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Abstract

Three-dimensional chromosome structure plays an important role in fundamental genomic func-

tions. Hi-C, a high-throughput, sequencing-based technique, has drastically expanded our compre-

hension of 3D chromosome structures. The first step of Hi-C analysis pipeline involves mapping

sequencing reads from Hi-C to linear reference genomes. However, the linear reference genome does

not incorporate genetic variation information, which can lead to incorrect read alignments, espe-

cially when analyzing samples with substantial genomic differences from the reference such as cancer

samples. Using genome graphs as the reference facilitates more accurate mapping of reads, however,

new algorithms are required for inferring linear genomes from Hi-C reads mapped on genome graphs

and constructing corresponding Hi-C contact matrices, which is a prerequisite for the subsequent

steps of the Hi-C analysis such as identifying topologically associated domains and calling chromatin

loops. We introduce the problem of genome sequence inference from Hi-C data mediated by genome

graphs. We formalize this problem, show the hardness of solving this problem, and introduce a

novel heuristic algorithm specifically tailored to this problem. We provide a theoretical analysis to

evaluate the efficacy of our algorithm. Finally, our empirical experiments indicate that the linear

genomes inferred from our method lead to the creation of improved Hi-C contact matrices. These

enhanced matrices show a reduction in erroneous patterns caused by structural variations and are

more effective in accurately capturing the structures of topologically associated domains.

1 Introduction

The spatial arrangement of chromosomes plays an important role in many crucial cellular processes in-

cluding gene transcription [Fraser and Bickmore, 2007, Rennie et al., 2018], epigenetic modification [Gre-
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wal and Moazed, 2003], and replication timing [Pope et al., 2014]. This complex structure can be dis-

covered through Hi-C [Lieberman-Aiden et al., 2009], a high-throughput variant of the chromosome

conformation capture technique [Dekker et al., 2002], which has become a prevalent tool in the study of

genomic organization. The Hi-C process yields read pairs representing spatial contacts between two ge-

nomic loci. These contacts can be identified by aligning each end of a read pair to the reference genome.

These aligned read pairs facilitate subsequent analyses, such as identifying topologically associated do-

mains (TADs) [Nora et al., 2012, Dixon et al., 2012, De Laat and Duboule, 2013, Filippova et al., 2014,

Li et al., 2018], which are contiguous regions on chromosomes with more frequent contacts, and calling

chromatin loops [Roayaei Ardakany et al., 2020], which are pairs of genomic loci that lie far apart along

the linear genome but are in close spatial proximity.

Hi-C pipelines use the linear reference genome such as Genome Reference Consortium Human Build

38 (GRCh38) as the template against which to align reads. However, these linear references do not

incorporate the genetic diversity within populations. Consequently, aligning reads from genomes that

diverge from the linear reference genome can result in reads either not aligning at all or being mapped

to incorrect genomic locations. This issue is exacerbated when analyzing Hi-C reads from cancer sam-

ples, which frequently exhibit structural variations, including copy number variations and substantial

translocations. The misalignments, arising due to structural variations, can confound the interpretation

of Hi-C data, potentially producing features that may be mistaken for other biological signals, such as

chromatin loops [Wang et al., 2020]. Given that read alignment is always the initial step in Hi-C analy-

sis, errors at this stage can proliferate, leading to inaccuracies throughout the downstream analyses. To

rectify the Hi-C analysis of cancer cell lines, substantial efforts have been made to develop algorithms to

identify structural variations and rearrange the cancer genomes from Hi-C data, sometimes with the help

of other data types such as whole genome sequencing to enhance accuracy and precision [Wang et al.,

2020, Schöpflin et al., 2022, Khalil et al., 2020, Wang et al., 2021] of Hi-C analysis of cancer cell lines.

However, these steps still rely on the linear reference genome.

The concept of pan-genome has been introduced to address the shortcomings of linear references. The

pan-genome is a collection of DNA sequences that incorporates both common DNA regions and sequences

unique to each individual [Gong et al., 2023, Wang et al., 2022]. These DNA sequences can be represented

by genome graphs, which are graph-based data structures amalgamating the linear reference alongside

genetic variations and polymorphic haplotypes [Ameur, 2019]. Numerous computational techniques have

been published in the domain of genome graphs, addressing various aspects such as efficient genome

graph construction [Garrison et al., 2018, Qiu and Kingsford, 2021, Hickey et al., 2023, Garrison et al.,

2023, Pandey et al., 2021], graph-based genome alignment [Rakocevic et al., 2019, Kim et al., 2019,

Rautiainen and Marschall, 2020, Sirén et al., 2021] and graph-based structural variation and haplotype

analyses [Chin et al., 2023, Hadi et al., 2020, Eggertsson et al., 2019, Chen et al., 2019]. These studies
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have substantiated that genome graphs can enhance the analysis of genome sequencing data. Moreover,

Liao et al. [2023] has illustrated the potential of genome graphs in improving the analysis of various

other data types, including RNA-seq, ChIP-seq, and ATAC-seq. However, there has been no research

exploring the enhancement of Hi-C analyses through the use of genome graphs.

Leveraging genome graphs as the reference can enhance the accuracy of mapping Hi-C reads. However,

a challenge arises from the noisy information in the graphs post-read alignment, attributed to structural

variations present in the genome graphs but absent in the actual linear genome of the Hi-C sample.

Additionally, these graphs are not immediately applicable for subsequent standard Hi-C analysis steps

like TAD identification [Filippova et al., 2014, Wang et al., 2017, Li et al., 2018] and chromatin loop

calling [Ay et al., 2014], given their inherent dependence on linear genomes and the corresponding Hi-C

contact matrices, the two-dimensional matrices representing chromosomal interactions.

A critical component to address this is to infer the appropriate, sample-specific linear genome from

Hi-C reads mapped on genome graphs. These inferred genomes, which are more congruent with the

Hi-C samples’ unknown ground truth genomes than traditional linear reference genomes, account for

polymorphisms and structural variations specific to the given sample. By using these reconstructed

genomes to create Hi-C contact matrices and incorporating these matrices into subsequent analyses, we

can enhance the precision of Hi-C studies. This approach offers a more customized and sample-specific

genomic representation, addressing the shortcomings inherent in using standard linear reference genomes.

In this work, we investigate the problem of genome sequence inference from Hi-C data on directed

acyclic genome graphs. We propose a novel problem objective to formalize the inference problem. To

infer the genome, we choose the best source-to-sink path in the directed acyclic graph that optimizes the

confidence of TAD inference on the genomes. We show that optimizing this objective is NP-complete, a

complexity that persists even with directed acyclic graphs. We develop a greedy heuristic for the problem

and theoretically show that, under a set of relaxed assumptions, the heuristic finds the optimal path with a

high probability. To ensure practical applicability to real Hi-C datasets, we also develop the first complete

graph-based Hi-C processing pipeline. We test our processing pipeline and genome inference algorithms

on cancer Hi-C samples K-562 and KBM-7. Results on these samples show that compared to using

the traditional linear reference genomes, the linear genomes inferred from our method create improved

Hi-C contact matrices. These enhanced matrices exhibit fewer errors caused by structural variations

and are more effective in accurately capturing the structures of TADs, attesting to the algorithm’s

potential to enhance the precision and reliability of genomic studies. The source code is available at

https://github.com/Kingsford-Group/graphhic.
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Figure 1: The workflow of our graph-based Hi-C processing pipeline. Each red line represents one end
of a read pair, and each blue line represents the other end.

2 Inferring the sample genome from Hi-C data with genome

graphs

2.1 Preprocessing of Hi-C reads via a novel graph-based Hi-C pipeline

Typical Hi-C processing pipelines, such as HiC-Pro [Servant et al., 2015], mainly consist of two steps:

(i) aligning each end of raw read pairs to the linear reference genome; (ii) constructing a two-dimensional

contact matrix that describes the interactions between pairs of genomic regions. A contact matrix is

derived from the alignment results, wherein each entry contains the number of read pairs between two

genomic bins — intervals with a fixed length such as 10 kilobases. This contact matrix is used as an

input for downstream analyses, such as TAD identification and loop calling. However, current Hi-C

analysis pipelines are unable to process data when genome graphs are used as the reference instead of

linear reference.

We develop a novel graph-based Hi-C processing pipeline shown in Figure 1. Our Hi-C pipeline is

composed of four steps. First, it constructs directed acyclic genome graphs either from various DNA

sequences or from the linear reference genome coupled with population variants represented in Variant

Call Format (.vcf) files. Each node in the genome graph represents a DNA subsequence. Second, the

pipeline performs graph-based alignment to map Hi-C reads onto the paths of the genome graphs. In the

third step, we prune and contract the resulting genome graph by removing paths with no reads mapped

and contracting nodes into larger genomic bins, which greatly improves the computational efficiency of

the following steps. Subsequently, the pipeline builds a contact matrix M based on the pruned genome

graph. Each dimension of the matrix represents nodes of the pruned graphs, and each matrix entry

is the number of read pairs with ends mapped to the corresponding nodes. The nodes are ordered in

their topological order in the genome graph. An exhaustive delineation of each stage of our pipeline is
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provided in Appendix A.

2.2 Problem definition of genome inference

Given a directed acyclic genome graph G with a source node s and a sink node t, and the contact

matrix M derived from the graph-based Hi-C pipeline (Section 2.1), the objective of genome inference

is to find a s-t path in G such that the concatenated DNA sequences represented by nodes in the

selected path is the most similar sequence to the actual genome of the Hi-C sample. Ideally, two primary

criteria should be fulfilled by this reconstructed path: (i) it should encapsulate as many mapped Hi-

C read pairs as feasible, and (ii) the distribution of these mapped pairs ought to echo the distinctive

spatial structures of chromosomes, especially the topologically associated domains (TADs or “domains”

for brevity). Motivated by these prerequisites, our approach toward genome inference encompasses a

simultaneous inference of the s-t path and the corresponding TADs from G.

Let Pst be the collection of all s-t paths in G, and let Dp be a set of domains along path p ∈ Pst.

The i-th domain on path p is defined as a subpath dpi = [api , b
p
i ] that starts at node api and ends at

bpi , where api and bpi are nodes on p. We require that domains of one path do not overlap with each

other. Furthermore, the boundaries of two consecutive domains dpi and dpi+1, b
p
i and api+1, are two nodes

connected with an edge on path p. The first and the last domain are dp1 = [s, bp1] and dp|Dp| = [ap|Dp|, t].

We infer the s-t path representing the actual genome from a Hi-C sample by solving the following

problem:

Problem 1. We are given a directed, acyclic graph G = (V,E) with a source node s and a sink node t,

a pre-computed function µ : N → R≥0, a float value γ ≥ 0, and a cost function c : V × V → R≥0 that

maps every pair of nodes to a non-negative cost. c is symmetric in a sense that c(v, v′) = c(v′, v). The

goal is to find a s-t path p = {v1, v2, . . . , v|p|} over all s-t paths and a set of consecutive domains Dp on

p that optimize

max
p∈Pst

max
Dp

∑
[ap

i ,b
p
i ]∈Dp

f([api , b
p
i ]), (1)

where f is defined as:

f(p′) :=
1

|p′|γ
∑

vi,vj∈p′,1≤i≤j≤|p′|

c(vi, vj)− µ(|p′|). (2)

The cost function c(vi, vj) can be described by entries in the contact matrix M(vi, vj) for node vi and

node vj . f quantifies the quality of a TAD as the normalized number of interactions within the subpath

p′.
∑

vi,vj∈p′,1≤i≤j≤|p′| c(vi, vj) in equation (2) is the total number of interactions between nodes that

are both in path p′.
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The total number of interactions is normalized by two factors. First, the total number is zero-centered

by a pre-computed µ(|p′|), which is the expected interaction frequency within a path with |p′| nodes.

Then, it is normalized by he number of nodes in p′ (|p′|) scaled by a factor of γ. This normalization

prevents the identification of TAD domains with excessively large sizes. Larger values of γ typically lead

to finding smaller domains.

2.3 The hardness of the problem

The objective function (1) of Problem 1 is derived from that of Filippova et al. [2014]. However, Filippova

et al. [2014] employs polynomial-time dynamic programming to infer TADs based on reads mapped to

a linear reference, while our work requires the concurrent inference of both the TAD domains (denoted

as Dp) and the sample’s linear genome (represented by the path p) directly from G. We show that this

increased complexity results in NP-completeness of Problem 1.

Theorem 1. Problem 1 is NP-complete.

We prove Theorem 1 by reducing from the Path Avoiding Forbidden Pairs (PAFP) problem,

which has been confirmed to be NP-complete even in directed acyclic graphs [Gabow et al., 1976, Kolman

and Pangrác, 2009].

Problem 2 (Path avoiding forbidden pairs problem [Kolman and Pangrác, 2009]). Given a graph G =

(V,E) with two fixed vertices s, t ∈ V and a set of pairs of vertices F ⊂ V × V , find a path from s to t

that contains at most one vertex from each pair in F , or recognize that such path does not exist.

The core concept of the proof involves transforming a graph instance from PAFP into a novel graph

instance of Problem 1. This transformation is done so that the objective (1) attains a specific value in

the new instance if and only if a path avoiding all forbidden pairs exists in the original graph instance.

The details of the proof are in Appendix B. This hardness result motivates the development of practical

heuristics for the problem.

2.4 Computation of the µ function

Filippova et al. [2014] demonstrated a method for efficiently pre-computing µ on the linear reference

genome. Nevertheless, as we discuss in Appendix F, calculating µ in the context of genome graphs

poses a more complex challenge. Consequently, we propose a different strategy to estimate µ. Generally,

samples from normal cell types bear a greater resemblance to the linear reference genome compared to

those from cancer samples. Hence, we select Hi-C data from a normal sample, process it using the linear

reference genome, and calculate its µ function using the same approach as Filippova et al. [2014]. This

function is denoted as µ0. It is evident that the sequencing depth of the Hi-C data can influence the
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value of the µ function. Therefore, when analyzing new Hi-C data, we estimate its µ function as follows:

µ̂(l) = µ0(l)
Nnew

Nold
. (3)

Here, Nold refers to the total count of Hi-C read pairs from the original normal sample, while Nnew

indicates the total count of Hi-C read pairs from new Hi-C data.

