similarity 
measure between two genome graphs. We call this vari-
ant Closed-trail cover traversal edit distance (CCTED). 
In the following, we provide the formal definition of the 
CCTED problem and then show that the  (lower bound 
ILP) is the correct ILP formulation for solving CCTED.

We first introduce the min-cost item matching 
problem between two multi-sets. Let two multi-sets 
of items be S1 and S2 , and, wlog, let |S1| ≤ |S2| . Let 
c : (S1 ∪ {ǫ})× S2 → N be the cost of matching either 
an empty item ǫ or an item in S1 with an item in S2 . 
Given S1 , S2 and the cost function c, min-cost match-
ing problem finds a matching, Mc(S1, S2) , such that 
each item in S1 ∪ {ǫ}|S2|−|S1| is matched with exactly one 
distinct item in S2 and the total cost of the matching, 
∑

(s1,s2)∈Mc(S1,S2)
c(s1, s2) , is minimized.

(29)

�

v∈C





�

(u,v)∈C

duv −
�

(v,w)∈C

dvw



 =
�

v∈C

�

(u,v)∈C

duv −
�

v∈C

�

(v,w)∈C

dvw

(30)=
∑

(u,v)∈E(C)

duv −
∑

(v,w)∈E(C)

dvw = 0.

(compact ILP)

minimize
x∈{0,1}|E|

∑

e∈E

xeδ(e)

subject to constraints (13)−(16),

constraints (23)−(25)

and constraints (26)−(28).

The min-cost item matching problem is similar to the 
Earth Mover’s Distance defined in [17], except that only 
integral units of items can be matched and the cost of 
matching an empty item with another item is not con-
stant. Similar to the Earth Mover’s Distance, the min-cost 
item matching problem can be computed using the ILP 
formulation of the min-cost max-flow problem [13, 14]. 
When the cost is the edit distance, the cost to match ǫ 
with a string is equal to the length of the string.

Define traversal edit distance, editt(t1, t2) as 
the edit distance between the strings constructed 
from a pair of trails t1 and t2 . In other words, 
editt(t1, t2) = edit(str(t1), str(t2)) . CCTED is defined as:

Problem  3  (Closed-trail cover traversal edit distance 
( CCTED)). Given two unidirectional, edge-labeled 
Eulerian graphs G1 and G2 with closed Eulerian trails, 
compute

Here, CC(G) denotes the collection of all possible sets 
of edge-disjoint, closed trails in G, such that every edge 
in G belongs to exactly one of these trails. Each element 
of CC(G) can be interpreted as a cover of G using such 
trails. Meditt (C1,C2) is a min-cost matching between two 
covers using the traversal edit distance as the cost.

CCTED is likely a more suitable metric comparison 
between genomes that undergo large-scale rearrange-
ments. This analogy is to the relationship between the 
synteny block comparison  [3] and the string edit dis-
tance computation, where the former is more often used 
in interspecies comparisons and in detecting segmental 
duplications [18, 19] and the latter is more often seen in 
intraspecies comparisons.

Following similar ideas as Lemma  1, we can compute 
CCTED by finding a set of closed trails in the alignment 
graph such that the total cost of alignment edges is mini-
mized, and the projection of all edges in the collection 
of selected trails is equal to the multi-set of input graph 
edges.

Lemma 3  For any two edge-labeled Eulerian graphs G1 
and G2,

(31)

CCTED(G1,G2)

� min

C1 ∈ CC(G1),

C2 ∈ CC(G2)

∑

(t1, t2) ∈ Meditt (C1,C2)

edit(str(t1), str(t2)),

(32)CCTED(G1,G2) = minimize
C

∑

c∈C

δ(c)
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where C is a collection of trails and δ(c)is the total cost of 
edges in trail c.

Proof  Given any pair of covers C1 ∈ CC(G1) and 
C2 ∈ CC(G2) and their min-cost matching based on the 
edit distance Meditt (C1,C2) , we can project each pair of 
matched closed trailed to a closed trail in the alignment 
graph. For a matching between a trail and the empty item 
ǫ , we can project it to a closed trail in the alignment graph 
with all vertical edges if the trail is from G1 or horizontal 
edges if the trail is from G2 . The total cost of the projected 
edges must be greater than or equal to the objective (32). 
On the other hand, every collection of trails C that satisfy 
constraint (33) can be projected to a cover in each of the 
input graphs, and 

∑

c∈C δ(c) ≥ CCTED(G1,G2) . Hence 
equality holds. 	�  �

The ILP formulation for CCTED
We show that the ILP in  (5)–(8) proposed by Ebrahim-
pour Boroojeny et al. [1] solves CCTED.

Theorem  4  Given two input graphs G1 and G2, the 
optimal objective value of the ILP in  (5)–(8) based on 
A(G1,G2) is equal to CCTED(G1,G2).

Proof  As shown in the proof of Lemma  3, any pair of 
edge-disjoint, closed-trail covers in the input graph can 
be projected to a set of closed trails in A(G1,G2) , which 
satisfied constraints  (6)–(8). The objective of this fea-
sible solution, which is the total cost of the projected 
closed trails, equals CCTED . Therefore, CCTED(G1,G2) 
is greater than or equal to the objective of the ILP 
in (5)–(8).

Conversely, we can transform any feasible solutions of 
the ILP in  (5)–(8) to a pair of covers of G1 and G2 . We 
can do this by transforming one closed trail at a time 
from the subgraph of the alignment graph, A′ induced 
by edges with ILP variable xuv = 1 . Let c be a closed trail 
in A′ . Let c1 = �1(c) and c2 = �2(c) be two closed trails 
in G1 and G2 that are projected from c. We can construct 
an alignment between str(c1) and str(c2) from c by add-
ing match or insertion/deletion columns for each match 
or insertion/deletion edges in c accordingly. The cost of 
the alignment is equal to the total cost of edges in c by 
the construction of the alignment graph. We can then 

(33)

subject to C is a set of closed trails inA(G1,G2),
⋃

e∈C

�i(e) = Ei for i = 1, 2,

remove edges in c from the alignment graph and edges 
in c1 and c2 from the input graphs, respectively. The 
remaining edges in A′ and G1 and G2 still satisfy the con-
straints  (6)–(8). Repeat this process and we get a total 
cost of 

∑

e∈E xeδ(e) that aligns pairs of closed trails that 
form covers of G1 and G2 . This total cost is greater than or 
equal to CCTED(G1,G2) . 	�  �

CCTED is a lower bound of GTED
Since the constraints for  (lower bound ILP) are a sub-
set of (exponential ILP), a feasible solution to (exponen-
tial ILP) is always a feasible solution to  (lower bound 
ILP). Since two ILPs have the same objective function, 
CCTED(G1,G2) ≤ GTED(G1,G2) for any pair of graphs. 
Moreover, when the solution to  (lower bound ILP) 
forms only one connected component, the optimal value 
of (lower bound ILP) is equal to GTED.

Theorem 5  Let A′(G1,G2) be the subgraph of A(G1,G2) 
induced by edges (u, v) ∈ E with xoptuv = 1 in the optimal 
solution to  (lower bound ILP). There exists A′(G1,G2) 
that has exactly one connected component if and only if 
copt = GTED(G1,G2).

Proof  We first show that if copt = GTED(G1,G2) , then 
there exists A′(G1,G2) that has one connected compo-
nent. A feasible solution to  (exponential ILP) is always 
a feasible solution to  (lower bound ILP), and since 
copt = GTED(G1,G2) , an optimal solution to  (exponen-
tial ILP) is also an optimal solution to (lower bound ILP), 
which can induce a subgraph in the alignment graph that 
only contains one connected component.