2.5 Graph-based dynamic programming algorithm

We use a dynamic program, computed in the topological ordering of the nodes, to solve the Problem 1:

OPT (l) = max
k,Pkl ̸=∅

{
max

v∈PA(k)
OPT (v) + q(k, l)

}
, (4)

where OPT (l) is the optimal solution for objective (1), applied to the subgraph induced by node l along

with all nodes with a topological order less than that of l within G. Pkl denotes the collection of all

paths from node k to node l in G, and PA(k) is the set of parent nodes of k. maxv∈PA(k) OPT (v) = 0

if k has no parent node. q is a function that maximizes over all paths between k and l:

q(k, l) = max
p∈Pkl

f(p). (5)

We use a standard backtracking strategy, shown in Algorithm 3 in Appendix C, to reconstruct the

optimal path popt from the dynamic program. The reconstructed path popt is the inferred genome we

want.

We prove that OPT (t) is indeed the optimal solution for Problem 1.

Proposition 1. OPT (t) = maxp∈Pst
maxDp

∑
[ap

i ,b
p
i ]∈Dp

f([api , b
p
i ]).

The proof is in Appendix D. However, this does not provide a polynomial time algorithm. As we

show in Appendix E, computing the function q in (5) is NP-complete. Moreover, the NP-completeness

of computing q is not attributable to the exclusive definition of function f as outlined in (2). We show

in Appendix E that computing q remains NP-complete under various definitions of f . Therefore, it is

hard to solve the dynamic programming objective shown in (4), which is consistent with the hardness

conclusions in Section 2.3. This provides a focus for developing heuristics.

2.6 Heuristics for computing q

We propose a novel heuristic algorithm, detailed in Algorithm 1, to compute the function q(k, l) for any

node pair (k, l). The central principle behind this algorithm is that a node situated between nodes k and

l (in topological order) that has more interactions with other nodes is more likely to be a part of the
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path connecting k to l that maximizes the function f . Consequently, we sort the nodes in descending

order based on their cumulative interactions with other nodes (line 6 of Algorithm 1) and progressively

add nodes from the highest to the lowest interactions until a k-l path is established.

Algorithm 1 q(k, l) computation

1: Input k,l, genome directed acyclic graph G = (V,E), nodes list T that contains all nodes in G sorted
by their topological order, contact matrix M , reachable matrix Mr, the function f

2: if Mr[k, l] = 0 then
3: return
4: end if
5: Vsub ← {v ∈ V | T.index(v) ≥ T.index(k) and T.index(v) ≤ T.index(l)}
6: Sort vertices v in Vsub according to the sum

∑
v′∈Vsub

M [v, v′], arranging them from the highest to
the lowest value to form V ′

sub.
7: p← {k, l}, q ← −∞
8: edges← is edge(k, l)
9: for v ∈ V ′

sub do
10: p, edges← insert(p,Mr, T, edges, v)
11: if edges = |p| − 1 then
12: q ← f(p)
13: return q, p
14: end if
15: end for

Specifically, we employ the following functions and data structures within Algorithm 1 to enhance

the algorithm’s efficiency:

• reachable matrix Mr, where Mr[i, j] = 1 if there exists a path from node i to node j in the directed

acyclic genome graph G, otherwise Mr[i, j] = 0.

• is edge(k, l), which returns 1 if there is an edge from k to l in G, otherwise it returns 0.

• insert(p,Mr, T, edges, v), of which the pseudo-code is provided in Algorithm 4 in the appendix.

This function contains the following steps:

– Given a node set p which encompasses all nodes already incorporated and are topologically

sorted, the function determines whether there exists a path in G that includes all nodes in

p ∪ {v}. Such a path may include additional nodes that are not in p ∪ {v}. This step can be

efficiently achieved with the help of Mr and a balanced tree structure such as AVL tree [Foster,

1973], of which the details are introduced in Appendix G.2.

– If the aforementioned path exists, the node v is then inserted into p according to the topological

ordering (function update in line 7 of Algorithm 4).

– The function also updates an integer variable edges (line 8 of Algorithm 4), which keeps track

of how many neighboring nodes in p have edges in G.

The insert function yields a revised node set p and an updated value for edges (line 10 of Algorithm 1).

A legitimate path in graph G is formed by the nodes in p if and only if the condition edges = |p| − 1 is
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met (line 11 of Algorithm 1). Once a path is established, we compute the function value f(p) and use it

as the value of q (line 12 of Algorithm 1).

We have the following result on the time complexity of our heuristic algorithm:

Theorem 2. The total time complexity for Algorithm 1 and the dynamic program using the heuristic

Algorithm 1 are respectively O(|V |2) and O(|V |4), where |V | is the number of nodes in the graph.

The proof is in Appendix G.2. In practice, the time complexity is still too high for long chromosomes.

To address this, as detailed in Section 2.8, we implement additional practical strategies to further decrease

the algorithm’s time complexity.

2.7 Accuracy of the heuristic algorithm

Let p̂ represent the path from node k to node l as predicted by Algorithm 1, and let pgt denote the

“ground truth” path, defined as pgt = argmaxp∈Pkl
f(p). In an ideal scenario, a heuristic algorithm

would ensure that, for any specified DAG G and any interaction distribution present on G, the value

f(p̂) closely approximates f(pgt). However, as we demonstrate in Appendix G.3, it is possible to create

an example where the discrepancy between f(p̂) and f(pgt) can be infinitely large, indicating that our

heuristic algorithm does not offer a bounded approximation in the worst-case scenario.

However, within the scope of Hi-C analysis, the distribution of interactions on a genome graph is

not arbitrary. Conceptually, each interaction, represented by a pair of nodes, stems from two primary

sources: (a) the “ground truth” source. Both nodes of the interactions from this source lie on the ground

truth path pgt. Interactions from this source are informative when constructing p̂. (b) the “noise”

source, which accounts for interactions arising due to various systematic biases such as sequencing errors,

mapping errors, etc. In this scenario, the interactions are not necessarily confined to the path pgt. Under

mild assumptions, we propose a theoretical framework that more accurately reflects the real-world Hi-C

situation, and demonstrate that with high probability the output path p̂ is equivalent to pgt, as long as

the number of mapped read pairs is at least Ω(|pgt| log |V |). Although the number of total nodes |V | in

the graph can be large, the required number of read pairs for a successful inference is only proportional

to the logarithm of it. The details of this theoretical analysis can be found in Appendix G.4. We observe

that in practice, this criterion regarding the number of read pairs is readily met. For instance, in our

experiments, the graph has approximately 5 × 105 nodes, and the total number of mapped read pairs

is around 3 × 108. This result provides some theoretical justification for the choice of the heuristic in

Algorithm 1.
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2.8 Practical improvements to efficiency and accuracy

In practice, we introduce two modifications to our heuristic algorithm to enhance its accuracy and

speed. First, given that the size of TADs typically does not exceed 3Mb [Bonev and Cavalli, 2016], we

implement an additional heuristic adjustment to the dynamic program. When calculating the function

q, we restrict our consideration to paths where the combined length of the DNA sequences on the nodes

is under 3Mb. This heuristic modification means that the dynamic program represented by equation (4)

would be transformed as follows:

OPT (l) = max
k,P̄kl ̸=∅

{
max

v∈PA(k)
OPT (v) + q(k, l)

}
, q(k, l) = max

p∈P̄kl

f(p), (6)

where P̄kl is the collection of paths from k to l that satisfy the constraint described above. Let L

denote the largest length of the paths in P̄kl, where length here refers to the number of nodes; generally,

L ∼ 3Mb
kbin
≪ |V |. Now the time complexity of the dynamic program when using the heuristic algorithm

for q becomes O(|E||V |+ L4), where O(|E||V |) comes from computing the reachable matrix Mr.

Second, our empirical observations suggest that for most node pairs (k, l), computing q using Algo-

rithm 1 is quite effective. Nonetheless, this method might not adequately capture the signals of large

deletions. To mitigate this, we have refined Algorithm 1, as detailed in Algorithm 5 in Appendix G.5. In

this adjustment, for each node pair (k, l), we initially execute a node-weighted shortest path algorithm

(where each node’s weight is determined by the length of its corresponding DNA sequence) to identify

a path pbase and calculate its score (lines 5-6 of Algorithm 5). Subsequently, Algorithm 1 is applied; if

the path p derived from Algorithm 1 surpasses the score of pbase, p is returned, otherwise pbase is the

selected path.

The shortest path algorithm for directed graphs with nonnegative weights has a time complexity of

O(|E|+ |V | log(|V |)). Consequently, the overall time complexity for Algorithm 5 to estimate q remains

O(|V |2) (or O(|L|2) if we use the heuristic above), equating to that of Algorithm 1. Additionally,

given that the path generated by Algorithm 5 will always yield a higher score compared to that from

Algorithm 1, all the theoretical results in Section 2.7 are applicable to Algorithm 5 as well.

3 Experimental results

We construct the genome graph with structural variations from the K-562 cancer cell line reported by

Zhou et al. [2019] and the linear reference genome GRCh37, against which the SVs were called. We

primarily use the VG toolkit [Garrison et al., 2018] to incorporate simple variants and further process

the variant file and the resulting graph so that the final genome graph is a directed acyclic graph. Details

on the construction of the genome graph can be found in Appendix H.2.
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We apply our graph-based Hi-C pipeline (Section 2.1 and Appendix A) to process the raw Hi-C reads

of the K-562 cancer cell line from Rao et al. [2014] (accession number: SRR1658693). Subsequently,

we employed our graph-based heuristic dynamic programming algorithm to infer the sample genome.

Finally, all raw Hi-C reads were remapped to the newly inferred linear genome to generate chromosome-

specific contact matrices with bin size 10kb. Detailed descriptions of our algorithmic implementations,

including hyper-parameter configurations, are provided in Appendix H.3.

3.1 Using the genome graph reference improves Hi-C read mapping

We evaluate the quality of read mapping by the number of reads from the K-562 sample SRR1658693

mapped and total number of reads that mapped perfectly without mismatches on three genome repre-

sentations (Table 1). For a fair comparison between number of reads mapped to each genome, we use vg

map [Garrison et al., 2018] for all read aligning steps, including mapping reads to GRCh37, the genome

graph, and the inferred linear genome. This is because existing Hi-C read aligners such as HiC-Pro does

not support sequence-to-graph alignments.

SRR1658693

Graph Linear reference Reconstruction

Mapped reads 878, 600, 674 878, 232, 335 877, 819, 100
Perfectly mapped reads 301, 671, 424 277, 917, 664 289, 248, 295

Table 1: Mapping statistics of Hi-C reads being mapped onto different references, computed by vg

stats -a. Graph: reads mapped onto the genome graph; Linear reference: reads mapped onto the
linear reference genome; Reconstruction: reads mapped onto the inferred linear genome. The total Hi-C
reads of sample SRR1658693 is 913, 515, 598.

As shown in Table 1, using the genome graph as a reference, both the number of total mapped

reads and the number of perfectly mapped reads increase. The number of perfectly mapped reads to

the inferred linear genome increases by 4.08% (more than 11 million read) compared to those perfectly

mapped to the reference genome despite a slight decrease (0.05%) in total reads mapped. The reduction

in total reads mapped to the inferred linear genome is partly due to the predominant presence of deletions

among the large structural variations (SVs) incorporated in the genome graph (as shown in Table S1 in

Appendix I). Because the inferred genome is haploid, reads that originates from the allele without the

large deletions are lost. Nevertheless, the increase in perfectly mapped reads indicates that the inferred

genome is more similar to the sample genome.

To examine the generality of our genome graph and inferred genome, we aligned Hi-C reads from a

different K-562 sample (SRR1658694) to both the genome graph and the linear genome inferred from the

sample SRR1658693. The number of perfectly mapped reads to the inferred genome increased by 4.16%

(more than 24 million reads) compared to GRCh37 (Table S2 in Appendix I). The consistency between

these results and those in Table 1 suggests that the inferred genome from one sample can effectively be
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applied to other samples within the same cell type.

The generality of genome graphs constructed on the K-562 sample can be extended to a different cell

line. We align Hi-C reads from another chronic myeloid leukemia cell line, KBM-7, to the K-562 genome

graph and infer the KBM-7 genome. The numbers of reads mapped to the genome graph and the inferred

genome increase compared to reads mapped to the GRCh37 reference. The number of perfectly mapped

reads to the inferred genome increases by 4.6% (more than 16 million reads) (Table S3 in Appendix I).

This indicates potential shared structural variations between the K-562 and KBM-7 cell lines.

3.2 Graph Hi-C workflow improves Hi-C contact matrices

Compared to small SVs, large SVs exert a more pronounced effect on the 3D structure of chromosomes,

such as Topologically Associating Domains (TADs). We validate the quality of the inferred genome by

examining all four regions around SVs with lengths larger than 500 kilobases. We notice that they are all

deletions. In Figure 2, Figure S5, Figure S6, and Figure S7, we show Hi-C contact matrices constructed

from reads that are mapped to the inferred linear genome, the linear reference genome, and the genome

graph.

The visualizations of graph-based contact matrices appear noisier compared to their counterparts

due to the existence of numerous nodes that are not on the inferred path, many of which represent very

short DNA sequences with few mapped reads. Consequently, these nodes generate slender stripes in

contact matrices. When the reads are remapped to the inferred genome, these noisy stripes are reduced,

resulting in cleaner contact matrices.

In Figure 2 and Figure S5, both the graph-based contact matrices (middle panels) and those derived

using the linear reference (left panels) exhibit apparent deletion patterns, characterized by prominent

stripes with very sparse interactions. These stripes also mark regions with absence of TAD structures.

Our algorithm successfully identifies these deletions and produces more accurate contact matrices based

on reads remapped to the inferred genome (right panels). Figure 3 presents another case where two

smaller deletions of sizes 30 kb and 15 kb respectively, occur within a specific subregion of chromosome

3. Clear deletion patterns marked by stripes are evident in both the graph-based contact matrix and

the matrix derived using the linear reference. Our algorithm successfully detects these two deletions,

showcasing its effectiveness in identifying variations of varying sizes.

In addition to incorporating true deletions in the inferred genome, we show that our graph-based

Hi-C workflow is also able to discern and avoid false positive deletions in the genome graphs with few

read supports (Figure S6 and Figure S7).
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Figure 2: The region between 155, 000, 000bp and 170, 000, 000bp in chromosome 4. The genome graph
shows a large deletion (s2) with an approximate length of 3, 000, 000bp. Note that besides this large
deletion, the genome graph also contains numerous other structural variations within this region. These
are not shown in the plot for the sake of clearer visualization.

Figure 3: The region between 57, 000, 000bp and 62, 000, 000bp in chromosome 3. The genome graph
shows two deletions (s2 and s4) with approximate lengths of 300, 000bp and 150, 000bp respectively.