Conversely, if xopt induces a subgraph in the alignment 
graph with only one connected component, it satisfies 
constraints (18)–(21) and therefore is feasible to the ILP 
for GTED (exponential ILP). Since copt ≤ GTED(G1,G2) , 
this solution must also be optimal for GTED(G1,G2) . 	
� �

In practice, we may estimate GTED approximately 
by the solution to  (lower bound ILP). As we show 
in section  Empirical evaluation of the ILP formula-
tions for GTED and its lower bound, the time needed 
to solve  (lower bound ILP) is much less than the time 
needed to solve GTED. However, in adversarial cases, 
copt could be zero but GTED could be arbitrarily large. 
We can determine if the copt is a lower bound on GTED 
or exactly equal to GTED by checking if the subgraph 
induced by the solution to (lower bound ILP) has multi-
ple connected components.
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NP‑completeness of CCTED
We prove that the CCTED problem (Problem 3) is NP-
complete by reducing from the Eulerian Trail Equaling 
Word problem [7].

Theorem 6  Computing CCTED is NP-complete.

Proof  Let Eulerian graph G = (V ,E, ℓ,�) and s be an 
instance of the eulerian tour equaling word prob-
lem. Construct two graphs, G1 and G2 . If G contains 
open Eulerian trails, add an edge directing from the sink 
of the graph to the source of the graph. Let the label of 
the added edge be # that does not appear in � . Let the 
modified graph be G1 . If G contains closed Eulerian trails, 
let G1 be the same as G. Let G2 be a graph that contains 
one cycle with |E1| edges, where E1 is the edge set of G1 . 
Assign labels to the edges in G2 such that the cycle in G2 
spells s if G contains closed Eulerian trails, s# otherwise.

If CCTED(G1,G2) = 0 , G2 must contain at least one 
closed Eulerian trail that spells some circular permuta-
tion of s# . If CCTED is not zero, it means that s must not 
match Eulerian trails in G. 	�  �

Empirical evaluation of the ILP formulations 
for GTED and its lower bound
Implementation of the ILP formulations
We implement the algorithms and ILP formulations 
for  (exponential ILP),  (compact ILP) and  (lower bound 
ILP). In practice, the multi-set of edges of each input 
graph may contain many duplicates of edges that have the 
same start and end vertices due to repeats in the strings. 
We reduce the number of variables and constraints in the 
implemented ILPs by merging the edges that share the 
same start and end nodes and record the multiplicity of 

each edge. Each x variable is no longer binary but a non-
negative integer that satisfies the modified projection 
constraints (13):

where Mi(f ) is the multiplicity of edge f in Gi . Let C be 
the strongly connected component in the subgraph 
induced by positive xuv , now 

∑

(u,v)∈E(C) xuv is no longer 
upper bounded by |E(C)|. Therefore, constraints (19) are 
changed to

where W(C) is the maximum total multiplicities of edges 
in the strongly connected subgraph in each input graph 
that is projected from C.

Likewise, constraints  (27) that set the upper bounds 
on the ordering variables also need to be modified as the 
upper bound of the ordering variable duv for each edge 
no longer represents the order of one edge but the sum 
of orders of copies of (u, v) that are selected, which is at 
most |E|2 . Therefore, constraint (27) is changed to

The rest of the constraints remain unchanged.
We ran all our experiments on a server with 48 cores 

(96 threads) of Intel(R) Xeon(R) CPU E5-2690 v3 @ 
2.60GHz and 378 GB of memory. The system was run-
ning Ubuntu 18.04 with Linux kernel 4.15.0. We solve all 

(34)

∑

(u,v)∈E

xuvIi((u, v), f ) = Mi(f )

for all (u, v) ∈ E, f ∈ Gi,u �= s, v �= t,

(35)

�

(u,v)∈E(C)

xuv − |E(C)| + 1−W (C)βC ≤ 0 for all C ∈ C,

W (C) =
�

(u,v)∈E(C)

max





�

f ∈G1

M1(f )I1((u, v), f ),
�

f ∈G2

M2(f )I2((u, v), f )



,

(36)duv − |E|2(1− yuv) ≤ 0.

Fig. 5  a The distribution of wall-clock running time for constructing alignment graphs, solving the ILP formulations for GTED and its lower bound, 
and their linear relaxations on the log scale. b The relationship between the time to solve (lower bound ILP), (exponential ILP) iteratively and GTED. 
c The distribution of the number of iterations to solve exponential ILP. The box plots in each plot show the median (middle line), the first and third 
quantiles (upper and lower boundaries of the box), the range of data within 1.5 inter-quantile range between Q1 and Q3 (whiskers), and the outlier 
data points
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the ILP formulations and their linear relaxations using 
the Gurobi solver [20] using 32 threads.

GTED on simulated TCR sequences
We construct 20 de Bruijn graphs with k = 4 using 
150-character sequences extracted from the V genes 
from the IMGT database [21]. We solve the linear relaxa-
tion of  (compact ILP), (exponential ILP) and  (lower 
bound ILP) and their linear relaxation on all 190 pairs 
of graphs. We do not show results for solving  (compact 
ILP) for GTED on this set of graphs as the running time 
exceeds 30 min on most pairs of graphs.

To compare the time to solve the ILP formulations 
when GTED is equal to the optimal objective of  (lower 
bound ILP), we only include 168 out of 190 pairs where 
GTED is equal to the lower bound (GTED is slightly 
higher than the lower bound in the remaining 22 pairs). 
On average, it takes 26 s wall-clock time to solve (lower 
bound ILP), and 71 s to solve (exponential ILP) using the 
iterative algorithm. On average, it takes 9 s to solve the LP 
relaxation of (compact ILP) and 1 s to solve the LP relax-
ation of  (lower bound ILP). The time to construct the 
alignment graph for all pairs is less than 0.2 s. The distri-
bution of wall-clock running time is shown in Fig. 5a. The 
time to solve  (exponential ILP) and  (lower bound ILP) 
is generally positively correlated with the GTED values 
(Fig. 5b). On average, it takes 7 iterations for the iterative 
algorithm to find the optimal solution that induces one 
strongly connected subgraph (Fig. 5c).

In summary, it is fastest to compute the lower bound 
of GTED. Computing GTED exactly by solving the pro-
posed ILPs on genome graphs of size 150 is already time 
consuming. When the sizes of the genome graphs are 
fixed, the time to solve for GTED and its lower bound 
increases as GTED between the two genome graphs 
increases. In the case where GTED is equal to its lower 

bound, the subgraph induced by some optimal solutions 
of  (lower bound ILP) contains more than one strongly 
connected component. Therefore, in order to reconstruct 
the strings from each input graph that have the smallest 
edit distance, we generally need to obtain the optimal 
solution to the ILP for GTED. In all cases, the time to 
solve the (exponential ILP) is less than the time to solve 
the (compact ILP).

GTED on difficult cases
Repeats, such as segmental duplications and transloca-
tions [22, 23] in the genomes increase the complexity of 
genome comparisons. We simulate such structures with 
a class of graphs that contain n simple cycles of which 
n− 1 peripheral cycles are attached to the n-th central 
cycle at either a node or a set of edges (Fig. 6a). The input 
graphs in Fig.  2 belong to this class of graphs that con-
tain 2 cycles. This class of graphs simulates the complex 
structural variants in disease genomes or the differences 
between genomes of different species.

We generate pairs of 3-cycle graphs with varying 
sizes and randomly assign letters from {A,T,C,G} to 
edges. We compute the CCTED and GTED using (lower 

Fig. 6  a An example of a 3-cycle graph. Cycle 1 and 2 are attached to cycle 3. b The distribution of wall-clock time to solve the compact ILP 
and the iterative exponential ILP on 100 pairs of 3-cycle graphs

Table 1  The average wall-clock time to solve  lower bound 
ILP, exponential ILP, compact ILP and the number of iterations for 
pairs of 3-cycle graphs for each GTED− CCTED

GTED - 
CCTED

lower bound 
ILP runtime 
(s)

GTED 
iterative 
runtime (s)

Iterations GTED 
compact 
runtime (s)

1.0 0.06 0.17 3.55 0.39

2.0 0.05 0.87 13.00 0.43

3.0 0.08 25.41 67.60 1.24

4.0 0.07 205.59 179.10 1.70

5.0 0.08 943.68 502.85 5.37
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bound ILP) and  (compact ILP), respectively. We group 
the generated 3-cycle graph pairs based on the value 
of (GTED− CCTED) and select 20 pairs of graphs ran-
domly for each (GTED− CCTED) value ranging from 
1 to 5. The maximum number of edges in all selected 
graphs is 32.

We show the difficulty of computing GTED using the 
iterative algorithm on the 100 selected pairs of 3-cycle 
graphs. We terminate the ILP solver after 20  min. As 
shown in Fig.  6, as the difference between GTED and 
CCTED increases, the wall-clock time to solve  (expo-
nential ILP) for GTED increases faster than the time to 
solve  (compact ILP) for GTED. For pairs of graphs with 
(GTED− CCTED) = 5 , on average it takes more than 
15  min to solve  (exponential ILP) with more than 500 
iterations. On the other hand, it takes an average of 5  s 
to solve (compact ILP) for GTED and no more than 1 s to 
solve for the lower bound. The average time to solve each 
ILP is shown in Table 1.

In summary, on the class of 3-cycle graphs introduced 
above, the difficulty of solving GTED via the iterative 
algorithm increases rapidly as the gap between GTED 
and CCTED increases. Although  (exponential ILP) is 
solved more quickly than (compact ILP) for GTED when 
the sequences are long and the GTED is equal to CCTED 
(Section 6.2), (compact ILP) may be more efficient when 
the graphs contain overlapping cycles such that the gap 
between GTED and CCTED is larger.

Conclusion
We point out the contradictions in the result on the com-
plexity of labeled graph comparison problems and resolve 
the contradictions by showing that GTED, as opposed to 
the results in Ebrahimpour Boroojeny et  al.  [1], is NP-
complete. On one hand, this makes GTED a less attrac-
tive measure for comparing graphs since it is unlikely 
that there is an efficient algorithm to compute the meas-
ure. On the other hand, this result better explains the dif-
ficulty of finding a truly efficient algorithm for computing 
GTED exactly. In addition, we show that the previously 
proposed ILP of GTED [1] does not solve GTED and give 
two new ILP formulations of GTED.

While the previously proposed ILP of GTED does not 
solve GTED, it solves for a lower bound of GTED, and we 
show that this lower bound can be interpreted as a more 
“local” measure, CCTED, of the distance between labeled 
graphs. Further, we characterize the LP relaxation of the 
ILP in  (11)–(12) and show that, contrary to the results 
in Ebrahimpour Boroojeny et al. [1], the LP in (11)–(12) 
does not always yield optimal integer solutions.

As shown previously  [1, 13], it takes more than 4  h 
to solve  (lower bound ILP) for graphs that represent 

viral genomes that contain ≈ 3000 bases with a multi-
threaded LP solver. Likewise, we show that computing 
GTED using either  (exponential ILP) or (compact ILP) 
is already slow on small genomes, especially on pairs of 
simulated genomes that are different due to segmental 
duplications and translations. The empirical results show 
that it is currently impossible to solve GTED or CCTED, 
its lower bound, directly using this approach for bacte-
rial- or eukaryotic-sized genomes on modern hardware. 
The results here should increase the theoretical interest 
in GTED along the directions of heuristics or approxima-
tion algorithms as justified by the NP-hardness of finding 
GTED.

Appendix 1 Proofs for the NP‑completeness 
of GTED
Reduction from ETEW to GTED
We provide below the complete proof for Theorem 1.

Theorem 1  If GTED ∈ P then ETEW ∈ P.

Proof  Let 〈s,G〉 be an instance of ETEW . Construct a 
directed, acyclic graph (DAG), C, that has only one path. 
Let the path in C be P = (e1, . . . , e|s|) and the edge label 
of ei be s[i]. Clearly, C is a unidirectional, edge-labeled 
Eulerian graph, P is the only Eulerian trail in C, and 
str(P) = s.

For the graph G = (VG ,EG , ℓG ,�) from the ETEW 
instance, which may not be unidirectional, create another 
graph G′ that contains all of the nodes and edges in 
G except the anti-parallel edges. Let �G′ = � ∪ {ǫ} , 
where ǫ is a character that is not in � . For each pair of 
anti-parallel edges (u, v) and (v, u) in G, add four edges 
(u,w1), (w1, v), (v,w2), (w2,u) by introducing new 
vertices w1,w2 to G′ . Let ℓG′(u,w1) = ℓG(u, v) and 
ℓG′(w2,u) = ℓG(v,u) . Let ℓG′(w1, v) = ℓG′(v,w2) = ǫ for 
every newly introduced vertex. G′ has at most twice the 
number of edges as G and is Eulerian and unidirectional.

Define the cost of changing a character from a to b 
cost(a, b) for a, b ∈ � ∪ {−} to be 0 if a = b and 1 other-
wise. “−” is the gap character indicating an insertion or 
a deletion. Define cost(a, ǫ) with a ∈ � to be 1. Define 
cost(−, ǫ) to be 0.

Use the (assumed) polynomial-time algorithm for 
GTED to ask whether GTED(C ,G′) ≤ 0 under edit dis-
tance � . If yes, then let (s1, s2) be the 0-cost alignment of 
the strings spelled out by the trails in C and G′ , respec-
tively. The non-gap characters of s1 must spell out s since 
there is only one Eulerian trail in C. Because the align-
ment cost is 0, any − (gap) characters in s1 must be 
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aligned with ǫ characters in s2 and any non-gap charac-
ters in s1 must be aligned to the same character in s2 . The 
trail in G′ that spells s2 can be transformed to a trail that 
spells s3 by collapsing the edges with ǫ character labels, 
and s3 = s1.

If GTED(C ,G′) > 0 , G must not contain an Eule-
rian trail that spells s. Otherwise, such a trail could be 
extended to a trail introducing some ǫ characters that 
could be aligned to s with zero cost by aligning gaps with 
ǫ characters.

Hence, an (assumed) polynomial-time algorithm for 
GTED solves ETEW in polynomial time. 	�  �

Reduction from Hamiltonian Path to GTED
We provide below the complete proof for Theorem 2.

Theorem 2  GTED is NP-complete.

Proof  We reduce from the hamiltonian path prob-
lem, which asks whether a directed, simple graph G 
contains a path that visits every vertex exactly once. 
Here simple means no self-loops or parallel edges. Let 
�G = (V ,E)� be an instance of hamiltonian path, with 
n = |V | vertices. The reduction is almost identical to that 
presented in Kupferman and Vardi  [7], and from here 
until noted later in the proof the argument is identical 
except for the technicalities introduced to force unidirec-
tionality (and another minor change described later). The 
first step is to construct the Eulerian closure of G, which 
is defined as G′ = (V ′,E′) where

and E′ is the union of the following sets of edges and their 
labels:

•	 E1 = {(vin, vout) : v ∈ V } , labeled a,
•	 E2 = {(uout , vin) : (u, v) ∈ E} , labeled b,
•	 E3 = {(vout , vin) : v ∈ V } , labeled c,
•	 E4 = {(vin,uout) : (u, v) ∈ E} , labeled c,
•	 E5 = {(uin,w) : u ∈ V } , labeled c,
•	 E6 = {(w,uin) : u ∈ V } , labeled b.

Since G′ is connected and every outgoing edge in G′ has 
a corresponding antiparallel incoming edge, G′ is Eule-
rian. It is not unidirectional, so we further create G′′ from 
G′ by adding dummy nodes to each pair of antiparallel 
edges and labelling the length-2 paths so created with 
x#, where x is the original label of the split edge (a, b, 
or c) and # is some new symbol (shared between all the 
new edges). We call these length-2 paths introduced to 
achieve unidirectionality “split edges”.