3.3 Graph Hi-C workflow improves TAD identification

We assess the quality of the new contact matrices from the inferred genome by their ability to exhibit

biologically sound TAD structures. We use Armatus [Filippova et al., 2014] to identify TADs from these

matrices. The detected TADs are then compared with those identified from contact matrices created

from the linear reference using HiC-Pro. We evaluate the quality of TADs against the enrichment of

regulatory elements CTCF and SMC in K-562 cell lines around detected TAD boundaries.

We measure the enrichment of CTCF and SMC3 around TAD boundaries with three metrics: average

peak, boundary tagged ratio, and fold change (Table 2). Average peak measures the average occurrence

frequency of peaks within 30 kb range centered on TAD boundaries. Boundary tagged ratio measures the

frequency of TAD boundaries that are enriched for regulatory elements. Fold change measures the change

of enrichment of regulatory elements between regions around and far away from TAD boundaries. Since
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the TAD boundaries identified using our method are situated along a path within the genome graph, we

use Graph Peak Caller [Grytten et al., 2019] for calling and comparing CTCF and SMC3 peaks on the

graphs. Further details on graph peak calling and these metrics can be found in Appendix H.4.

Both CTCF and SMC3 peaks are more concentrated around TAD boundaries identified based on

the inferred genomes than linear reference. Figure 4 graphically presents these peak signals around

TAD boundaries, clearly showing that the signals from the inferred linear genome are more pronounced

than those from the linear reference. Table 2 shows that, relative to the linear reference, there is a

higher enrichment of CTCF and SMC3 signals near the TAD boundaries identified from the new contact

matrices. This enhancement is robust to hyper-parameter changes during TAD calling as shown in

Table S4.

To investigate the changes in TADs surrounding large structural variations, we visualize the differences

between TADs identified on Hi-C matrices based on the linear reference and the inferred sample genome,

shown in Figures S8, S9, and S10, which correspond to regions shown in Figures 2, S5, and 3. In the

shown regions around large deletions, new TADs across the breakpoints of deletions are identified in the

inferred linear genome. Additionally, very small TADs predicted within the deletion regions from the

linear reference, which may not represent true TADs, are omitted in the inferred linear genome.

The improvement in TAD identification is generalizable to other K-562 samples. We evaluate TADs

using new contact matrices based on Hi-C reads from sample SRR1658694 to our inferred genome from

SRR1658693 (Table S5). We can draw similar conclusions that the TADs based on the inferred genome

reach a higher agreement with CTCF and SCM3 elements.

We also investigate the enrichment of CTCF and SMC3 at TAD boundaries as directly inferred by our

dynamic programming algorithm without remapping to the inferred genome (Table S6). The identified

TADs achieve good performance in terms of average peak and boundary tagged ratio compared to TADs

inferred on the linear reference genome in Table 2, which indicates that our dynamic programming

algorithm can infer reasonable TAD boundaries directly from graphs.

All these findings suggest that our algorithm can successfully infer a better linear genome and generate

contact matrices that more effectively capture TAD structures.

3.4 Dynamic programming heuristics outperforms baseline heuristics

To further assess our algorithm’s effectiveness, we compared it with two baseline approaches:

• Shortest path: This method identifies an s-t path within the genome graph, aiming for the shortest

DNA sequence length, and adopts this as the inferred linear genome.

• Longest M -weighted path: Here, each node’s weight is determined by the total number of contacts

it includes. The algorithm selects an s-t path that maximizes the sum of these weights, using the
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resultant path as the inferred linear genome.

The shortest path heuristic tends to be overly aggressive in handling deletions, which results in

removing false positive deletions that affect a large region such as the deletion shown in Figure S7.

Consequently, the resulting inferred genome is significantly shorter than the one inferred by our algorithm

and therefore fewer reads are mapped (Table S7 and S8).

In contrast, the longest M -weighted path algorithm, despite mapping a slightly higher number of

reads compared to the inferred genome by our algorithm (Table S7 and S8), lacks sensitivity to deletions

and fails to identify all the major deletions as shown in Figure S11.

Furthermore, the TAD structures derived using the baseline heuristics, as reported in Tables 2 and S9,

are generally less accurate compared to those generated by our dynamic programming algorithm as

evaluated based on the enrichment of regulatory elements.

Figure 4: (a),(b) CTCF peak signals around TAD boundaries from the linear reference genome (a) and
the inferred linear genome (b). (c),(d) SMC3 peak signals around TAD boundaries from the linear
reference genome (c) and the inferred linear genome (d). TADs are called by Armatus with hyper-
parameter γ = 0.5.

Average peak Boundary tagged ratio Fold change

CTCF

Linear reference 0.172 0.346 0.019
Reconstruction 0.202 0.387 0.144
Shortest path 0.200 0.385 0.129

Longest M -weighted path 0.199 0.384 0.139

SMC3

Linear reference 0.091 0.194 0.044
Reconstruction 0.115 0.237 0.249
Shortest path 0.113 0.234 0.221

Longest M -weighted path 0.113 0.233 0.229

Table 2: The comparisons of three metrics reflecting CTCF or SMC3 enrichments near TAD boundaries
across different genomes. Linear reference: linear reference genome; Reconstruction: genome inferred
by our algorithm. Shortest path: genome inferred by shortest path algorithm; Longest M -weighted
path: genome inferred by longest M -weighted path algorithm. TADs are called by Armatus with hyper-
parameter γ = 0.5. Hi-C sample: SRR1659693.

4 Discussion

In this study, we establish a novel connection between Hi-C analysis and genome graphs and explore a

novel application domain in pan-genomics. We develop the first algorithm that leverages genome graphs
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for inferring genome sequences from Hi-C reads and the first graph-based Hi-C processing workflow

which enable the efficient construction of graph-based Hi-C contact matrices. Our experimental results

demonstrate that the genomes inferred via our algorithm facilitate the creation of superior Hi-C contact

matrices compared to those derived using a linear reference. These promising outcomes highlight the

ability of genome graphs to enhance Hi-C analysis, especially for cancer samples that contain large-scale

structural variations.

There are several avenues for future research stemming from this work. First, our dynamic program-

ming algorithm, despite its reliance on heuristics, is not exceptionally fast. For instance, processing

chromosome 1 with our algorithm requires around two days, even with some parallelism techniques

applied. Accelerating our algorithm could be a fruitful area of exploration. Second, currently the nor-

malization method for Hi-C data mapped onto graphs is lacking, which is crucial for correcting inherent

biases. As a result, to ensure equitable comparisons, all contact matrices presented in the experimental

section of this work are unnormalized. Developing new methodologies for normalizing graph-based Hi-C

data could be a vital and intriguing direction for future research. Third, our current approach, as well

as that of Graph Peak Caller, is applicable only to DAGs. This limitation prevents us from testing these

methods on more complex non-directed acyclic graphs, such as the human pangenome graphs created by

Liao et al. [2023]. Therefore, adapting our methodology for use with general graphs represents a signifi-

cant and necessary direction for future research. Additionally, given that our algorithm is applicable not

only to cancer cell lines, it would be interesting to test it on more cell types, particularly normal ones,

to evaluate its performance.

Finally, while there has been research like that by Wang et al. [2021] focusing on identifying structural

variations from Hi-C data and rearranging contact matrices accordingly, we choose not to benchmark

our method against theirs in this work. This is because our primary aim in this work is to introduce the

use of genome graphs in Hi-C analysis for the first time, while the method of Wang et al., although it

can create improved Hi-C contact matrices, is not able to be used on genome graphs. In the future, it

would be interesting to explore the integration of these two approaches, potentially leading to even more

substantial improvements in Hi-C analysis.
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A Details of the graph-based Hi-C processing pipeline

As we describe in the main text, our Hi-C pipeline is composed of four steps. First, it constructs directed

acyclic genome graphs either from various DNA sequences or from the linear reference genome coupled

with Variant Call Format (.vcf) files. In this framework, each node of a genome graph represents

a DNA sequence. Second, the pipeline performs graph-based alignment to map Hi-C reads onto the

paths of the genome graphs. Following this, we prune and contract the resulting genome graph by

removing paths with no reads mapped and contracting nodes into larger genomic bins to improve the

computational efficiency of the following steps. Subsequently, the pipeline builds the contact matrix M

based on the pruned graphs. Here, each dimension of the matrix represents nodes of the pruned graphs,

and each matrix entry indicates the number of read pairs of which the ends are mapped to the respective

nodes. There are existing approaches that can complete the first two steps. Specifically, we use the vg

toolkit [Garrison et al., 2018] to construct genome graphs and facilitate the graph-based alignment. In

section A.1, we introduce our approach for pruning genome graphs.

A.1 Genome graph pruning

The genome graph constructed from vg toolkit contains unnecessary information—essentially, genetic

variations that are not present in the sample from which our Hi-C data is derived. This redundant

information, manifested as a subset of nodes and edges in the graph, considerably amplifies the memory

usage during the execution of our Hi-C pipeline, and diminishes the computational efficiency of processes

such as graph-based contact matrix construction and new genome inference. To mitigate this, we develop

a novel algorithm to prune the genome graph, eliminating unnecessary nodes and edges while retaining

as many useful nodes and edges as possible.

The underlying principles of our pruning algorithm are twofold: first, nodes that have no mapped

Hi-C reads are more likely to be irrelevant; second, small structural variations, such as single nucleotide

polymorphisms (SNPs), are unlikely to influence the 3D chromosomal structures, making their removal

reasonable.

Algorithm 2 Genome graph pruning

1: Input Directed acyclic genome graph G onto which Hi-C reads are mapped, bin size kbin
2: G1 ← node merge(G)
3: G1 ← empty node removal(G1)
4: G1 ← node merge(G1)
5: G1 ← small sv removal(G1)
6: G1 ← node merge(G1)
7: G1 ← node binning(G1, kbin)
8: return G1

Algorithm 2 illustrates the comprehensive framework of the graph pruning process. The algorithm
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Figure S1: Four components of our graph pruning algorithm. Each red line represents one end of a read
pair, and each blue line represents the other end.

takes a connected, directed acyclic genome graph G, onto which Hi-C reads are mapped, as its input.

Leveraging the directed acyclic property of the graph will simplify the pruning procedure as well as

subsequent stages in the pipeline. Section H.2 describes how we handle non-DAGs in practice. As shown

in Figure S1, the pruning algorithm has four key components:

• Function node merge(G). The indexing process of vg toolkit necessitates that each node in the

genome graph represents a k-mer (sometimes it may represent an s-mer where s < k) [Sirén, 2017].

Typically, the value assigned to k is relatively small (e.g., 32), which implies that the genome graph

constructed by vg toolkit has a large number of nodes, each representing a very short DNA sequence.

The substantial node size will significantly impede the computational efficiency of our pipeline. To

mitigate this, we borrow the idea of unitig construction, and design the function node merge,

which merges smaller nodes into larger ones, as illustrated in Figure S1(a). Specifically, we define

two nodes, nA and nB , as mergeable if nB is the only child node of nA and nA is the only parent

node of nB (or vice versa). These two nodes can be amalgamated to create a new, larger node,

representing a sequence that is the concatenation of the sequences of nA and nB . The function

node merge(G) iteratively combines pairs of mergeable nodes until no further mergeable pairs

remain. We additionally use a read projection process to project reads, which are aligned to the

former nodes, onto their corresponding new nodes.

• Function empty node removal(G). In this function, we add a source node s and a sink node t into

the DAG G. We also add edges from s to any nodes in G lacking a parent node, and add edges

from any nodes in G that do not have a child node to t. We define a node as removable if it satisfies

the following criteria: (a) it is neither the source nor the sink node, (b) it has no reads mapped

onto it, and (c) each of its parent nodes has more than one child node, and each of its child nodes

has more than one parent node. This third criterion ensures that the removal of this node will not

significantly alter the graph’s structure. Specifically, after removing such a node, there still exists
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a path from s to every other node in G, and there still exists a path from any node in G to t.

As shown in Figure S1(b), the function empty node removal(G) iteratively removes all removable

nodes until no further removable nodes remain.

• Function small sv removal(G). We further contract our graph by removing small variants in the

graph. Small variants such as SNPs and insertions and deletions ≤ 10 bases are usually represented

by bubble structures [Onodera et al., 2013]. We first detect bubbles structures such that the total

number of characters represented by nodes on the longest path within each bubble structure is fewer

than 10 bases. Starting from the inner-most bubbles, we remove nodes that are not on the longest

path within each bubble. Then, non-branching paths are merged. Reads that are mapped to the

removed nodes will be mapped to the new path. The bubbles are detected using the algorithm

described in Onodera et al. [2013].

• Function node binning(G, kbin). In conventional Hi-C analysis pipelines, the aligned Hi-C reads

are binned into fixed-sized genomic intervals, such as 10 kilobases, to aggregate data and smooth

out noise [Lajoie et al., 2015]. Similarly, our pipeline incorporates a binning procedure applied to

the graph nodes, as depicted in Figure S1(d). Specifically, when the length of the DNA sequence

s within a node exceeds the predetermined hyperparameter kbin, which denotes the bin size, the

node binning function divides the node into
⌈

|s|
kbin

⌉
nodes. In this division, each node except for

the final one represents a DNA sequence spanning a length of kbin (nodes with the length of the

DNA sequences smaller than kbin remain unchanged). Similar to the functions node merge and

small sv removal, the read projection process is used here to project reads from the former nodes

onto their corresponding new nodes.

Given an input DAG G, the graph pruning algorithm initiates by merging small nodes (line 2 of

Algorithm 2). Following this, it proceeds to eliminate nodes identified as removable (line 3 of Algo-

rithm 2). This step potentially gives rise to new mergeable nodes, prompting the algorithm to invoke

the node merge function once again (line 4 of Algorithm 2). Subsequently, the algorithm addresses the

removal of minor structural variations (line 5 of Algorithm 2), does the node merge function once again

(line 6 of Algorithm 2), and culminates with the execution of node binning (line 7 of Algorithm 2).

The graph pruning algorithm yields a connected DAG that is significantly reduced in size, with Hi-

C reads appropriately mapped. This pruned graph is subsequently converted into a two-dimensional

contact matrix. In this matrix, each row or column corresponds to a node within the graph, and each

entry represents the number of mapped read pairs between two nodes, as demonstrated in step 4 of

Figure 1.
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Figure S2: An example of converting G (a) to G′ (b) in the proof of Theorem 1.