(37)V ′ = {vin, vout : v ∈ V } ∪ {w},

We now argue that G has a Hamiltonian path iff G′′ has 
an Eulerian trail that spells out

If such an Eulerian trail exists, then the trail starts with 
spelling the string a#(b#a#)n−1 , which corresponds to 
a Hamiltonian trail in G since it visits exactly n “vertex 
split edges” (type E1 , labeled a#) and each vertex split 
edge can be used only once (since it is an Eulerian trail). 
Further, successively visited vertices must be connected 
by an edge in G since those are the only b# split edges in 
G′′ (except those leaving w, but w must not be involved 
in spelling out a#(b#a#)n−1 , since entering w requires 
using a split edge labeled c#).

For the other direction, if a G has a Hamiltonian path 
v1, . . . , vn , then walking that sequence of vertices in G′′ 
will spell out a#(b#a#)n−1 . This path will cover all E1 
edges and the E2 edges that are on the Hamiltonian path. 
Retracing the path so far in reverse will use 2n− 1 split 
edges labeled c#, consuming the (c#)2n−1 term in q and 
covering all nodes’ reverse vertex edges E3 (since the 
path is Hamiltonian). The reverse path also covers the E4 
edges corresponding to reverse Hamiltonian path edges. 
Our Eulerian trail is now “at” node vin1 .

What remains is to complete the Eulerian walk cover-
ing (a)  edges and their antiparallel counterparts corre-
sponding to edges in G that were not used in the Ham-
iltonian path, and (b)  the edges adjacent to node w. To 
do this, define pred(v) be the vertices u in G for which 
edge (u, v) exists and u is not the predecessor of v along 
the Hamiltonian path. For each u ∈ pred(v1) , traverse 
the split edge labeled c# to uout then traverse the for-
ward split edge labeled b# back to vin1  . This results in a 
string (c#b#)|pred(v1)| . Once the predecessors of v1 are 
exhausted, traverse the split edge labeled c# from vin1  into 
node w and then traverse the split edge labeled b# to vin2  . 
This again generates a c#b# string. Repeat the process, 
covering the edges of v2 ’s predecessors and returning to 
w to move to the next node along the Hamiltonian path 
for each node v3, . . . , vn . After covering the predecessors 
of vinn  , go to vin1  through the remaining edges in E5 and E6 , 
(vinn ,w) and (w, vin1 ) , which completes the Eulerian tour. 
This covers all the edges of G′′ . The word spelled out in 
this last section of the Eulerian trail is a sequence of rep-
etitions of c#b#, with one repetition for each edge that 
is not in the Hamiltonian path ( |E| − n+ 1 ) and all of the 
edges in E5 and E6 for entering and leaving each node 
(2n), with a total of |E| + 1 repetitions, which is the final 
(c#b#)|E|+1 term in q.

This ends the slight modification of the proof in Kup-
ferman and Vardi  [7], where the differences are (a)  the 

(38)q = a#(b#a#)n−1(c#)2n−1(c#b#)|E|+1.
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introduction of the # characters and (b) using the expo-
nent |E| + 1 of the final part of q instead of |E| + n+ 1 as 
in Kupferman and Vardi [7] since we create w-edges only 
to vin vertices. (This second change has no material effect 
on the proof, but reduces the length of the string that 
must be matched).

Now, given an instance �G = (V ,E)� of hamiltonian 
path, with n = |V | vertices, we construct G′′ as above 
(obtaining a unidirectional Eulerian graph) and create 
graph C that only represents string q. Note that |�| = 4 
and G′′ and C can be constructed in polynomial time. 
GTED(G′′,C) = 0 if and only if an Eulerian path in G′′ 
spells out q, since there can be no indels or mismatches. 
By the above argument, an An Eulerian tour that spells 
out q exists if and only if G has a Hamiltonian path. 	�  �

FGTED is NP‑complete
Problem  4  (Flow Graph Traversal Edit Distance 
( FGTED)  [13]). Given unidirectional, edge-labeled Eule-
rian graphs G1 and G2 , each of which has distinguished 
s1, s2 source and t1, t2 sink vertices, compute

where flow(Gi, si, ti) is the collection of all possible sets 
of s1-t1 trail decomposition of saturating flow from si to 
ti , strset(D) is the multi-set of strings constructed from 
trails in D.

Theorem 3  FGTED is NP-complete.

Proof  Let G = (V ,E) be an instance of the hamilto-
nian cycle problem. Let n = |V | be the number of verti-
ces in G. Construct the Eulerian closure of G and split the 
anti-parallel edges. Let the new graph be G′ = (V ′,E′) . 
Attach a source s and a sink node t to an arbitrary node 
vin1  by adding edge (s, vin1 ) and (vin1 , t) with labels s and t, 
respectively.

Construct a string q, such that

Create a graph Q that only contains one path with labels 
on the edges of the path that spell the string q. The union 
of the set of trails in any flow decomposition of G′ is equal 
to a set of Eulerian trails, E , that starts at s and ends at t. 
All Eulerian trails in E are also closed Eulerian trails of 
G′ \ {s, t} that starts and ends at vin1 .

(39)
FGTED(G1,G2) � min

D1 ∈ flow(G1, s1, t1)
D1 ∈ flow(G2, s2, t2)

emedit(strset(D1), strset(D2)),

(40)q = sa#(b#a#)n−1(c#)2n−1(c#b#)|E|+1
t.

Using the same line of argument in the proof of Theo-
rem 2, an Eulerian trail in G′ that spells q is equivalent to 
a Hamilton Cycle in G. In addition, FGTED(Q,G′) = 0 if 
and only if all Eulerian trails in E spell out q. Therefore, 
if FGTED(Q,G′) = 0 , then there is a Hamiltonian Cycle 
in G. Otherwise, then there must not exist a Hamiltonian 
Cycle in G. 	�  �

Appendix 2 Equivalence between two ILPs 
proposed by [1]
The analysis provided by Ebrahimpour Boroojeny 
et al.  [1] states that the LP relaxation of the ILP in  (5)–
(8) does not always yield integer solutions, but the LP 
relaxation of the ILP in  (11)–(12) always yields integer 
solutions. This suggests that the two LP relaxations have 
difference feasibility regions for x. We show that these 
two LP relaxations are actually equivalent in Theorem 7. 
Further, we show that the ILP in  (5)–(8) and the ILP 
in (11)–(12) are also equivalent. Since the ILP in (5)–(8) 
does not solve for GTED(G1,G2) as shown in Section 3.2, 

we conclude that the ILP in (11)–(12) also does not solve 
GTED(G1,G2).

Theorem 7  Given two unidirectional, edge-labeled Eule-
rian graphs G1 , G2, the feasibility region of x in the LP 
relaxation of the ILP in (11)–(12) is the same as the feasi-
bility region of x in the LP relaxation of the ILP in (5)–(8).

Let A(G1,G2) = (V ,E, δ) be the alignment graph of 
G1 = (V1,E1, ℓ1,�1) and G2 = (V2,E2, ℓ2,�2) , and let 
T (G1,G2) be its two-simplex set. First, we have the fol-
lowing result:

Lemma 4  Let [yi] ∈ R
|T (G1,G2)| be a vector such that the 

j-th entry of [yi] , [yi]j is equal to 0 for all j  = i . The vector 
x′ = x + [∂][yi] satisfies the constraints (6)–(7) if the vec-
tor x satisfies the constraints (6)–(7).