B Proof of Theorem 1

Here, we provide the proof of Theorem 1.

Proof. Gabow et al. [1976] proves that the path avoiding forbidden pairs problem (PAFP), introduced

in Problem 2, is NP-complete in directed acyclic graphs. We now reduce PAFP on DAGs to Problem 1.

Suppose we are given an instance of PAFP with a DAG G = (V,E), a source node s, and a sink node t.

We define a symmetric cost function c on G, such that:

c(v, v′) = c(v′, v) =


0 if (v, v′) ∈ F

1 otherwise.

We convert G to a new DAG G′ = (V ′, E′) such that every path from the source node to the sink node

in the new graph has the same length (same number of nodes). We use Breadth-First-Search (BFS),

starting from s to generate the new graph. We first create G′ that only has a source node s̄, i.e. V ′ = {s̄}

and E′ = ∅. Let V0 = {s}. Given the node set Vi, via BFS on G we create a new node set Vi+1 which

are all child nodes of the nodes in Vi. For each node v ∈ Vi+1, we add a corresponding node v̄i+1 in G′.

For each node pair (v′, v) such that v′ ∈ Vi and v ∈ Vi+1, we add an edge from v̄′
i
to v̄i+1 in G′ if v′ is

a parent node of v in G. If t̄i is already added in G′, we add a node t̄i+1 in G′ and add an edge from

t̄i to t̄i+1. If additionally t is in Vi+1, meaning that t̄i+1 is already in G′, we only add an edge from t̄i

to t̄i+1 without adding the node t̄i+1 again. This procedure is iteratively conducted until Vi+1 = {t}

or Vi+1 = ∅. Figure S2 shows an example of constructing G′ (Figure S2(b)) from the original graph G

(Figure S2(a)). Since |Vi| = O(|V |), we have that |V ′| = O(|V |3). Therefore, the construction of G′ can

be accomplished within polynomial time. In addition, it is easy to see that G′ is a DAG. Let t̄n be the

node in G′ that corresponds to the sink node in G, which was added during the final iteration of the

procedure. The set of s-t paths in G has a one-to-one correspondence with the set of paths from s̄ and

t̄n in G′. Moreover, all the paths from s̄ to t̄n in G′ maintain equal lengths n+1. We define a symmetric
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cost function c′ on G′, such that:

c′(v̄′
i
, v̄j) = c′(v̄j , v̄′

i
) = c(v, v′).

Therefore, the instance of PAFP is a yes-instance if only if there exists a s̄− t̄n path in G′ such that the

cost c′ of any node pair in this path is 1. The DAG G′, combined with the source node s̄, the sink node

t̄n, the cost function c′, the value γ = 0 and the function µ(l) ≡ 0, becomes an instance of Problem 1.

We now prove that the instance of PAFP is a yes-instance if and only if there exists a solution of

Problem 1 with objective value (n+1)(n+2)
2 , hence Problem 1 is NP-complete.

Since γ = 0 and µ(l) ≡ 0, the objective of Problem 1 becomes:

max
p∈Ps̄t̄n

max
Dp

∑
[ap

i ,b
p
i ]∈Dp

∑
vi,vj∈[ap

i ,b
p
i ]

1≤i≤j≤|[ap
i ,b

p
i ]|

c′(vi, vj).

Since the cost function is non-negative, for any given s̄− t̄n path, choosing the whole path as one domain

leads to the maximal:

max
p∈Ps̄t̄n

max
Dp

∑
[ap

i ,b
p
i ]∈Dp

∑
vi,vj∈[ap

i ,b
p
i ]

1≤i≤j≤|[ap
i ,b

p
i ]|

c′(vi, vj) ≤ max
p∈Ps̄t̄n

∑
vi,vj∈p,1≤i≤j≤|p|

c′(vi, vj).

Moreover, since c′ is less than or equal to 1, and each s̄− t̄n path has the same length n+ 1, we have:

max
p∈Ps̄t̄n

∑
vi,vj∈p,1≤i≤j≤|p|

c′(vi, vj) ≤
(n+ 1)(n+ 2)

2
.

Therefore, there exists a solution of Problem 1 with objective value (n+1)(n+2)
2 if and only if there exists

a s̄ − t̄n path in G′ such that the cost of any node pair in this path is 1, if and only if the instance of

PAFP is a yes-instance.

C Backtracking strategy of the dynamic programming algo-

rithm

Here, we provide the pseudo-code of the backtracking strategy. Initiating from the sink node t, designated

as the end node, we select the subpath where the starting node of the path is identified as the node that

maximizes the expression on the right-hand side of Equation (4) (line 5 of Algorithm 3). Furthermore,

this chosen subpath maximizes the function f across all paths extending from the start node to the end

node (line 6 of Algorithm 3). The end node subsequently transitions to being a parent node of the start
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node that has the maximal OPT value (line 7 of Algorithm 3). This procedure is iteratively conducted

until the start node becomes the source node s. The reconstructed path popt is the inferred genome we

want.

Algorithm 3 Dynamic program backtracking

1: Input DAG G equipped with a source node s and sink node t, OPT
2: Queue Q← ∅
3: l← t, k ← t
4: while k ̸= s do
5: k ← argmaxk,Pkl ̸=∅

{
maxv∈PA(k) OPT (v) + q(k, l)

}
6: p← argmaxp∈Pkl

f(p)
7: l← argmaxv∈PA(k) OPT (v)
8: Q.insert(p)
9: end while

10: popt ← concat{pi | pi ∈ Q}
11: return Q, popt

D Proof of Proposition 1

Here, we provide the proof of Proposition 1.

Proof. Let popt and D̂popt
be a path and its domain such that:

∑
[ap

i ,b
p
i ]∈D̂popt

f([a
popt

i , b
popt

i ]) = max
p∈Pst

max
Dp

∑
[ap

i ,b
p
i ]∈Dp

f([api , b
p
i ]).

Let m = |D̂popt
|, We first prove that for any j ≤ m,

j∑
i=1

f([a
popt

i , b
popt

i ]) ≤ OPT (b
popt

j ).

When j = 1, we have:

f([a
popt

1 , b
popt

1 ]) = f([s, b
popt

1 ]) ≤ q(s, b
popt

1 ) ≤ OPT (b
popt

1 ).

By induction,

j+1∑
i=1

f([a
popt

i , b
popt

i ]) =

j∑
i=1

f([a
popt

i , b
popt

i ]) + f([a
popt

j+1 , b
popt

j+1 ])

≤ OPT (b
popt

j ) + q(a
popt

j+1 , b
popt

j+1 )

≤ max
v∈PA(a

popt
j+1 )

OPT (v) + q(a
popt

j+1 , b
popt

j+1 )

≤ OPT (b
popt

j+1 ).
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Therefore,

max
p∈Pst

max
Dp

∑
[ap

i ,b
p
i ]∈Dp

f([api , b
p
i ]) =

∑
[ap

i ,b
p
i ]∈D̂popt

f([a
popt

i , b
popt

i ]) ≤ OPT (bpopt
m ) = OPT (t).

On the other hand, let us denote the output Q of Algorithm 3 as Q := {p1, p2, . . . , pn}. It is easy to see

that the concatenation of all subpaths in Q results in forming a coherent s-t path in G, so we have:

OPT (t) =
n∑

i=1

f(pi) ≤ max
p∈Pst

max
Dp

∑
[ap

i ,b
p
i ]∈Dp

f([api , b
p
i ]).

Therefore, we have OPT (t) = maxp∈Pst
maxDp

∑
[ap

i ,b
p
i ]∈Dp

f([api , b
p
i ]).

E Discussion of the NP-hardness of computing the function q

In this section, we discuss the NP-completeness of computing function q. We first show that with the

definition of f in (2), computing the function q in (5) is NP-complete.

Problem 3. Suppose we are given a directed acyclic graph G = (V,E) with a source node s and a sink

node t, a pre-computed function µ : N→ R≥0, a float value γ ≥ 0, and a cost function c : V × V → R≥0

that maps every pair of nodes to a non-negative cost. c is symmetric in a sense that c(v, v′) = c(v′, v).

The problem is to find a s-t path p = {v1, v2, . . . , v|p|} over all s-t paths that can maximize the form

f(p) := 1
|p|γ

∑
vi,vj∈p,1≤i≤j≤|p| c(vi, vj)− µ(|p|), where v1 = s and v|p| = t and ∀i, (vi, vi+1) ∈ E.

Since a subgraph of a directed acyclic graph is also directed acyclic, in our case of computing q(k, l),

the source node is k, the sink node is l, and the cost function c(vi, vj) is equivalent to M(vi, vj).

Theorem 3. Problem 3 is NP-complete.

To prove Theorem 3, we first prove the NP-completeness of another problem, Problem 4, with a

simpler definition of the function f .

Problem 4. We are given a directed acyclic graph G = (V,E) with a source node s and a sink node t,

and a cost function c : V ×V → R≥0 that maps every pair of nodes to a non-negative cost. c is symmetric

in a sense that c(v, v′) = c(v′, v). The problem is to find a s-t path p = {v1, v2, . . . , v|p|} over all s-t paths

that can maximize the form
∑

vi,vj∈p,1≤i≤j≤|p| c(vi, vj), where v1 = s and v|p| = t and ∀i, (vi, vi+1) ∈ E.

Lemma 1. Problem 4 is NP-complete.

Proof. The proof is highly similar to the proof of Theorem 1. We reduce PAFP on DAGs to Problem 4.

Given an instance of PAFP with a DAG G = (V,E), a source node s, and a sink node t. We define a

28

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2023.11.08.566275doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.566275
http://creativecommons.org/licenses/by-nc/4.0/


symmetric cost function c on G, such that:

c(v, v′) = c(v′, v) =


0 if (v, v′) ∈ F

1 otherwise.

We convert G to a new DAG G′ = (V ′, E′) such that every path from the source node to the sink node

in the new graph has the same length (same number of nodes). We use Breadth-First-Search (BFS),

starting from s to generate the new graph. We first create G′ that only has a source node s̄, i.e. V ′ = {s̄}

and E′ = ∅. Let V0 = {s}. Given the node set Vi, via BFS on G we create a new node set Vi+1 which

are all child nodes of the nodes in Vi. For each node v ∈ Vi+1, we add a corresponding node v̄i+1 in G′.

For each node pair (v′, v) such that v′ ∈ Vi and v ∈ Vi+1, we add an edge from v̄′
i
to v̄i+1 in G′ if v′ is

a parent node of v in G. If t̄i is already added in G′, we add a node t̄i+1 in G′ and add an edge from

t̄i to t̄i+1. If additionally t is in Vi+1, meaning that t̄i+1 is already in G′, we only add an edge from t̄i

to t̄i+1 without adding the node t̄i+1 again. This procedure is iteratively conducted until Vi+1 = {t}

or Vi+1 = ∅. Figure S2 shows an example of constructing G′ (Figure S2(b)) from the original graph G

(Figure S2(a)). Since |Vi| = O(|V |), we have that |V ′| = O(|V |3). Therefore, the construction of G′

can be accomplished within polynomial time. Besides, it is easy to see that G′ is a DAG. Let t̄n be the

node in G′ that corresponds to the sink node in G, which was added during the final iteration of the

procedure. The set of s-t paths in G has a one-to-one correspondence with the set of paths from s̄ and

t̄n in G′. Moreover, all the paths from s̄ to t̄n in G′ maintain equal lengths n+1. We define a symmetric

cost function c′ on G′, such that:

c′(v̄′
i
, v̄j) = c′(v̄j , v̄′

i
) = c(v, v′).

Therefore, the instance of PAFP is a yes-instance if only if there exists a s̄− t̄n path in G′ such that the

cost c′ of any node pair in this path is 1. The DAG G′, combined with the source node s̄, the sink node

t̄n, and the cost function c′, becomes an instance of Problem 4. There exists a solution of Problem 4

with objective value (n+1)(n+2)
2 if and only if there exists a s̄ − t̄n path in G′ such that the cost of any

node pair in this path is 1, if and only if the instance of PAFP is a yes-instance. Therefore, Problem 4

is NP-complete.

We now prove Theorem 3.

Proof of Theorem 3. Using the same strategy as the proof of Lemma 1, we convert an instance of PAFP

to a new DAG G′ with the source node s̄, the sink node t̄n, the cost function c′, and arbitrary γ and

µ, which also becomes an instance of Problem 3. Since all the paths from s̄ to t̄n in G′ maintain equal

lengths n+ 1, if and only if the instance of PAFP is a yes-instance there exists a solution of Problem 3
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with objective value 1
|n+1|γ

(n+1)(n+2)
2 − µ(n+ 1). Therefore, Problem 3 is NP-complete.

The NP-completeness of q function computation is not attributed to the exclusive definition of func-

tion f as outlined in (2). We now consider some other definitions of f and prove that computing q

remains NP-complete under these definitions. First, we define f as 1
|p|γ

∑
vi,vj∈p,1≤i≤j≤|p| c(vi, vj) with-

out µ function.

Problem 5. Given a directed acyclic graph G = (V,E) with a source node s and a sink node t, a float

value γ ≥ 0, and a cost function c : V × V → R≥0 that maps every pair of nodes to a non-negative cost.

c is symmetric in a sense that c(v, v′) = c(v′, v), the problem is to find a s-t path p = {v1, v2, . . . , v|P |}

over all s-t paths that can maximize the form f(p) := 1
|p|γ

∑
vi,vj∈p,1≤i≤j≤|p| c(vi, vj), where v1 = s and

v|p| = t and ∀i, (vi, vi+1) ∈ E.

Theorem 4. Problem 5 is NP-complete.

Proof. Using the same strategy as the proof of Lemma 1, we convert an instance of PAFP to a new DAG

G′ with the source node s̄, the sink node t̄n, the cost function c′, and an arbitrary γ ≥ 0, which also

becomes an instance of Problem 5. Since all the paths from s̄ to t̄n in G′ maintain equal lengths n+ 1,

if and only if the instance of PAFP is a yes-instance there exists a solution of Problem 5 with objective

value 1
|n+1|γ

(n+1)(n+2)
2 . Therefore, Problem 5 is NP-complete.

To obviate the necessity of pre-specifying the value for the hyper-parameter γ, we also consider

the following representation of function f , characterized by a normalization form devoid of any pre-

determined hyper-parameter:

Problem 6. Let us be given a directed acyclic graph G = (V,E) with a source node s and a sink node

t, and a cost function c : V × V → R≥0 that maps every pair of nodes to a non-negative cost. c is

symmetric in a sense that c(v, v′) = c(v′, v). The problem is to find a s-t path p = {v1, v2, . . . , v|P |} over

all s-t paths that can maximize the form

f(p) :=

∑
vi,vj∈p,1≤i≤j≤|p| c(vi, vj)∑

vi∈p,v′ /∈p c(vi, v
′) +

∑
vi,vj∈p,1≤i≤j≤|p| c(vi, vj)

,

where v1 = s and v|p| = t and ∀i, (vi, vi+1) ∈ E.

Here, the denominator of f represents the cumulative contact count between nodes within path p

and all nodes within graph G, irrespective of their presence in path p or not. We prove in the following

that, with this new definition of f , computing the function q remains NP-complete. Given the inclusion

of this denominator form, the proof is significantly more intricate compared to the proofs of Theorem 3

and Theorem 4.

Theorem 5. Problem 6 is NP-complete.
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Proof. A cubic graph is a graph in which all vertices have degree three. The problem of finding a

maximum independent set on cubic graphs, denoted as MIS-3, is NP-complete [Choukhmane and Franco,

1986]. We prove the hardness of Problem 6 via the reduction from MIS-3.

Given an instance of a cubic graph G1 = (V1, E1), we first construct a directed acyclic graph G2 =

(V2, E2). Assuming that V1 consists of n nodes, denoted as {v1, v2, . . . , vn} (note that the indices of these

nodes can be arbitrary), we introduce two nodes in V2 for each vi ∈ V1: voni and voffi . Furthermore,

we incorporate a source node s, a sink node t, and a “zombie” node v0 into V2, resulting in the set

V2 = {s, t, v0} ∪ {von1 , voff1 , von2 , voff2 , . . . , vonn , voffn }.

In the new graph, we first add three directed edges from s to von1 , voff1 , and v0. Subsequently, we

add two directed edges: (vonn , t) and (voffn , t). Finally, for each v ∈ {voni , voffi }, i ∈ {1, . . . , n − 1}, we

add two directed edges (v, voni+1) and (v, voffi+1 ). Figure S3 shows an example of constructing G2 from a

cubic graph G1. It is easy to see that G2 is a DAG, and the construction can be accomplished within

polynomial time.

Figure S3: An example of generating a DAG (b) from a cubic graph instance (a) in the proof of Theorem 5.

We define the symmetric cost function c on G2 as the following:

• For each v ∈ V2, c(v, v) = 0.

• For each v ∈ V2, c(s, v) = c(v, s) = 0, except that c(s, v0) = c(v0, s) =
n(n−1)

2 + 1.

• For each v ∈ V2, c(t, v) = c(v, t) = 0.

• For each vi, vj ∈ V1, if (vi, vj) ∈ E1, then set c(voni , vonj ) = c(vonj , voni ) = 0.

• Set c(voni , voffi ) = c(voffi , voni ) = 0 for each i ∈ {1, . . . , n}.

• For all the other cost values c(vi, vj), vi, vj ∈ V2 that have not been defined above, set as 1.

Since

f(p) =

∑
vi,vj∈p,1≤i≤j≤|p| c(vi, vj)∑

vi∈p,v′ /∈p c(vi, v
′) +

∑
vi,vj∈p,1≤i≤j≤|p| c(vi, vj)

=
1∑

vi∈p,v′ /∈p c(vi,v′)∑
vi,vj∈p,1≤i≤j≤|p| c(vi,vj)

+ 1
,
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let

Ap :=
∑

vi,vj∈p,1≤i≤j≤|p|

c(vi, vj), Bp :=
∑

vi∈p,v′ /∈p

c(vi, v
′),

then maximizing f is equivalent to maximizing
Ap

Bp
.

An s-t path in G2 can be considered as a node subset selection in G1: if voni is in the path, then

vi ∈ V1 is selected, otherwise vi is not selected. We show in the following that any path that maximizes

f corresponds to a maximum independent set of G1.

Let p∗ be a path in G2 that maximize f , and define V ′
1 := {vi ∈ V1|voni ∈ p∗}. We first prove that V ′

1

is an independent set of G1. If not, then these exists two nodes vi, vj ∈ V1 such that (vi, vj) ∈ E1 and

voni , vonj ∈ p∗. Without loss of generality, we pick i from {i, j}, and consider a new path p′, all the nodes

in p′ are the same as p∗, except that voffi ∈ p′, voni /∈ p′. We show in the following that
Ap∗

Bp∗
<

Ap′

Bp′
:

• For the numerator Ap, since only one node is changed (voni → voffi ), the differences between Ap′

and Ap∗ are all from cost values related to node vi. Since:

– c(voffi , vonj )− c(voni , vonj ) = 1− 0 = 1;

– For any k /∈ {i, j}, if vonk ∈ p, then c(voffi , vonk ) − c(voni , vonk ) ≥ 0; if voffk ∈ p, then

c(voffi , voffk )− c(voni , voffk ) = 1− 1 = 0,

we have that Ap′ ≥ Ap∗ + 1.

• Similarly, for the denominator Bp, the differences between Bp′ and Bp∗ are all from cost values

related to node vi. Since:

– in p∗, c(voni , voffj )+c(voffi , vonj ) = 1+1 = 2 while in p′, c(voffi , voffj )+c(voni , vonj ) = 1+0 = 1,

hence c(voffi , voffj ) + c(voni , vonj )− c(voni , voffj )− c(voffi , vonj ) = −1;

– For any k /∈ {i, j},

∗ if (vi, vk) /∈ E1 and vonk ∈ p, then c(voffi , voffk )+ c(voni , vonk )− c(voni , voffk )− c(voffi , vonk ) =

1 + 1− 1− 1 = 0,

∗ if (vi, vk) /∈ E1 and voffk ∈ p, then c(voffi , vonk )+c(voni , voffk )−c(voni , vonk )−c(voffi , voffk ) =

1 + 1− 1− 1 = 0,

∗ if (vi, vk) ∈ E1 and vonk ∈ p, then c(voffi , voffk )+ c(voni , vonk )− c(voni , voffk )− c(voffi , vonk ) =

1 + 0− 1− 1 = −1,

∗ if (vi, vk) ∈ E1 and voffk ∈ p, then c(voffi , vonk )+c(voni , voffk )−c(voni , vonk )−c(voffi , voffk ) =

1+ 1− 0− 1 = 1. Since G1 is a cubic graph, the number of node vk that is different from

vj and has an edge with vi is at most 2.
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Therefore, Bp′ ≤ Bp∗ − 1 + 2 ∗ 1 = Bp∗ + 1.

For any s-t path in G2, it is easy to see that Ap ≤
(
n
2

)
· 1 = n(n−1)

2 , besides, Bp ≥ n(n−1)
2 + 1 since s is

always in the path and v0 is always not in the path, which means that Bp > Ap. Therefore, we have:

Ap∗

Bp∗
<

Ap∗ + 1

Bp∗ + 1
≤ Ap′

Bp′
.

This means that f(p′) > f(p∗), leading to the contradiction. Therefore, V ′
1 is an independent set of G1.

Next, we show that V ′
1 is a maximum independent set of G1. For each independent set V ′

is of G1, we

construct a s-t path pis in G2 that corresponds to it: if vi ∈ V ′
is, then voni ∈ pis, otherwise voffi ∈ pis.

Since V ′
is is an independent set,

• Apis = n(n−1)
2 · 1 = n(n−1)

2 ,

• For all those n− |V ′
is| “off” nodes voffi in pis,

∑
voff
i ∈pis,v′ /∈pis

c(voffi , v′) = (n− |V ′
is|)(n− 1) · 1 =

(n − |V ′
is|)(n − 1), and for all those |V ′

is| “on” nodes voni ,
∑

von
i ∈pis,v′ /∈pis

c(voni , v′) = |V ′
is|(n − 4) ·

1 + |V ′
is| · 3 · 0 = |V ′

is|(n− 4). Therefore, we have:

Bpis
=

n(n− 1)

2
+ 1 + (n− |V ′

is|)(n− 1) + |V ′
is|(n− 4) =

3n(n− 1)

2
+ 1− 3|V ′

is|.

Hence:

Apis

Bpis

=
n(n−1)

2
3n(n−1)

2 + 1− 3|V ′
is|

.

If V ′
is is not a maximum independent set, then by choosing a maximum independent set V ′

is we have

|V ′
is| > |V ′

1 |. Let pis be the s-t path in G2 that corresponds to V ′
is, we have:

Apis

Bpis

=
n(n−1)

2
3n(n−1)

2 + 1− 3|V ′
is|

>
n(n−1)

2
3n(n−1)

2 + 1− 3|V ′
1 |

=
Ap∗

Bp∗
.

This means that f(p′) > f(p∗), leading to the contradiction. Therefore, finding an s-t path p∗ in

G2 that maximizes the objective function in Problem 6 is equivalent to deciding whether there is a

maximum independent set in G1 with size 1
3

(
2n(n− 1) + 1− f(p∗)n(n−1)

2

)
. Therefore, Problem 6 is

NP-complete.

Computing the q function remains NP-complete if µ function is added into the form of f defined in

Problem 6.

Problem 7. Suppose we are given a directed acyclic graph G = (V,E) with a source node s and a sink

node t, a pre-computed function µ : N → R≥0, and a cost function c : V × V → R≥0 that maps every
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pair of nodes to a non-negative cost. c is symmetric in a sense that c(v, v′) = c(v′, v). The problem is to

find a s-t path p = {v1, v2, . . . , v|P |} over all s-t paths that maximizes the form

f ′(p) :=

∑
vi,vj∈p,1≤i≤j≤|p| c(vi, vj)∑

vi∈p,v′ /∈p c(vi, v
′) +

∑
vi,vj∈p,1≤i≤j≤|p| c(vi, vj)

− µ(|p|),

where v1 = s and v|p| = t and ∀i, (vi, vi+1) ∈ E.

Theorem 6. Problem 7 is NP-complete.

Proof. Using the same strategy as the proof of Theorem 5, we convert an instance of MIS-3, G1, to a

new DAG G2 with the source node s, sink node t, the cost function c, and an arbitrary µ function, which

also becomes an instance of Problem 7. It is easy to see that all the paths from s to t in G2 maintain

equal lengths n+ 2, where n is the number of nodes in G1. Therefore, finding an s-t path p∗ in G2 that

maximizes the objective function in Problem 7 is equivalent to deciding whether there is a maximum

independent set in G1 with size 1
3

(
2n(n− 1) + 1− (f ′(p∗) + µ(n+ 2))n(n−1)

2

)
. Therefore, Problem 7 is

NP-complete.

F The NP-hardness of the function µ computation

According to Filippova et al. [2014], we first define the function µ as:

µ(l) :=
1

|Pl|lγ
∑
p∈Pl

∑
vi,vj∈p,1≤i≤j≤|p|

c(vi, vj).

Here, Pl is the collection of all paths with length l in the directed acyclic genome graph G and c(vi, vj) is

equivalent to M [vi, vj ], the number of contacts between node vi and node vj . With the linear reference,

each node corresponds to a genomic bin. Filippova et al. [2014] demonstrated a method for efficiently

pre-computing µ on the linear reference genome. However, while the above formulation of µ can be

polynomially computed on a DAG, using it is not a viable option as an indicator of expected interaction

frequency in our scenario. This is primarily due to the presence of unnecessary nodes within the genome

graph, a phenomenon persisting even post-pruning. Consequently, we encounter redundant paths —

paths not present in the sample genome from which the Hi-C data is derived. Such paths might exhibit

minimal interactions, and their inclusion in the µ calculation would introduce significant underestimations

of the expected density.

Instead, we consider another definition of µ on genome graphs. Let Pl(v) be the collection of paths

that start from node v and have length l, define µ(l) as:

µ(l) :=

∑
v∈Vl

maxp∈Pl(v)

∑
vi,vj∈p,1≤i≤j≤|p| c(vi, vj)

|Vl|lγ
,
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where Vl represents the set of nodes in the genome graph where at least one path with a length of l

originates. For each node in the graph, we only consider the paths with maximum interactions amongst

all paths originating from the same node and possessing equal length. This is because, intuitively, paths

with the most interactions are more likely to represent the ground truth paths—those actually present

in the sample genome. Unfortunately, we prove in the following that obtaining the value of µ(l) with the

definition above for all l ∈ N likely cannot be achieved within polynomial time.

Theorem 7. Let lmax be the length of the longest path in G. The problem of computing the vector

U := [µ(i)]lmax
i=1 ∈ Rlmax is NP-complete.

Proof. We prove Theorem 7 via a reduction from Problem 4. Given an instance graph G = (V,E) with

source s, sink t and the cost function c, we assume—without loss of generality—that there exists a path

from s to every node v in G, and a path from each node v to t. In instances where this is not the

case, nodes without such paths (and their adjacent edges) can be removed within a polynomial time

frame, without altering the objective value. Furthermore, we assume—without loss of generality—that

c(t, v) = c(v, t) = 0 for all v ∈ V (otherwise we can add a new sink node t′ with costs c(t′, v) = c(v, t′) = 0

for all v ∈ V and add an edge from t to t′).

We use the same way to convert G to a new DAG G′ with source node s̄ and sink node t̄n. Therefore,

Figure S2 is also an example of graph conversion utilized here, except that G in Figure S2(a) represents

an instance of Problem 4 rather than a PAFP instance. We define the cost function c′ on G′ such that

c′(v̄′
i
, v̄j) = c′(v̄j , v̄′

i
) = c(v, v′).

It is easy to see that all the paths in G′ that has length n + 1 are from s̄ to t̄n, and all the paths

from s̄ and t̄n in G′ maintain equal lengths n+ 1. Therefore, we have Vn+1 = {s̄} and Pn+1(s̄) is equal

to Ps̄t̄n , the collection of all s̄→ t̄n paths. Therefore, in G′,

µ(n+ 1) =
1

(n+ 1)γ
max

p∈Ps̄t̄n

∑
vi,vj∈p,1≤i≤j≤|p|

c′(vi, vj).

Since the set of s-t paths in G has a one-to-one correspondence with the set of paths from s̄ and t̄n in

G′, we have:

µ(n+ 1)(n+ 1)γ = max
p∈Ps̄t̄n

∑
vi,vj∈p,1≤i≤j≤|p|

c′(vi, vj) = max
p∈Pst

∑
vi,vj∈p,1≤i≤j≤|p|

c(vi, vj),

The last formula is the objective function of Problem 4. As a result, if U can be computed in polynomial

time, then µ(n+ 1) can be computed in polynomial time, which means that Problem 4 can be solved in

polynomial time, leading to the contradiction. Therefore, obtaining the values of the vector U = [µ(i)]lmax
i=1

is NP-complete.