Proof  Let σi ∈ T (G1,G2) be the 2-simplex correspond-
ing to the entry i of [yi] . Based on the construction of 
T (G1,G2) , σi has two forms: [(u1,u2), (v1,u2), (v1, v2)] 
or [(u1,u2), (u1, v2), (v1, v2)] . Without loss of gener-
ality, we assume σi = [(u1,u2), (v1,u2), (v1, v2)] . We 
can prove this lemma by using the same way when 
σi = [(u1,u2), (u1, v2), (v1, v2)] . Since
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We have

where e1 = [(u1,u2), (v1,u2)] , e2 = [(v1,u2), (v1, v2)] , 
e3 = [(u1,u2), (v1, v2)] , and [xe] ∈ R

|E| is a vector such 
that all the entries are 0 except that the one correspond-
ing to edge e is 1. we also let [xv] ∈ R

|V | be a vector such 
that all the entries are 0 except that the one correspond-
ing to vertex v is 1. Therefore, we have

where v1 = (u1,u2) , v2 = (v1,u2) , and v3 = (v1, v2).

Hence, x′ satisfies the constraint  (6) if x satisfies the 
constraint (6).

In addition, since 
∑

e∈E x
′
eIi(e, f ) =

∑

e∈E xeIi(e, f )

+[yi]iIi(e1, f )+ [yi]iIi(e2, f )− [yi]iIi(e3, f ) , and:

•	 I1(e1, (u1, v1)) = 1 and Ii(e1, f ) = 0 for other f ∈ Gi,
•	 I2(e2, (u2, v2)) = 1 and Ii(e2, f ) = 0 for other f ∈ Gi,
•	 I1(e3, (u1, v1)) = 1 , I2(e3, (u2, v2)) = 1 , and 

Ii(e3, f ) = 0 for other f ∈ Gi,

we have:

•	 [yi]iI1(e1, (u1, v1))+ [yi]iI1(e2, (u1, v1))− [yi]iI1(e3,

(u1, v1)) = [yi]i + 0− [yi]i = 0,
•	 [yi]iI2(e1, (u2, v2))+ [yi]iI2(e2, (u2, v2))− [yi]iI2(e3,

(u2, v2)) = 0+ [yi]i − [yi]i = 0,
•	 [yi]iIi(e1, f )+ [yi]iIi(e2, f )− [yi]iIi(e3, f ) = 0+ 0− 0 = 0 

for any other i = 1, 2 and f ∈ Ei.

Therefore, 
∑

e∈E x
′
eIi(e, f ) =

∑

e∈E xeIi(e, f ) , meaning that 
x′ satisfies the constraint (7) if x satisfies the constraint (7). 	
� �

With Lemma  4, we prove that any feasible solu-
tion of x in  (11) is a feasible solution of  (5)–(8). First, it 
is easy to check that xinit satisfies the constraints  (6)–
(7). For each feasible solution of x in  (11), since 
x = xinit + [∂]y = xinit +

∑

i[∂][yi] , by iteratively using 
Lemma  4, we get that x satisfies the constraints  (6)–(7). 
Since xe ≥ 0 for all e ∈ E is a constraint existing in both lin-
ear relaxations, x is a feasible solution of (5)–(8).

We now show that any feasible solution of  (5)–(8) is 
a feasible solution of  (11). Let x be a feasible solution 
of (5)–(8). We show that x is also a feasible solution of (11) 
by proving that x can be converted to xinit in (11) via the 
boundary operator ∂ . First, if there is a diagonal edge 

∂σi = [(u1,u2), (v1,u2)] + [(v1,u2), (v1, v2)] − [(u1,u2), (v1, v2)],

[∂][yi] = [yi]i[xe1 ] + [yi]i[xe2 ] − [yi]i[xe3 ],

Ax
′ = Ax + [yi]i[xv2 ] − [yi]i[xv1 ] + [yi]i[xv3 ] − [yi]i[xv2 ]

− [yi]i[xv3 ] + [yi]i[xv1 ] = Ax,

e = [(u1,u2), (v1, v2)] in E such that xe > 0 , then it can 
be replaced by the horizontal edge eh = [(u1,u2), (u1, v2)] 
followed by the vertical edge ev = [(u1, v2), (v1, v2)] 
by using one boundary operation on the 2-simplex 
[(u1,u2), (u1, v2), (v1, v2)] . Hence, x can be converted 
to a new vector x′ , such that x′e = 0 , x′eh = xeh + xe , 
x′ev = xev + xe , and all the other entries in x′ are the same 
as those in x. It is easy to check that x′ is also a feasible 
solution of  (5)–(8). Therefore, without loss of generality, 
we assume x to be a vector such that all the entries corre-
sponding to diagonal edges in A(G1,G2) are zero.

We then prove that any x can be converted to xinit in (11) 
via the boundary operator. Let the source and the sink 
node of x in A(G1,G2) be (s11, s

2
1) and (s12, s

2
2) , where si1 is the 

source node of Gi and si2 is the sink node of Gi . When the 
Eulerian trail is closed (meaning that it is an Eulerian tour) 
in Gi , we let si1 = si2 be an arbitrary vertex in Vi . xinit can be 
seen as a trail (tour) in A(G1,G2) that starts from (s11, s

2
1) , 

walks along an Eulerian trail of G2 via all the horizontal 
edges Ph,

and then walks along an Eulerian trail of G1 via all the 
vertical edges Pv,

until the sink node (s12, s
2
2) . Here {s21, v

2
1, v

2
2, . . . , v

2
i−1, v

2
i , s

2
2} 

is an Eulerian trail of G2 and {s11, v
1
1, v

1
2, . . . , v

1
i−1, v

1
i , s

1
2} is 

an Eulerian trail of G1 . We use P0 = {Ph,Pv} to denote the 
trail from (s11, s

2
1) to (s12, s

2
2) that is the concatenation of Ph 

and Pv . It is easy to see that each edge in P0 is unique.
As shown in Qiu and Kingsford  [13], x is a flow of 

A(G1,G2) with the additional constraint  (7). Therefore, 
according to the flow decomposition theorem [24, p. 80], 
x can be decomposed into a finite set of weighted paths 
in A(G1,G2) from (s11, s

2
1) to (s12, s

2
2) , which is denoted as 

{(p1,w
p
1), . . . , (pn,w

p
n)} , and a finite set of weight cycles in 

A(G1,G2) , which is denoted as {(c1,wc
1), . . . , (cm,w

c
m)} . 

Each path or cycle only contains horizontal and vertical 
edges.

For path i, we use a vector xp,i to represent (pi,w
p
i ):

By using the boundary operator, each path pi can actu-
ally be converted to a new trail p′i such that each edge in 

Ph = {[(s11, s
2
1), (s

1
1, v

2
1)], [(s

1
1, v

2
1), (s

1
1, v

2
2)], . . . ,

[(s11, v
2
i−1), (s

1
1, v

2
i )], [(s

1
1, v

2
i ), (s

1
1, s

2
2)]},

Pv ={[(s11, s
2
2), (v

1
1, s

2
2)], [(v

1
1, s

2
2), (v

1
2, s

2
2)], . . . ,

[(v1j−1, s
2
2), (v

1
j , s

2
2)], [(v

1
j , s

2
2), (s

1
2, s

2
2)]},

(41)xp,ie =

{

w
p
i if e ∈ pi

0 otherwise.
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p′i is also an edge in P0 . To prove this, we consider the fol-
lowing two cases:

•	 If pi walks along all the horizontal edges followed 
by all the vertical edges, then every edge in pi is an 
edge in P0 . To see that, let e be an horizontal edge 
in pi , since pi starts from (s11, s

2
1) , e has the form 

[(s11, v), (s
1
1, v

′)] where [v, v′] ∈ E2 . Since Ph corre-
sponds to the Eulerian trail of G2 , for each [v, v′] ∈ E2 , 
we have [(s11, v), (s

1
1, v

′)] ∈ Ph . Therefore e ∈ P0 . We 
can use the same approach to prove e ∈ P0 when e is 
a vertical edge. Note that in this case, the number of 
horizontal edges or vertical edges can be zero.