35

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2023.11.08.566275doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.566275
http://creativecommons.org/licenses/by-nc/4.0/


G More discussion on the heuristic algorithm for computing q

G.1 Details of the insert function

Here we provide the details and pseudocode of the insert function.

Algorithm 4 insert function

1: Input node set p in which nodes are topologically sorted, matrix Mr, nodes list T that contains all
nodes in G sorted by their topological order, integer variable edges, node v

2: Find two adjacent nodes v1 and v2 in p such that T.index(v1) ≤ T.index(v) ≤ T.index(v2).
3: if v1 = v or v2 = v then
4: return p,edges
5: end if
6: if Mr[v1, v] = 1 and Mr[v, v2] = 1 then
7: p← update(p, v)
8: edges← edges+ is edge(v1, v) + is edge(v, v2)− is edge(v1, v2)
9: end if

10: return p,edges

G.2 Time complexity analysis of the heuristic algorithm

We show the proof of Theorem 2.

Proof. We first show that the time complexity of running Algorithm 4 once is O(log(|V |)) where |V |

is the number of nodes in the graph. We use a balanced tree such as AVL tree to maintain all nodes

in p, and use the tree to identify two adjacent nodes, v1 and v2, in p, where the topological ordering

of v falls between that of v1 and v2 (line 2 of Algorithm 4). Since the existence of a path traversing

all nodes within p has already been confirmed in earlier steps, a path that passes through all nodes in

p ∪ v is existent if, and only if, there is a path from v1 to v as well as a path from v to v2 (line 6 of

Algorithm 4). If the path exists, the node v is then inserted into the balanced tree and p is updated

(line 7 of Algorithm 4). By using the tree structure, the time complexity of both operations, line 2 of

Algorithm 4 and line 7 of Algorithm 4, is O(log(|p|)). All the other operations in Algorithm 4 are O(1).

Since |p| ≤ |V |, the time complexity of Algorithm 4 is O(log(|V |)).

The task of computing f(p) generally has a time complexity of O(|p|2), as it requires summing up the

interactions across all node pairs in p. Considering that Algorithm 1 may call the insert function up to

|V | times and evaluate f just once, the total time complexity for Algorithm 1 is O(|V | log(|V |)+ |V |2) =

O(|V |2).

In a DAG, the reachable matrix Mr can be computed within O(|E||V |) via the topological ordering,

where |E| is the number of the edges in the graph. The dynamic program (4) only requires a single

computation of Mr and invokes Algorithm 1 up to O(|V |2) times. Therefore, the total time complexity

of the dynamic program when utilizing the heuristic algorithm is O(|E||V |+ |V |4) = O(|V |4).
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G.3 Worst case example

Figure S4: A worst-case example of the heuristic algorithm

We construct a worst-case family of instances for our heuristic algorithm. Let p̂ represent the path

from node k to node l as predicted by Algorithm 1, and let pgt denote the “ground truth” path, defined

as pgt = argmaxp∈Pkl
f(p). Consider the graph shown in Figure S4: there are n+ 2 nodes in this DAG,

V = {k, l, v1, v2, . . . , vn}. For each i ∈ {1, . . . , n}, there is an edge from k to vi, (k, vi), and an edge from

vi to l, (vi, l). We create a contact matrix M on this graph, defined as:

M [x, y] =


1 if x = v1 and y = vi, i ∈ {1, . . . , n}

m if x = k and y = vn, m < n

0 otherwise.

In this example, since:

v1 = argmax
v

∑
v′∈V

M [v, v′],
∑
v′∈V

M [v1, v
′] = n,

our heuristic algorithm will pick the node v1 and output the path p̂ = k → v1 → l. The total interactions

within p̂ is equal to 0,

M [k, k] +M [k, v1] +M [k, l] +M [v1, v1] +M [v1, l] +M [l, l] = 0 + 0 + 0 + 0 + 0 + 0 = 0,

while pgt is the path k → vn → l, with the interactions:

M [k, k] +M [k, vn] +M [k, l] +M [vn, vn] +M [vn, l] +M [l, l] = 0 +m+ 0 + 0 + 0 + 0 = m.

Therefore, we have:

f(pgt)− f(p̂) =
m

3γ
− µ(3)− (0− µ(3)) =

m

3γ
.
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Since the values of m and n can be chosen to be arbitrarily large (as long as m < n), the discrepancy

between f(p̂) and f(pgt) can be infinitely large.

G.4 Theoretical framework justifying the accuracy of the heuristic algorithm

As we describe in the main text, within the scope of Hi-C analysis, the distribution of interactions on

a genome graph is not arbitrary. We construct a theoretical framework that more accurately reflects

the real-world Hi-C situation, and demonstrate that with high probability our heuristic algorithm can

output the path p̂ that is equivalent to pgt as long as the number of mapped read pairs (interactions) is

not too small.

Suppose we have a directed acyclic genome graph G = (V,E) with source node s and sink node t, and

we specify a ground-truth path pgt connecting s and t. Let X denote all the ordered node pairs of on G:

X = {(v1, v2) | v1, v2 ∈ V, v1 ≤top v2}, where ≤top denotes the inequality under the topological ordering.

We will define a probability distribution P (X) on G and assume the interaction pairs are independent and

identically distributed (iid) samples from it. Specifically, we assume that the probability mass function

p(x) = P(X = x) of the distribution takes the following mixture form:

p(x) = P(X = x | Y = 1)P(Y = 1) + P(X = x | Y = 0)P(Y = 0).

Here, Y is a random variable indicating from which latent state the sample is drawn: Y = 1 represents

the “ground truth” state, while Y = 0 represents the “noise” state. The samples from the noise state

are less informative—We assume that the interaction is sampled from a uniform distribution over X :

P(X = x | Y = 0) = |X |−1, for all x = (v1, v2) ∈ X .

In the “ground truth” state, we assume that both of the nodes of the interaction lie on the path pgt.

Therefore, the support of X conditioned on Y = 1 is a subset Xsub of X , which is defined as Xsub =

{(v1, v2) | v1, v2 ∈ pgt, v1 ≤top v2}. Moreover, as shown in previous work such as Ay et al. [2014], in Hi-

C experiments the probability of observing an intra-chromosomal interaction between two chromosomal

locations is inversely related to their genomic distance: the smaller the distance, the higher the likelihood.

Formally,

P(X = x | Y = 1) =

|pgt−1|∑
ω=0

P(X = x | d(X) = ω)P(d(X) = ω | Y = 1)

= P(X = x | d(X) = d(x))P(d(X) = d(x) | Y = 1).

Here, d(x) = d((v1, v2)) is the number of edges between v1 and v2 in pgt, which indicates the distance
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between v1 and v2. Similar to Ay et al. [2014], we further assume that the probabilities of observing

interactions at the same distance are equivalent. This implies that P(x|d(x)) = {|pgt| − d(x)}−1 because

the number of unique interactions with a distance value d0 in the path pgt equals |pgt| − d0, where |pgt|

denotes the number of nodes in pgt. In summary, we have the following assumption about p(x):

Assumption 1. Given a DAG G = (V,E) with source node s and sink node t and the ground truth

path pgt connecting them, the probability mass function p(x) can be factorized as follows:

p(x) = {|pgt| − d(x)}−1P(d(X) = d(x) | Y = 1)P(Y = 1)+ | X |−1P(Y = 0).

We further assume the probability of sampling from the ground truth state is strictly greater than zero:

P(Y = 1) > 0.

Furthermore, we have an assumption on P(d(X) = d(x) | Y = 1):

Assumption 2. From any D > d ≥ 0, we assume

P(d(X) = D | Y = 1)

P(d(X) = d | Y = 1)
≤ |pgt| −D

|pgt| − d
(7)

Assumption 2 states the probability of sampling an interaction with a larger distance is smaller than

that of one with a smaller distance. Moreover, such a decay rate, as with respect to the distance value,

is faster than linear. This is a mild assumption. In fact, as illustrated in Figure 1 of Ay et al. [2014],

the count of intra-chromosomal interactions typically decays exponentially with an increasing genomic

distance, which is much faster than our assumed linear rate. When the equality holds in (7), combined

with the factorization Assumption 1, the sample probability P(X = x | Y = 1) is also a constant: In this

case, the samples are generated from uniform distributions under both the ground truth and the noise

states.

In practical applications, we generally find that these two assumptions hold true while calculating

q(k, l) for the majority of node pairs (k, l). Nonetheless, these assumptions may not apply in cases

involving large deletions. As described in Section 2.8, we have implemented additional modifications to

our algorithm to effectively address such scenarios.

Given a set of iid interaction pairs I = {xi ∈ X , i = 1, ..., |I|}, our main result on this theoretical

model is as the following:

Theorem 8. Under Assumptions 1 and 2, for any k > 0, the predicted path, p̂, from the heuristic

algorithm is identical to the ground truth path pgt with a probability greater than 1− exp(−k) so long

as the number of interactions |I| is greater than C|pgt|(log(|V |) + k). Here C is a constant whose value

only depends on P(Y = 1).
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In Hi-C datasets, |I| denotes the total number of read pairs. To prove Theorem 8, we need the

following theorem, which states that the probability of p̂ deviating from pgt decreases exponentially with

respect to |I|.

Theorem 9. Given the set of interactions I = {xi ∈ X} where x1, x2, . . . , x|I|
iid∼ P (X). Under the

Assumptions 1 and 2, we have:

P(p̂ ̸= pgt) ≤ (|V | − |pgt|) exp

− |I|C2
3

2
3 (1− c1)

P(Y=1)
|pgt| + (1− c1

3 )
4P(Y=0)
|V |+1

+ |pgt| exp

{
− |I|c21C2

1

2C2 +
2c1C1

3

}

for any 0 < c1 < (C1|pgt|)−1P(Y = 1). Here, C1, C2 and C3 are constants whose value does not depend

on |I|:

C1 =
P(Y = 1)

|pgt|
+

2P(Y = 0)

|V |+ 1
, C2 =

4P(Y = 1)

|pgt|
+

2P(Y = 0)

|V |+ 1
, C3 = (1− c1)

P(Y = 1)

|pgt|
− c1

2P(Y = 0)

|V |+ 1
.

We first sketch the overarching concept behind the proof. If the output p̂ from our algorithm is

different from pgt, then there exists a node outside of pgt that is selected by the algorithm before all the

nodes from pgt are chosen. Let C(v) be the number of the interactions in I that include node v, i.e.,

C(v) = |{xi = (vi1, v
i
2) ∈ I | vi1 = v or vi2 = v}|. Then we have:

P(p̂ ̸= pgt) ≤ P

(
sup
v/∈pgt

C(v) > inf
v∈pgt

C(v)

)
.

Therefore, P (p̂ ̸= pgt) can be upper bounded if P
(
supv/∈pgt

C(v) > infv∈pgt C(v)
)
is bounded. The ideas

to bound P
(
supv/∈pgt

C(v) > infv∈pgt
C(v)

)
are two fold:

• By using the concentration inequalities, we show that as the value of |I| increases, supv/∈pgt
C(v)

approaches a constant value A, while infv∈pgt
C(v) approaches another constant value B. These

constants are correlated with the expected values respective to each.

• We show that, since A < B, the likelihood that supv/∈pgt
C(v) exceeds infv∈pgt C(v) diminishes as

|I| increases.

To prove Theorem 9, we need the following several lemmas. Recall that C(v) be the number of

the interactions in I that include node v, i.e. C(v) = |{xi = (vi1, v
i
2) ∈ I | vi1 = v or vi2 = v}|. The

first lemma quantifies the average number of interactions containing any fixed node on the ground truth

pathway.

Lemma 2. For any v ∈ pgt,

|I|P(Y = 1)

|pgt|
+

2|I|P(Y = 0)

|V |+ 1
≤ E[C(v)] ≤ 4|I|P(Y = 1)

|pgt|
+

2|I|P(Y = 0)

|V |+ 1
.
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Proof. Let v0 be a fixed node on the ground truth path pgt. We define d0 := min(d(s, v0), d(v0, t)) ≥ 0

and d1 := max(d(s, v0), d(v0, t)) = |pgt| − 1− d0 ≥ 0.

Consider a binary random variable Zi, such that:

Zi =


1 if the interaction Xi includes node v0,

0 otherwise.

(8)

We can directly verify that C(v0) =
∑|I|

i=1 Zi. To study E[C(v0)] we just need to study E[Zi]. Since

X1, X2, . . . , X|I| are independent random variables, we have that Z1, Z2, . . . , Z|I| are independent random

variables as well.

In the “ground truth” state, the probability of v0 being in one sampled interaction is (law of total

probability):

P(v0 ∈ X | Y = 1) =

d0∑
k=0

P(d(X) = k | Y = 1)

|pgt| − k
+

d1∑
k=1

P(d(X) = k | Y = 1)

|pgt| − k
.

Applying Assumption 2, we have:

P(v0 ∈ X | Y = 1) =

d0∑
k=0

P(d(X) = k | Y = 1)

|pgt| − k
+

d1∑
k=1

P(d(X) = k | Y = 1)

|pgt| − k

≥
d0∑
k=0

P(d(X) = k | Y = 1)

|pgt| − k
+

|pgt|−1∑
k=d0+1

P(d(X) = k | Y = 1)

|pgt| − k

=

|pgt|−1∑
k=0

P(d(X) = k | Y = 1)

|pgt| − k
≥

|pgt|−1∑
k=0

P(d(X) = k | Y = 1)

|pgt|
=

1

|pgt|
.

The last inequality holds because
∑|pgt|−1

k=0 P(d(X) = k | Y = 1) = 1. Furthermore, using Assumption 2

again, we have:

P(v0 ∈ X | Y = 1) ≤ 2

⌊ |pgt|
2 ⌋∑

k=0

P(d(X) = k | Y = 1)

|pgt| − k
≤ 4

|pgt|

⌊ |pgt|
2 ⌋∑

k=0

P(d(X) = k | Y = 1) ≤ 4

|pgt|
.

In the “noise” state, since every interaction in X is equivalent, |X | = |V |(|V |+1)
2 , and since the number of

interactions that contain v0 is |V |, we know that the probability of v0 being in one sampled interaction

is 2
|V |+1 .