•	 If not, then we let pi = {ei1, e
i
2, . . . , e

i
m} , and let 

eit be the vertical edge with the smallest index 
t. There exists an integer k (k ≥ 1) such that 
{eit , e

i
t+1, . . . , e

i
t+k−1} are all vertical edges and eit+k 

is an horizontal edge. We denote each vertical edge 
eit+w ∈ {eit , e

i
t+1, . . . , e

i
t+k−1} as [(vw , vt), (vw+1, vt)] 

and denote eit+k as [(vk , vt), (vk , vt+1)] . It is easy to 
see that when w = 0 , vw = s11 . By using the boundary 
operator, this subpath {eit , eit+1, . . . , e

i
t+k−1, e

i
t+k} can 

be replaced by another subpath with one horizontal 
edge [(s11, vt), (s

1
1, vt+1)] followed by k vertical edges: 

 Now we have a new path, denoted as p1i  , in which 
the smallest index of the vertical edges becomes 
t + 1 . Figure 7a shows an example, in which the blue 
line represents the subpath of pi and the red line rep-
resents the new subpath in p1i .

{[(s11, vt+1), (v1, vt+1)], [(v1, vt+1), (v2, vt+1)], . . . ,

[(vk−1, vt+1), (vk , vt+1)].

	 To create a new vector that represents p1i  , we first 
create a zero vector yp,i,1 ∈ R

|T (G1,G2)| , and from 
w = 0 to w = k − 1 , we iteratively update yp,i,1 via 
the following equations: 

 The vector xp,i,1 = xp,i + [∂]yp,i,1 is the one that rep-
resents p1i .

	 Since the length of pi is finite, by doing such a 
transformation a finite number of times, we can 
convert pi to a new path p′i such that p′i walks along 
all the horizontal edges first followed by all the 
vertical edges, therefore each edge in p′i is also an 
edge in P0 . We use the vector x̂p,i to represent p′i , 
x̂p,i = xp,i + [∂]

∑q
j=1 y

p,i,j where q is the number of 
transformations. Apparently, x̂p,ie = 0 when e /∈ P0 . 
Let yp,i =

∑q
j=1 y

p,i,j , we have x̂p,i = xp,i + [∂]yp,i.
For cycle i, we also use a vector xc,i to represent (ci,wc

i ),

Let (v, v′) be an arbitrary chosen node in ci,
we construct a trail piaux that passes (v, v′) as follows:

•	 From (s11, s
2
1) , walk along Ph until the node (s11, v

′) . It 
corresponds to a part of an Eulerian trail of G2.

•	 From (s11, v
′) , walk along an Eulerian trail of G1 to 

(s12, v
′) . It must passes the node (v, v′).

•	 From (s12, v
′) , walk along the remaining part of the 

Eulerian trail of G2 to the node (s12, s
2
2).

(42)

yp,i,1σ =







y
p,i,1
σ − w

p
i if σ = [(vw , vt), (vw+1, vt), (vw+1, vt+1)]

y
p,i,1
σ + w

p
i if σ = [(vw , vt), (vw , vt+1), (vw+1, vt+1)]

0 otherwise.

(43)xc,ie =

{

wc
i if e ∈ ci

0 otherwise,

Fig. 7  a An example of converting three vertical edges followed by one horizontal edge (blue line) to one horizontal edge followed by three 
vertical edges (red line). It can be done by doing boundary operations on 2-simplices labeled from 0 to 5. b An example of a cycle path (red line) 
and its auxiliary trail (blue line)
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Fig. 7b shows an example, in which the blue line represents 
piaux and the red line represents ci.

We use xaux,i to denote the vector representing piaux . 
The combination of ci and piaux , represented by the vec-
tor xc,i + xaux,i creates a new trail (may have repeated 
edges) from (s11, s

2
1) to (s12, s

2
2) : (1) walk along piaux from 

(s11, s
2
1) to (v, v′) , (2) walk along ci from (v, v′) to itself, and 

(3) walk along the remaining part of piaux from (v, v′) to 
(s12, s

2
2) . By using the same approach described above, 

each ci + piaux or piaux can be converted to a new trail in 
which each edge is also an edge in P0 . We use x̂c,i or x̂aux,i 
to represent the new trail accordingly, therefore, we have 
x̂c,i = xc,i + xaux,i + [∂]yc,i and x̂aux,i = xaux,i + [∂]yaux,i . 
Likewise, x̂c,ie = x̂aux,ie = 0 when e /∈ P0.

We define a new vector x̂ such that:

Therefore, x̂ is a vector converted from x via boundary 
operations. x̂ is equal to xinit because: 

1.	 x̂e = 0 when e /∈ P0 since x̂
p,i
e = x̂c,ie = x̂aux,ie = 0 

when e /∈ P0 for each i.
2.	 As we have proved above, the boundary opera-

tor preserves the constraints  (6)–(7). Therefore, x̂ 
satisfies the constraints  (6)–(7) since x is a feasible 
solution of  (5)–(8). Combined with the first point, 
we have that x̂e = 1 if e ∈ P0 and x̂e = 0 otherwise, 
meaning that x̂ = xinit.

Hence, for each feasible solution x of (5)–(8), we have:

meaning that x is also a feasible solution of (11).

x̂ =

n
�

i=1

x̂p,i +

m
�

j=1

x̂c,j − x̂aux,j

=

n
�

i=1

xp,i + [∂]yp,i +

m
�

j=1

xc,j + xaux,j + [∂]yc,j −





m
�

j=1

xaux,j + [∂]yaux,j





=

n
�

i=1

xp,i +

m
�

j=1

xc,j + [∂]





n
�

i=1

yp,i +

m
�

j=1

yc,j −

m
�

j=1

yaux,j





= x + [∂]





n
�

i=1

yp,i +

m
�

j=1

yc,j −

m
�

j=1

yaux,j



.

x = xinit − [∂]





n
�

i=1

yp,i +

m
�

j=1

yc,j −

m
�

j=1

yaux,j





= xinit + [∂]



−

n
�

i=1

yp,i −

m
�

j=1

yc,j +

m
�

j=1

yaux,j



,

We proved that the feasibility region of x in  (11) is 
the same as the feasibility region of x in  (5)–(8), and 
since the objective functions of these two linear relax-
ations are the same, the optimal solutions of them are 
equal.

By employing the same approach and taking into 
account that if all edge weights in a flow network are 
non-negative integers, the flow decomposition theo-
rem guarantees that the network can be decomposed 
into a finite set of weighted paths and cycles, each 
with positive integer weight, we can prove that the ILP 
in (5)–(8) and the ILP in (11)–(12) are also equivalent.

Based on the proof, we can conclude that the way to 
index the vertices or edges in the alignment graph, or 
the 2-simplices in T (G1,G2) , will not affect the equiva-

lence result. Additionally, different choices of orien-
tations for the 2-simplices in T (G1,G2) will also not 
affect the equivalence result. This is because for any 
two sets T (G1,G2) and T ′(G1,G2) containing the same 
2-simplices with the same indices but different orien-
tations, if (x, y) is a feasible solution of the ILP in (11)–
(12) (or its relaxation) that corresponds to T (G1,G2) , 
then (x, y′) is a feasible solution of the ILP in (11)–(12) 
(or its relaxation) that corresponds to T ′(G1,G2) , where 
yi = y′i when σi ∈ T (G1,G2) has the same orientation as 
σ ′
i ∈ T ′(G1,G2) , and yi = −y′i when σi ∈ T (G1,G2) has 

the opposite orientation to σ ′
i ∈ T ′(G1,G2) . Therefore, 

it is acceptable to specify a particular orientation for 
each 2-simplex when defining T (G1,G2).

Appendix 3 The linear relaxation of the ILP in (11)–
(12) does not always yield integer solutions
Characterizations of the ILP in (11)–(12)
Ebrahimpour Boroojeny et al. [1] propose the ILP in (11)–
(12), and we show that the x variables in this ILP have the 
same feasible region as the x variables in lower bound ILP. 
However, Ebrahimpour Boroojeny et  al.  [1] argues that 
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the linear programming relaxation of the ILP in (11)–(12) 
always yields integer optimal solutions, and therefore the 
ILP in  (11)–(12) can be solved in polynomial time. We 
provide a counterexample where the ILP in  (11)–(12) 
yields fractional optimal solutions with fractional variable 
values. Additionally, we show that the constraint matrix of 
the LP relaxation of the ILP in (11)–(12) is not totally uni-
modular given most non-trivial input graphs.

[∂] is not necessarily totally unimodular
A linear programming formulation always yields inte-
ger solutions if its constraint matrix is totally unimodu-
lar, which means that all of its square submatrices have 
determinants of 0, -1, or 1  [25]. To show that the con-
straint matrix of the LP relaxation of the ILP in (11)–(12) 
is not totally unimodular, we first write the LP in stand-
ard form.

In a standard form of an LP, all variables are greater 
than or equal to 0. Since y vectors in the LP relaxation 
of the ILP in  (11)–(12) can contain negative entries, 
we decompose it into y+ − y− . Given alignment graph 
A(G1,G2) = (V ,E, δ) and T (G1,G2) , we can now write 
the standard form of the LP in (11)–(12) as

Hence the constraint matrix of the LP relaxation is 
A = [I ,−[∂], [∂]] . According to the characteristics of a 
totally unimodular matrix [26, p. 280] A is not totally uni-
modular if [∂] is not totally unimodular. We show that [∂] 

(44)

minimize
x∈R|E|,y+,y−∈R|T (G1,G2)|

∑

e∈E

xeδ(e)

subject to [I ,−[∂], [∂]][x, y+, y−]⊤ = xinit

x, y+, y− ≥ 0.

is not TU when the input graphs satisfy the constraints 
given in the following theorem.

Theorem 8  Given two unidirectional, edge-labeled Eule-
rian graphs G1 and,  the boundary matrix G2 where |E1| ≥ 2 
and |E2| ≥ 2 [∂] constructed from A(G1,G2) = (V ,E, δ) 
and T (G1,G2) is not totally unimodular if there is a vertex 
v ∈ V1 orV2 such that there are at least 3 unique edges in 
E1 or E2 that are incident to v. Here, unique edges are edges 
that connect to v at one end but have different endpoints at 
the other end.

Proof  To prove that the boundary matrix is not TU, we 
only need to show that it is not TU under one specific 
chosen orientation for 1- and 2-simplices, as well as one 
specific chosen set of indices for 1- and 2-simplices. This 
is because changing the orientations or indices of 1-sim-
plices in E or 2-simplices in T (G1,G2) corresponds to 
permuting rows and columns of [∂] or multiplying rows 
and columns of [∂] by −1 , which preserves the total uni-
modularity [26, p. 280].

Without loss of generality, let v0 ∈ V1 be a node that is 
incident to at least 3 unique edges. Since G1 is an Eulerian 
graph, v must be part of a cycle C in G1 . Also, there must 
exist another node vk and an edge between v0 and vk in 
either direction, such that the edge between v0 and vk is 
not contained in cycle C (Fig.  8a). Suppose the number 
of nodes in the cycle is k ( k ≥ 3 due to the unidirection-
ality constraint), and let the cycle C = v0, v1, . . . , vk−1 . 
Since a specific choice of 1-simplex orientations does 
not affect the total unimodularity of the boundary 
matrix, we assume the edge between v0 and vk is [vk , v0] 
without loss of generality. We use Gsub

1 = (V sub
1 ,Esub

1 ) to 
denote the subgraph with V sub

1 = {v0, . . . , vk−1, vk} and 
Esub
1 =

{

[vi, vi+1] : i ∈ {0, 1, . . . k − 2}
}

∪ {[vk , v0]}.

Fig. 8  a Subgraphs Gsub
1  and Gsub

2  of input graphs G1 and G2 . Dots represent a path from node 1 to k − 1 with middle nodes omitted. b The 
alignment graph A(Gsub

1 ,Gsub
2 ) with different edges labeled with colors. c A subgraph of the alignment graph in b with edges and triangles 

numbered. Dots represent horizontal and diagonal edges omitted. The same vertices that are repeated in c are marked with yellow and red filling 
colors
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Since |E2| ≥ 2 and G2 is a connected graph, there 
exist two consecutive, directed edges in G2 . We use 
Gsub
2 = (V sub

2 ,Esub
2 ) to denote the subgraph of G2 with 

V sub
2 = {va, vb, vc} and Esub

2 = {[va, vb], [vb, vc]} . The align-
ment graph A(Gsub

1 ,Gsub
2 ) is formed with Gsub

1  and Gsub
2  

and is a subgraph of A(G1,G2) , therefore, each sub-
graph of A(Gsub

1 ,Gsub
2 ) is also a subgraph of A(G1,G2) . 

Similarly, the 2-simplex set T (Gsub
1 ,Gsub

2 ) is a subset of 
T (G1,G2).

We extract a sequence of 2-simplices (Fig. 8c), Tc , from 
T (Gsub

1 ,Gsub
2 ) via following steps: 

1.	 Extract all oriented 2-sim-
plices [(vi, va), (vi, vb), (vi+1, vb)] and 
[(vi, va), (vi+1, va), (vi+1, vb)] for 0 ≤ i ≤ k − 2 from 
T (Gsub

1 ,Gsub
2 ).

	 Flip the orientations of [(vi, va), (vi+1, va), (vi+1, vb)] 
for all 0 ≤ i ≤ k − 2 , obtaining 
[(vi, va), (vi+1, vb), (vi+1, va)] . Use σ2i to denote 
[(vi, va), (vi, vb), (vi+1, vb)] , and σ2i+1 to denote 
[(vi, va), (vi+1, vb), (vi+1, va)].

2.	 Add to the sequence another five oriented 2-sim-
plices from T (Gsub

1 ,Gsub
2 ) in the order as speci-

fied: σ2k−2 = [(vk−1, va), (vk−1, vb), (v0, vb)] , 
σ2k−1 = [(vk−1, vb), (v0, vb), (v0, vc)]   , 
σ2k = [(vk , vb), (v0, vb), (v0, vc)]   , 
σ2k+1 = [(vk , va), (vk , vb), (v0, vb)] and finally 
σ2k+2 = [(vk , va), (v0, va), (v0, vb)].

In total, we extract a sequence of (2k + 3) oriented 
2-simplices, Tc = {σ0, σ1, . . . , σ2k+2} , such that σi 
and σi+1 mod (2k+3) share one edge. The extracted 

2-simplices and their orientations as well as all shared 
edges are shown in Fig. 8(c). We flip the orientations of 
[(vi, va), (vi+1, va), (vi+1, vb)] solely to ensure that the 
submatrix constructed below has a simple form, which 
makes it easier to compute the determinant.

Based on Tc , we obtain M1 , a (2k + 3)× (2k + 3) sub-
matrix of [∂] where each roll corresponds to a shared 
edge and each column corresponds to a 2-simplex in Tc.

The entry values of M1 are the signed coefficients of 
each selected 1-simplex from the boundaries of selected 
2-simplices.

The determinant of M1 is:

Since the determinant of M1 is -2, and M1 is a submatrix 
of [∂] , [∂] is not totally unimodular. 	� �

The minimal pair of input graphs that satisfy the con-
ditions in Theorem 8 is a graph with one 3-node cycle 
and one additional edge incident to the cycle and an 
acyclic, connected graph with three nodes. In practice, 
most non-trivial edge-labeled Eulerian graphs satisfy 
these conditions.