Therefore, for each i ∈ {1, ..., |I|},

P(Zi = 1) = P(Yi = 1)P (v0 ∈ Xi | Yi = 1) + P(Yi = 0)P (v0 ∈ Xi | Yi = 0) ≥ P(Yi = 1)

|pgt|
+

2P(Yi = 0)

|V |+ 1
,
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Similarly,

P(Zi = 1) ≤ 4P(Yi = 1)

|pgt|
+

2P(Yi = 0)

|V |+ 1
.

Therefore,

|I|P(Y = 1)

|pgt|
+

2|I|P(Y = 0)

|V |+ 1
≤ E[C(v0)] =

|I|∑
i=1

E[Zi] =

|I|∑
i=1

P(Zi = 1) ≤ 4|I|P(Y = 1)

|pgt|
+

2|I|P(Y = 0)

|V |+ 1
.

Since v0 is arbitrarily chosen, the inequalities above hold for all v ∈ pgt.

The next lemma bounds the variance of number of interactions containing a node on pgt.

Lemma 3. For each v ∈ pgt,

V ar[C(v)] ≤ 4|I|P(Y = 1)

|pgt|
+

2|I|P(Y = 0)

|V |+ 1
.

Proof. Let Z1, Z2, . . . , Z|I| denote the indicator variables defined in (8). Since they are independent, we

have:

V ar[C(v)] = V ar

 |I|∑
i=1

Zi


=

|I|∑
i=1

V ar[Zi]

=

|I|∑
i=1

P(Zi = 1)(1− P(Zi = 1))

≤
|I|∑
i=1

P(Zi = 1)

≤ 4|I|P(Y = 1)

|pgt|
+

2|I|P(Y = 0)

|V |+ 1
.

Based on Lemma 2 and Lemma 3, we can prove the following lemma, which gives a lower bound of

the constant value B.

Lemma 4. Let C1 = P(Y=1)
|pgt| + 2P(Y=0)

|V |+1 and C2 = 4P(Y=1)
|pgt| + 2P(Y=0)

|V |+1 , then for any 0 < c1 ≤ 1, we have

P
(

inf
v∈pgt

C(v) ≤ (1− c1)|I|C1

)
≤ |pgt| exp

{
− |I|c21C2

1

2C2 +
2c1C1

3

}
.
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Proof.

P
(

inf
v∈pgt

C(v) ≤ (1− c1)|I|C1

)
= P (∃v ∈ pgt, C(v) ≤ (1− c1)|I|C1)

1
≤
∑
v∈pgt

P(C(v) ≤ (1− c1)|I|C1).

Inequality 1 holds because of the union bound. According to Bernstein inequality and the fact that for

all i, |Zi| ≤ 1. We have that for all t > 0,

P (C(v)− E[C(v)] ≤ −t) = P

 |I|∑
i=1

Zi − E

 |I|∑
i=1

Zi

 ≤ −t


≤ exp

{
− t2

2
∑|I|

i=1 V ar[Zi] +
2t
3

}
,

and

P (C(v)− E[C(v)] ≥ t) ≤ exp

{
− t2

2
∑|I|

i=1 V ar[Zi] +
2t
3

}
.

Since |I|C1 ≤ E[C(v)] (Lemma 2) and
∑|I|

i=1 V ar[Zi] ≤ |I|C2 (Lemma 3), we have:

P(C(v) ≤ (1− c1)|I|C1) ≤ P (C(v) ≤ E[C(v)]− c1|I|C1)

= P (C(v)− E[C(v)] ≤ −c1|I|C1)

≤ exp

{
− (c1|I|C1)

2

2
∑|I|

i=1 V ar[Zi] +
2c1|I|C1

3

}

≤ exp

{
− (c1|I|C1)

2

2|I|C2 +
2c1|I|C1

3

}

= exp

{
− |I|c21C2

1

2C2 +
2c1C1

3

}

Therefore,

P
(

inf
v∈pgt

C(v) ≤ (1− c1)C1

)
≤
∑
v∈pgt

P(C(v) ≤ (1− c1)C1)

≤
∑
v∈pgt

exp

{
− |I|c21C2

1

2C2 +
2c1C1

3

}

= |pgt| exp

{
− |I|c21C2

1

2C2 +
2c1C1

3

}

The next lemma quantifies the average number of interactions containing any fixed node not on the
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ground truth pathway.

Lemma 5. For each v /∈ pgt,

E[C(v)] =
2|I|P(Y = 0)

|V |+ 1
.

Proof. We use the same strategy as Lemma 2. Since nodes that are outside of pgt can only be observed

in interactions that are from the “noise” state, the probability of a node outside of pgt being in one

sampled interaction is

|V |P(Y = 0)

|X |
=
|V |P(Y = 0)

|V |(|V |+1)
2

=
2P(Y = 0)

|V |+ 1
.

Therefore, E[C(v)] = |I| · 2P(Y=0)
|V |+1 for each v /∈ pgt.

The next lemma bounds the variance of number of interactions containing a node not on pgt.

Lemma 6. For each v /∈ pgt,

V ar[C(v)] ≤ 2|I|P(Y = 0)

|V |+ 1
.

Proof. We use the same strategy as Lemma 3. Given an arbitrary v /∈ pgt, consider a binary random

variable Wi such that:

Wi =


1 if the interaction Xi includes node v,

0 otherwise.

Then P(Wi = 1) = 2P(Y=0)
|V |+1 . Therefore,

V ar[C(v)] =

|I|∑
i=1

V ar[Wi] ≤
|I|∑
i=1

P(Wi = 1) =
2|I|P(Y = 0)

|V |+ 1
.

Lemma 5 and Lemma 6 will help us derive an upper bound of the constant value A. Now we are

ready to prove Theorem 9.

Proof of Theorem 9. Let C1 = P(Y=1)
|pgt| + 2P(Y=0)

|V |+1 , for any c1 such that

0 < c1 <
P(Y = 1)

|pgt|
1

C1
,
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(for example, c1 can be P(Y = 1)/3) we have:

P

(
sup
v/∈pgt

C(v) > inf
v∈pgt

C(v)

)

= P

(
sup
v/∈pgt

C(v) > inf
v∈pgt

C(v), inf
v∈pgt

C(v) > (1− c1)|I|C1

)
+ P

(
sup
v/∈pgt

C(v) > inf
v∈pgt

C(v), inf
v∈pgt

C(v) ≤ (1− c1)|I|C1

)

≤ P

(
sup
v/∈pgt

C(v) > (1− c1)|I|C1

)
+ P

(
inf

v∈pgt

C(v) ≤ (1− c1)|I|C1

)
2
≤
∑
v/∈pgt

P (C(v) > (1− c1)|I|C1) + P
(

inf
v∈pgt

C(v) ≤ (1− c1)|I|C1

)

=
∑
v/∈pgt

P (C(v)− E[C(v)] > (1− c1)|I|C1 − E[C(v)]) + P
(

inf
v∈pgt

C(v) ≤ (1− c1)|I|C1

)

=
∑
v/∈pgt

P
(
C(v)− E[C(v)] > (1− c1)

(
|I|P(Y = 1)

|pgt|
+

2|I|P(Y = 0)

|V |+ 1

)
− 2|I|P(Y = 0)

|V |+ 1

)

+ P
(

inf
v∈pgt

C(v) ≤ (1− c1)|I|C1

)
=
∑
v/∈pgt

P
(
C(v)− E[C(v)] > (1− c1)

|I|P(Y = 1)

|pgt|
− c1

2|I|P(Y = 0)

|V |+ 1

)
+ P

(
inf

v∈pgt

C(v) ≤ (1− c1)|I|C1

)
.

We used the union bound to get inequality 2. Let:

C3 = (1− c1)
P(Y = 1)

|pgt|
− c1

2P(Y = 0)

|V |+ 1
,

by using Bernstein inequality again, We have that for v /∈ pgt:

P (C(v)− E[C(v)] > |I|C3) ≤ exp

{
− (|I|C3)

2

2
∑|I|

i=1 V ar[Wi] +
2|I|C3

3

}

≤ exp

− |I|C2
3

4P(Y=0)
|V |+1 + 2C3

3


= exp

− |I|C2
3

2
3 (1− c1)

P(Y=1)
|pgt| + (1− c1

3 )
4P(Y=0)
|V |+1

 .
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Let C2 = 4P(Y=1)
|pgt| + 2P(Y=0)

|V |+1 , we have:

P

(
sup
v/∈pgt

C(v) > inf
v∈pgt

C(v)

)

≤
∑
v/∈pgt

P (C(v)− E[C(v)] > |I|C3) + P
(

inf
v∈pgt

C(v) ≤ (1− c1)|I|C1

)

≤
∑
v/∈pgt

exp

− |I|C2
3

2
3 (1− c1)

P(Y=1)
|pgt| + (1− c1

3 )
4P(Y=0)
|V |+1

+ |pgt| exp

{
− |I|c21C2

1

2C2 +
2c1C1

3

}

= (|V | − |pgt|) exp

− |I|C2
3

2
3 (1− c1)

P(Y=1)
|pgt| + (1− c1

3 )
4P(Y=0)
|V |+1

+ |pgt| exp

{
− |I|c21C2

1

2C2 +
2c1C1

3

}
.

Therefore, we have:

P(p̂ ̸= pgt) ≤ P

(
sup
v/∈pgt

C(v) > inf
v∈pgt

C(v)

)

≤ (|V | − |pgt|) exp

− |I|C2
3

2
3 (1− c1)

P(Y=1)
|pgt| + (1− c1

3 )
4P(Y=0)
|V |+1

+ |pgt| exp

{
− |I|c21C2

1

2C2 +
2c1C1

3

}
.

Based on Theorem 9, we can now prove Theorem 8:

Proof of Theorem 8. Since |V | ≥ |pgt|, we have that:

P(Y = 1)

|pgt|
≤ C1 =

P(Y = 1)

|pgt|
+

2P(Y = 0)

|V |+ 1
≤ P(Y = 1)

|pgt|
+

2P(Y = 0)

|pgt|
.

Therefore, the inequality in Theorem 9 holds for any 0 < c1 < P(Y=1)
|pgt|

1
P(Y =1)
|pgt|

+
2P(Y =0)

|pgt|
= P(Y=1)

P(Y=1)+2P(Y=0) ,and

in this region,

C3 = (1− c1)
P(Y = 1)

|pgt|
− c1

2P(Y = 0)

|V |+ 1
> (1− c1)

P(Y = 1)

|pgt|
− c1

2P(Y = 0)

|pgt|
=

(1− c1)P(Y = 1)− 2c1P(Y = 0)

|pgt|
> 0.

We also have:

C2 =
4P(Y = 1)

|pgt|
+

2P(Y = 0)

|V |+ 1
≤ 4P(Y = 1)

|pgt|
+

2P(Y = 0)

|pgt|
=

4P(Y = 1) + 2P(Y = 0)

|pgt|
.

46

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2023.11.08.566275doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.566275
http://creativecommons.org/licenses/by-nc/4.0/


Therefore,

(|V | − |pgt|) exp

− |I|C2
3

2
3 (1− c1)

P(Y=1)
|pgt| + (1− c1

3 )
4P(Y=0)
|V |+1

+ |pgt| exp

{
− |I|c21C2

1

2C2 +
2c1C1

3

}

< |V | exp

− |I|C2
3

2
3 (1− c1)

P(Y=1)
|pgt| + (1− c1

3 )
4P(Y=0)
|V |+1

+ |pgt| exp

{
− |I|c21C2

1

2C2 +
2c1C1

3

}

< |V | exp

−
|I|
(

(1−c1)P(Y=1)−2c1P(Y=0)
|pgt|

)2
2
3 (1− c1)

P(Y=1)
|pgt| + (1− c1

3 )
4P(Y=0)

|pgt|

+ |pgt| exp

−
|I|c21

(
P(Y=1)
|pgt|

)2
2 4P(Y=1)+2P(Y=0)

|pgt| + 2c1
3

(
P(Y=1)
|pgt| + 2P(Y=0)

|pgt|

)


= |V | exp
{
−C4

|I|
|pgt|

}
+ |pgt| exp

{
−C5

|I|
|pgt|

}
,

where

C4 =
((1− c1)P(Y = 1)− 2c1P(Y = 0))2

2
3 (1− c1)P(Y = 1) + 4(1− c1

3 )P(Y = 0)
,

and

C5 =
c21(P(Y = 1))2

(8 + 2c1
3 )P(Y = 1) + (4 + 4c1

3 )P(Y = 0)
.

Therefore, given a small positive value ϵ > 0, when

|I| ≥ max

{
|pgt|
C4

log

(
2|V |
ϵ

)
,
|pgt|
C5

log

(
2|pgt|
ϵ

)}
,

we have:

P(p̂ ̸= pgt) ≤ (|V | − |pgt|) exp

− |I|C2
3

2
3 (1− c1)

P(Y=1)
|pgt| + (1− c1

3 )
4P(Y=0)
|V |+1

+ |pgt| exp

{
− |I|c21C2

1

2C2 +
2c1C1

3

}

< |V | exp
{
−C4

|I|
|pgt|

}
+ |pgt| exp

{
−C5

|I|
|pgt|

}
≤ ϵ

2
+

ϵ

2
= ϵ.

It is easy to see that, if we choose c1 to be P(Y = 1)/3, and since P(Y = 1)+P(Y = 0) = 1, both C4

and C5 are constants whose values only depend on P(Y = 1).

Our dynamic program computes the function q up to O(|V |2) times. Therefore, to ensure a high

likelihood that each predicted path matches the ground truth path, we need to establish a bound of the
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following form:

P(there exists a node pair (k, l), such that p̂kl ̸= pklgt) = P(∪k,l
{
p̂kl ̸= pklgt

}
),

where pklgt is the predicted path from node k to node l and pklgt is the ground truth path from k to l. By

using the union bound, we have:

P(∪k,l
{
p̂kl ̸= pklgt

}
) ≤ |V |2P(p̂kl ̸= pklgt).

Let ϵ′ = ϵ
|V |2 , when

|I| ≥ max

{
|pgt|
C4

log

(
2|V |
ϵ′

)
,
|pgt|
C5

log

(
2|pgt|
ϵ′

)}
= max

{
|pgt|
C4

log

(
2|V |

ϵ
|V |2

)
,
|pgt|
C5

log

(
2|pgt|

ϵ
|V |2

)}

= max

{
|pgt|
C4

log

(
2|V |3

ϵ

)
,
|pgt|
C5

log

(
2|pgt|V |2|

ϵ

)}
= Ω(|pgt| log(|V |)),

we have that

P(∪k,l
{
p̂kl ̸= pklgt

}
) ≤ |V |2P(p̂kl ̸= pklgt) ≤ |V |2ϵ′ = ϵ.