According to the definitions in Dey et  al.  [25], the 
subgraph used to construct M1 in the above proof 
(Fig.  8(c)) is a Möbius subcomplex, and M1 is a 
(2k + 3)-Möbius cycle matrix (MCM). Theorem  8 also 

M1 =
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establishes that there may exist a Möbius subcomplex 
in an alignment graph, which corrects the false claim 
made in Lemma 2 in [1].

Theorem  2 in Ebrahimpour Boroojeny et  al.  [1] 
attempts to employ a more algebraic approach to dem-
onstrate that [∂] is TU by establishing that the align-
ment graph is a Möbius-free product space. However, 
the property of being Möbius-free globally does not 
imply the absence of Möbius subcomplexes locally. As 
we show in Theorem  8, although the alignment graph 
A(Gsub

1 ,Gsub
2 ) is homotopically equivalent to the one-

dimensional circle, which is Möbius-free, it still con-
tains a Möbius subcomplex.

The LP yields optimal fractional solutions
The fact that [∂] is not totally unimodular does not 
guarantee that the LP in (11)–(12) has a fractional opti-
mal objective value. In this section, we prove that the 
LP in  (11)–(12) does not always yield integer optimal 
solutions by constructing a specific example with a 
fractional optimal objective value.

Theorem 9  The LP in (5)–(8) and the LP in (11)–(12) do 
not always yield optimal integer solutions.

We prove the above theorem by giving an exam-
ple where the LP in  (5)–(8) yields a fractional optimal 
solution. Since by Theorem  7, two LPs are equivalent, 

it follows that the LP in (11)–(12) also yields the same 
fractional optimal solution.

Construct G1 and G2 such that their edges and edge 
labels are equal to the ones specified in Fig. 9a. Let the 
edge multi-set of A(G1,G2) be E. We assign an edge 
cost to 0 if the edge matches two equal characters and 
1 otherwise. Construct vector x∗ ∈ R|E| and set entries 
corresponding to edges in Fig.  9b to 0.5 except edge 
[(v3, vc), (v0, vf )] to which the corresponding entry is set 
to 1. Set the rest of the entries of x∗ to 0.

Lemma 5  x∗ is an optimal solution to the LP in (5)–(8) 
constructed with A(G1,G2) and T (G1,G2).

Proof  We prove the optimality of x∗ via complementary 
slackness. We first write the LP in  (5)–(8) in standard 
form:

Here, δ is a vector of size |E| where each entry is the cost 
of edge e. The constraint matrix A of the primal LP (45) 
has |E| columns and |V | + |E1| + |E2| = m rows, where 
V is the vertex set of A(G1,G2) , and E1 and E2 are edge 
multi-sets of the input graphs. The first |V| rows corre-
spond to the constraints specified in (6). The rest of the 
rows correspond to the constraints in (7) that enforce the 

(45)

minimize
x∈R|E|

∑

e∈E

δexe

subject to Ax = b

xe ≥ 0 for all e ∈ E.

Fig. 9  An example of a fractional optimal solution to the LP in (11)–(12) and the LP in (5)–(8). a A pair of input graphs to the LP in (11)–(12) 
and the LP in (5)–(8). The letters in red are edge labels. b A subgraph of A(G1,G2) that is induced by alignment edges with non-zero weights (blue 
font) in an optimal solution to the LPs. The letters in red show the matching between the edge labels or between edge labels and gaps
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projected multi-set of edges to be equal to the multi-set 
of edges in each input graph. Since the input graphs both 
contain Eulerian tours, the vector b has size m, where the 
first |V| entries are zeroes and the rest of the entries are 
1 s.

We write the dual form of LP (45) as follows:

Let the objective value of LP  (45) given a x as input is 
objpx , and the objective value of LP (46) given a y as input 
is objdy  . To show that x∗ is an optimal solution to the LP 
in  (5)–(8), we need to show that there exists a feasible 
solution to the dual LP, y∗ , that satisfies the complemen-
tary slackness conditions and that objdy∗ = obj

p
x∗.

Since each alignment edge has two endpoints and is 
projected to at most one edge in each graph, there are at 
most 4 non-zero entries in each column of A. The vari-
ables in y of the dual form can be interpreted in three 
parts. Each of the first |V| entries of y can be assigned 
to each vertex in the alignment graph, and the next |E1| 
entries can be assigned to edges in G1 and the last |E2| 
entries can be assigned to edges in G2 . There are |E| con-
straints in the dual LP, and the e-th constraint can be 
assigned to one edge in the alignment graph has cost δe . 
Therefore, each constraint that is assigned to a horizontal 
or a vertical edge can be written as

where i = 1 if e is a horizontal edge, and i = 2 if e is a ver-
tical edge. yvine  and yvoute

 are the y entries that are assigned 
to the vertices that are the start and end of edge e, and yei 
are the y entries that assigned to the πi(e).

Similarly, each constraint that is assigned to a diagonal 
edge is

We can verify that x∗ is a feasible solution of the primal 
form (45) by checking if constraints (6)–(7) are satisfied. 
The primal objective value can be computed in a straight-
forward way, and we can obtain objpx∗ = 3.5.

According to complementary slackness conditions, 
since x∗e > 0 for edges shown in Fig. 9b, the correspond-
ing constraints in the dual LP (46) must be tight, meaning 

(46)
maximize

y∈Rm

m
∑

j=1

bjyj

subject to A⊤y ≤ δ.

(47)yvoute
− yvine + yei ≤ δe,

(48)yvine − yvoute
+ ye1 + ye2 ≤ δe.

that the equality must hold in these constraints. The rest 
of the dual constraints could have slacks.

Let the subgraph of A(G1,G2) shown in Fig.  9b be 
A′ . Denote the cycle that traverses from [(0,  f), (4, a)] to 
[(3, c), (0, f)] be C ′ and the 4-node cycle that traverses ((0
, f), (1, a), (2, e), (3, c)) be C ′′ . Denote the concatenation of 
two cycles with C. The projected cycle from C to G1 is

The projected cycle from C to G2 is

Sum up all the constraints that are assigned edge e where 
x∗e > 0 . Since these edges form a cycle, we get:

The summed edge cost is 7 as there are 7 edges that are 
either mismatch edges or vertical edges.

All y entries that correspond to vertices are free vari-
ables and are in every constraint. After fixing the y varia-
bles that satisfy constraint (54), the rest of the y variables 
can be set to satisfy the dual constraint. We now obtain 
y∗ which is a feasible solution to the dual LP.

The only entries in y∗ that could have non-zero dual 
costs are those that correspond to edges in E1 and E2 . 
Since these corresponding dual costs are all 1,

	�  �

Since the costs of alignment graph edges are all inte-
gers, the fact that the LP in (11)–(12) and the LP in (5)–
(8) yield fractional optimal objective values means that 
they must yield fractional solutions and assign fractional 
values to entries in x. Theorem  9 follows. Since the LP 

(49)
C1 = (v0, v4, v5, v0, v4, v5, v0, v1, v2, v3, v0, v1, v2, v3, v0).

(50)
C2 = (vf , va, ve, vc, vd , va, vb, vc, vd , va, vb, vc, vf , va, ve, vc, vf ).

(51)
�

e∈C

�

yvoute
− yvine

�

+ 2





�

e1∈C1

ye1 +
�

e2∈C2

ye2





(52)= 0+ 2





�

e1∈C1

ye1 +
�

e2∈C2

ye2





(53)=
∑

e∈C

δe = 7,

(54)⇒
∑

e1∈C1

ye1 +
∑

e2∈C2

ye2 = 3.5.

objdy∗ =
∑

e1∈C1

ye1 +
∑

e2∈C2

ye2 = 3.5 = obj
p
x∗ .
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in  (11)–(12) yields fractional solutions and GTED is 
always an integer, solving the LP in  (11)–(12) does not 
solve GTED.
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