Therefore, we can see that ensuring a high likelihood of each predicted path consistent with the ground

truth path doesn’t affect the sample complexity of our heuristic algorithm; it only influences the constant

factor.

G.5 Adjustment of Algorithm 1

Here, we provide the pseudo-code of Algorithm 5.

H Implementation details of experiments

H.1 Data availability

Raw Hi-C reads of GM12878 cell line were downloaded from Sequence Read Archive (SRA) under the

accession numbers SRR1658570, SRR1658571, SRR1658572, SRR1658573, SRR1658574, SRR1658575,

SRR1658576, SRR1658577, SRR1658578, SRR1658579, SRR1658580, SRR1658581, SRR1658582, SRR1658583,

SRR1658584, SRR1658585, SRR1658586, SRR1658587, SRR1658588, SRR1658589, SRR1658590, SRR1658591,
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Algorithm 5 q(k, l) computation v.2

1: Input k,l, genome directed acyclic graph G = (V,E), nodes list T that contains all nodes in G sorted
by their topological order, contact matrix M , reachable matrix Mr, the function f

2: if Mr[k, l] = 0 then
3: return
4: end if
5: pbase ← shortest path from k to l
6: qbase ← f(pbase)
7: q, p← Algorithm 1
8: if q > qbase then
9: return q, p

10: else
11: return qbase, pbase
12: end if

SRR1658592, SRR1658593, SRR1658594, SRR1658595, SRR1658596, SRR1658597, SRR1658598, SRR1658599,

SRR1658600, SRR1658601, SRR1658602, and SRR1658603. Raw Hi-C reads of K-562 cancer cell line

were downloaded from SRA under the accession numbers SRR1658693 and SRR1658694. Raw Hi-C reads

of KBM-7 cancer cell line were also downloaded from SRA under the accession number SRR1658708.

The .vcf files containing structural variations of the K-562 cell line were downloaded from ENCODE

Portal (https://www.encodeproject.org) under accession numbers ENCFF356GYS, ENCFF538YDL,

ENCFF574MDJ, ENCFF752OAX, ENCFF785JVR, ENCFF863MPP and ENCFF960SSF. Raw CTCF

ChIP-seq reads of K-562 cell line were downloaded from ENCODE under accession numbers ENCFF001HTO

and ENCFF001HTP. Raw SMC3 ChIP-seq reads of K-562 cell line were downloaded from ENCODE un-

der accession numbers ENCFF000YZX and ENCFF000YZY.

H.2 Genome graph construction

We use linear reference genome GRCh37 and structural variations of K-562 cancer cell line reported by

Zhou et al. [2019] to construct of our genome graph via the following steps. First, seven .vcf files were

downloaded from ENCODE Portal. These files contain variants of the K-562 cell line, categorized into

three distinct types:

• Small variants. These variants includes small insertion, deletions and single-nucleotide variants

that are represented by precise DNA sequence changes in the vcf, for example: REF: TCG, ALT:

T.

• Large structural variants. These SVs are represented by abbreviations such as INV (inversion),

DEL (deletion), INS (insertion) and DUP (duplication).

• Complex rearrangements. These SVs are represented by a set of novel adjacencies such as [chr1:6777707[G.

The meanings of these symbols are described in https://samtools.github.io/hts-specs/VCFv4.2.pdf.

We then use vg construct command to construct genome graphs using the linear reference and .vcf
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files. Currently, vg construct only supports all forms of small SVs and three types of intrachromosomal

large SVs: INV (inversion), DEL (deletion), and INS (insertion). We observed that certain complex

rearrangements could be reformatted into recognizable abbreviations, and therefore we manually reformat

them to enable their integration using vg construct. Furthermore, since our algorithm necessitates a

directed acyclic graph (DAG) as input, we transformed non-DAG segments, specifically those resulting

from inversions (INVs), into DAG-compatible structures. This transformation was done by substituting

inversions with new nodes that contain the reverse complement of the DNA sequences. Although the vg

mod --unfold function may be an alternative approach to dagify the graph, the VG team has indicated

that this function is somewhat outdated and less maintained, as discussed in the GitHub issues https:

//github.com/vgteam/vg/issues/4103 and https://github.com/human-pangenomics/hpp\ pangenome\

resources/issues/22.

Table S1 presents statistics for the structural variations (SVs) ultimately integrated into our genome

graph. It shows that small SVs constitute the bulk of these variations. Among the large SVs, deletions

are predominant, with no instances of insertions or duplications noted.

small SVs DEL INV other SVs

Number 3822549 6069 53 0
Percentage 99.84% 0.159% 0.001% 0%
Max length (bp) 572 19018917 365625
Mean length (bp) 2 9748 22127

Table S1: Statistics of SVs incorporated into our genome graph

H.3 Implementation details of graph-based dynamic programming algorithm

We use HiC-Pro [Servant et al., 2015] to process the raw Hi-C reads of GM12878 cell line from Rao et al.

[2014], and use Armatus [Filippova et al., 2014] on the contact matrices of GM12878 with bin size 10kb

to compute µ0 used in Eq. (3).

In practice, as outlined in Section A, while the majority of nodes in our genome graph have sequences

that are precisely 10kb in length, there exists a subset of nodes with sequences shorter than 10kb. In

addition, Armatus only computes values of µ0(l) for every integer value of l. To refine the estimation of

µ, we initially employ a spline model [Späth, 1995] for interpolation. This approach enables us to derive

µ0(l) for every float value of l. Subsequently, for a given path p, we compute its respective µ value using

the formula µ(L(p)/10000), where L(p) denotes the aggregate length of the DNA sequence along path p.

Throughout our experiments, we maintain γ in Eq. (2) as 0.1 and set the bin size kbin to 10kb.
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H.4 ChIP-seq peak calling and analysis on graphs

We download raw CTCF and SMC3 ChIP-seq reads of the K-562 cell line from ENCODE. Following

the steps described in Liao et al. [2023] (https://doi.org/10.5281/zenodo.6564396), we align these reads

to our genome graph using vg map, and call peaks using Graph Peak Caller (v1.2.3) [Grytten et al.,

2019]. To compare peaks called on the graph with TAD boundaries identified on the linear reference, we

use the command graph peak caller peaks to linear to project all peaks to the path of the graph

corresponding linear reference.

To evaluate TAD boundaries called from contact matrices derived using different genomes, we use

three metrics: the average peak around TAD boundaries, the boundary tagged ratio, and the fold change.

They are introduced in Zufferey et al. [2018], Liu et al. [2022] and Sefer [2022]. Since the bin size in our

experiments is 10kb, we adjust the definitions of these three metrics as the following:

• Average peak around TAD boundaries, a metric that describes the density of the occurrence fre-

quency of regulatory elements such as CTCF and SMC3 around the TAD boundaries. It is defined

as:

Average peak :=
1

n

n∑
i=1

Di,

where n is the number of unique TAD boundaries and Di is the average frequency of occurrence

of regulatory elements per 10kb within a 30kb range centered on the i-th TAD boundary (the

boundary and its two adjacent bins).

• Boundary tagged ratio, a metric that describes how frequent TAD boundaries enriched for regula-

tory elements are. It is defined as:

Boundary tagged ratio :=
1

n
|S|,

where n is the number of unique TAD boundaries and S is the set of TAD boundaries on which a

regulatory element occurs within a centered 30kb range.

• Fold change, a metric that describes how much the occurrence density of regulatory elements

changes between the regions near the TAD boundaries and the regions far away from the TAD

boundaries. It is defined as:

Fold change :=

∑n
i=1 Di∑n
i=1 Bi

− 1,

where n is the number of unique TAD boundaries, Di is the average frequency of occurrence of

regulatory elements per 10kb within a 30kb range centered on the i-th TAD boundary, and Bi is
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the average frequency of occurrence of regulatory elements per 10kb in bilateral regions on both

sides 200kb to 500kb from the i-th TAD boundary.
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I Additional experimental results

We present additional experimental results.

SRR1658694

Graph Linear reference Reconstruction

Mapped reads 1, 167, 029, 589 1, 166, 821, 533 1, 166, 203, 299
Perfectly mapped reads 631, 181, 248 580, 395, 980 604, 569, 568

Table S2: Mapping statistics of Hi-C reads being mapped onto different references, computed by vg

stats -a. Graph: reads mapped onto the genome graph; Linear reference: reads mapped onto the
linear reference genome; Reconstruction: reads mapped onto the inferred linear genome. The total Hi-C
reads of sample SRR1658694 is 1, 183, 709, 106.

KBM-7 (SRR1658708)

Graph Linear reference Reconstruction

Mapped reads 759, 108, 776 758, 936, 309 758, 987, 511
Perfectly mapped reads 378, 455, 564 356, 951, 335 373, 566, 022

Table S3: Mapping statistics of Hi-C reads being mapped onto different references, computed by vg

stats -a. Graph: reads mapped onto the genome graph; Linear reference: reads mapped onto the
linear reference genome; Reconstruction: reads mapped onto the inferred linear genome. The total Hi-C
reads of sample SRR1658708 is 776, 936, 020.

Figure S5: The region between 77, 000, 000bp and 102, 000, 000bp in chromosome 13. The genome graph
shows a large deletion (s2) with an approximate length of 9, 000, 000bp.

53

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2023.11.08.566275doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.566275
http://creativecommons.org/licenses/by-nc/4.0/


Figure S6: The region between 87, 000, 000bp and 112, 000, 000bp in chromosome 13. The genome graph
shows a large deletion (s2) with an approximate length of 15, 000, 000bp.

Figure S7: The region between 0bp and 23, 000, 000bp in chromosome 18. The genome graph shows a
large deletion (s2) with an approximate length of 20, 000, 000bp. The empty stripe is the centromere
region.

Average peak Boundary tagged ratio Fold change

γArmatus = 0.1
CTCF

Linear reference 0.149 0.315 −0.023
Reconstruction 0.172 0.349 0.091

SMC3
Linear reference 0.075 0.164 −0.025
Reconstruction 0.091 0.196 0.148

γArmatus = 0.9
CTCF

Linear reference 0.208 0.397 0.059
Reconstruction 0.239 0.438 0.155

SMC3
Linear reference 0.117 0.244 0.123
Reconstruction 0.142 0.290 0.276

Table S4: The comparisons of three metrics reflecting CTCF or SMC3 enrichments near TAD boundaries
across different genomes. γArmatus denotes the hyper-parameter γ of the TAD caller Armatus. Hi-C
sample: SRR1659693.
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Figure S8: TADs in the same region as Figure 2. TADs are called by Armatus with hyper-parameter
γArmatus = 0.5.

Figure S9: TADs in the same region as Figure S5. TADs are called by Armatus with hyper-parameter
γArmatus = 0.5.
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Figure S10: TADs in the same region as Figure 3. TADs are called by Armatus with hyper-parameter
γArmatus = 0.5.

Average peak Boundary tagged ratio Fold change

γArmatus = 0.1
CTCF

Linear reference 0.152 0.320 −0.008
Reconstruction 0.177 0.356 0.109

SMC3
Linear reference 0.076 0.168 0.005
Reconstruction 0.096 0.203 0.197

γArmatus = 0.5
CTCF

Linear reference 0.175 0.350 0.037
Reconstruction 0.213 0.403 0.181

SMC3
Linear reference 0.093 0.198 0.076
Reconstruction 0.121 0.246 0.292

γArmatus = 0.9
CTCF

Linear reference 0.212 0.403 0.084
Reconstruction 0.254 0.457 0.201

SMC3
Linear reference 0.120 0.249 0.149
Reconstruction 0.152 0.306 0.338

Table S5: The comparisons of three metrics reflecting CTCF or SMC3 enrichments near TAD boundaries
across different genomes. γArmatus denotes the hyper-parameter γ of the TAD caller Armatus. Hi-C
sample: SRR1659694.

Figure S11: Three regions of contact matrices generated by the longest M -weighted path algorithm,
corresponding to regions shown in Figure 3, Figure 2, and Figure S5.
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Average peak Boundary tagged ratio Fold change

TADs from DP
CTCF 0.282 0.522 0.070
SMC3 0.164 0.348 0.113

Table S6: The values of three metrics reflecting CTCF or SMC3 enrichments near TAD boundaries
generated directly from dynamic programming.

SRR1658693

Shortest path Longest M -weighted path

Mapped reads 873, 813, 004 878, 342, 257
Perfectly mapped reads 286, 269, 146 289, 729, 014

Table S7: Mapping statistics of Hi-C reads being mapped onto different references, computed by vg

stats -a. Shortest path: reads mapped onto the linear genome inferred by shortest path algorithm;
Longest M -weighted path: reads mapped onto the linear genome inferred by longest M -weighted path
algorithm.

SRR1658694

Shortest path Longest M -weighted path

Mapped reads 1, 161, 272, 502 1, 166, 868, 005
Perfectly mapped reads 598, 340, 773 605, 592, 165

Table S8: Mapping statistics of Hi-C reads being mapped onto different references, computed by vg

stats -a. Shortest path: reads mapped onto the linear genome inferred by shortest path algorithm;
Longest M -weighted path: reads mapped onto the linear genome inferred by longest M -weighted path
algorithm.

Average peak Boundary tagged ratio Fold change

γArmatus = 0.1

CTCF
Reconstruction 0.172 0.349 0.091
Shortest path 0.171 0.350 0.088

Longest M -weighted 0.170 0.349 0.095

SMC3
Reconstruction 0.091 0.196 0.148
Shortest path 0.090 0.193 0.128

Longest M -weighted 0.091 0.195 0.143

γArmatus = 0.9

CTCF
Reconstruction 0.239 0.438 0.155
Shortest path 0.238 0.439 0.145

Longest M -weighted 0.236 0.435 0.149

SMC3
Reconstruction 0.142 0.290 0.276
Shortest path 0.141 0.287 0.251

Longest M -weighted 0.140 0.285 0.259

Table S9: The comparisons of three metrics reflecting CTCF or SMC3 enrichments near TAD boundaries
across different genomes. Reconstruction: the genome inferred by our algorithm. Shortest path: the
genome inferred by shortest path algorithm; Longest M -weighted: the genome inferred by longest M -
weighted path algorithm. γArmatus denotes the hyper-parameter γ of the TAD caller Armatus. Hi-C
sample: SRR1659693.
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